Properties

Label 228.4.a.d.1.2
Level $228$
Weight $4$
Character 228.1
Self dual yes
Analytic conductor $13.452$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [228,4,Mod(1,228)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(228, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("228.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 228.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4524354813\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{897}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(15.4750\) of defining polynomial
Character \(\chi\) \(=\) 228.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +16.4750 q^{5} +6.47498 q^{7} +9.00000 q^{9} -22.4750 q^{11} +26.0000 q^{13} -49.4249 q^{15} +19.5250 q^{17} +19.0000 q^{19} -19.4249 q^{21} -17.8999 q^{23} +146.425 q^{25} -27.0000 q^{27} +179.900 q^{29} +196.750 q^{31} +67.4249 q^{33} +106.675 q^{35} +166.950 q^{37} -78.0000 q^{39} +356.850 q^{41} +42.4750 q^{43} +148.275 q^{45} +214.475 q^{47} -301.075 q^{49} -58.5751 q^{51} +485.800 q^{53} -370.275 q^{55} -57.0000 q^{57} -461.099 q^{59} -368.075 q^{61} +58.2748 q^{63} +428.349 q^{65} -741.900 q^{67} +53.6997 q^{69} +329.099 q^{71} -831.824 q^{73} -439.275 q^{75} -145.525 q^{77} +109.099 q^{79} +81.0000 q^{81} -353.500 q^{83} +321.674 q^{85} -539.700 q^{87} +215.900 q^{89} +168.349 q^{91} -590.249 q^{93} +313.025 q^{95} -962.499 q^{97} -202.275 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 3 q^{5} - 17 q^{7} + 18 q^{9} - 15 q^{11} + 52 q^{13} - 9 q^{15} + 69 q^{17} + 38 q^{19} + 51 q^{21} + 84 q^{23} + 203 q^{25} - 54 q^{27} + 240 q^{29} + 94 q^{31} + 45 q^{33} + 423 q^{35}+ \cdots - 135 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 16.4750 1.47357 0.736783 0.676129i \(-0.236344\pi\)
0.736783 + 0.676129i \(0.236344\pi\)
\(6\) 0 0
\(7\) 6.47498 0.349616 0.174808 0.984603i \(-0.444070\pi\)
0.174808 + 0.984603i \(0.444070\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −22.4750 −0.616042 −0.308021 0.951380i \(-0.599667\pi\)
−0.308021 + 0.951380i \(0.599667\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −49.4249 −0.850764
\(16\) 0 0
\(17\) 19.5250 0.278560 0.139280 0.990253i \(-0.455521\pi\)
0.139280 + 0.990253i \(0.455521\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −19.4249 −0.201851
\(22\) 0 0
\(23\) −17.8999 −0.162278 −0.0811389 0.996703i \(-0.525856\pi\)
−0.0811389 + 0.996703i \(0.525856\pi\)
\(24\) 0 0
\(25\) 146.425 1.17140
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 179.900 1.15195 0.575975 0.817467i \(-0.304622\pi\)
0.575975 + 0.817467i \(0.304622\pi\)
\(30\) 0 0
\(31\) 196.750 1.13991 0.569957 0.821675i \(-0.306960\pi\)
0.569957 + 0.821675i \(0.306960\pi\)
\(32\) 0 0
\(33\) 67.4249 0.355672
\(34\) 0 0
\(35\) 106.675 0.515183
\(36\) 0 0
\(37\) 166.950 0.741795 0.370897 0.928674i \(-0.379050\pi\)
0.370897 + 0.928674i \(0.379050\pi\)
\(38\) 0 0
\(39\) −78.0000 −0.320256
\(40\) 0 0
\(41\) 356.850 1.35928 0.679641 0.733545i \(-0.262135\pi\)
0.679641 + 0.733545i \(0.262135\pi\)
\(42\) 0 0
\(43\) 42.4750 0.150637 0.0753183 0.997160i \(-0.476003\pi\)
0.0753183 + 0.997160i \(0.476003\pi\)
\(44\) 0 0
\(45\) 148.275 0.491189
\(46\) 0 0
\(47\) 214.475 0.665625 0.332813 0.942993i \(-0.392002\pi\)
0.332813 + 0.942993i \(0.392002\pi\)
\(48\) 0 0
\(49\) −301.075 −0.877769
\(50\) 0 0
\(51\) −58.5751 −0.160826
\(52\) 0 0
\(53\) 485.800 1.25905 0.629526 0.776980i \(-0.283249\pi\)
0.629526 + 0.776980i \(0.283249\pi\)
\(54\) 0 0
\(55\) −370.275 −0.907779
\(56\) 0 0
\(57\) −57.0000 −0.132453
\(58\) 0 0
\(59\) −461.099 −1.01746 −0.508729 0.860927i \(-0.669884\pi\)
−0.508729 + 0.860927i \(0.669884\pi\)
\(60\) 0 0
\(61\) −368.075 −0.772576 −0.386288 0.922378i \(-0.626243\pi\)
−0.386288 + 0.922378i \(0.626243\pi\)
\(62\) 0 0
\(63\) 58.2748 0.116539
\(64\) 0 0
\(65\) 428.349 0.817388
\(66\) 0 0
\(67\) −741.900 −1.35280 −0.676399 0.736535i \(-0.736461\pi\)
−0.676399 + 0.736535i \(0.736461\pi\)
\(68\) 0 0
\(69\) 53.6997 0.0936912
\(70\) 0 0
\(71\) 329.099 0.550097 0.275049 0.961430i \(-0.411306\pi\)
0.275049 + 0.961430i \(0.411306\pi\)
\(72\) 0 0
\(73\) −831.824 −1.33367 −0.666833 0.745207i \(-0.732350\pi\)
−0.666833 + 0.745207i \(0.732350\pi\)
\(74\) 0 0
\(75\) −439.275 −0.676308
\(76\) 0 0
\(77\) −145.525 −0.215378
\(78\) 0 0
\(79\) 109.099 0.155375 0.0776875 0.996978i \(-0.475246\pi\)
0.0776875 + 0.996978i \(0.475246\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −353.500 −0.467489 −0.233745 0.972298i \(-0.575098\pi\)
−0.233745 + 0.972298i \(0.575098\pi\)
\(84\) 0 0
\(85\) 321.674 0.410476
\(86\) 0 0
\(87\) −539.700 −0.665079
\(88\) 0 0
\(89\) 215.900 0.257139 0.128569 0.991701i \(-0.458962\pi\)
0.128569 + 0.991701i \(0.458962\pi\)
\(90\) 0 0
\(91\) 168.349 0.193932
\(92\) 0 0
\(93\) −590.249 −0.658129
\(94\) 0 0
\(95\) 313.025 0.338059
\(96\) 0 0
\(97\) −962.499 −1.00749 −0.503747 0.863851i \(-0.668046\pi\)
−0.503747 + 0.863851i \(0.668046\pi\)
\(98\) 0 0
\(99\) −202.275 −0.205347
\(100\) 0 0
\(101\) 1097.20 1.08094 0.540472 0.841362i \(-0.318246\pi\)
0.540472 + 0.841362i \(0.318246\pi\)
\(102\) 0 0
\(103\) 632.848 0.605402 0.302701 0.953086i \(-0.402112\pi\)
0.302701 + 0.953086i \(0.402112\pi\)
\(104\) 0 0
\(105\) −320.025 −0.297441
\(106\) 0 0
\(107\) 1226.45 1.10809 0.554044 0.832488i \(-0.313084\pi\)
0.554044 + 0.832488i \(0.313084\pi\)
\(108\) 0 0
\(109\) 484.249 0.425529 0.212765 0.977103i \(-0.431753\pi\)
0.212765 + 0.977103i \(0.431753\pi\)
\(110\) 0 0
\(111\) −500.850 −0.428275
\(112\) 0 0
\(113\) −1305.10 −1.08649 −0.543244 0.839575i \(-0.682804\pi\)
−0.543244 + 0.839575i \(0.682804\pi\)
\(114\) 0 0
\(115\) −294.901 −0.239127
\(116\) 0 0
\(117\) 234.000 0.184900
\(118\) 0 0
\(119\) 126.424 0.0973889
\(120\) 0 0
\(121\) −825.875 −0.620492
\(122\) 0 0
\(123\) −1070.55 −0.784782
\(124\) 0 0
\(125\) 352.975 0.252569
\(126\) 0 0
\(127\) −1415.35 −0.988912 −0.494456 0.869203i \(-0.664633\pi\)
−0.494456 + 0.869203i \(0.664633\pi\)
\(128\) 0 0
\(129\) −127.425 −0.0869701
\(130\) 0 0
\(131\) −2913.72 −1.94331 −0.971653 0.236412i \(-0.924028\pi\)
−0.971653 + 0.236412i \(0.924028\pi\)
\(132\) 0 0
\(133\) 123.025 0.0802074
\(134\) 0 0
\(135\) −444.824 −0.283588
\(136\) 0 0
\(137\) 1421.72 0.886613 0.443307 0.896370i \(-0.353805\pi\)
0.443307 + 0.896370i \(0.353805\pi\)
\(138\) 0 0
\(139\) −2362.02 −1.44133 −0.720663 0.693286i \(-0.756162\pi\)
−0.720663 + 0.693286i \(0.756162\pi\)
\(140\) 0 0
\(141\) −643.425 −0.384299
\(142\) 0 0
\(143\) −584.349 −0.341719
\(144\) 0 0
\(145\) 2963.85 1.69748
\(146\) 0 0
\(147\) 903.224 0.506780
\(148\) 0 0
\(149\) −883.172 −0.485586 −0.242793 0.970078i \(-0.578064\pi\)
−0.242793 + 0.970078i \(0.578064\pi\)
\(150\) 0 0
\(151\) 325.099 0.175207 0.0876033 0.996155i \(-0.472079\pi\)
0.0876033 + 0.996155i \(0.472079\pi\)
\(152\) 0 0
\(153\) 175.725 0.0928532
\(154\) 0 0
\(155\) 3241.45 1.67974
\(156\) 0 0
\(157\) 2209.00 1.12291 0.561456 0.827506i \(-0.310241\pi\)
0.561456 + 0.827506i \(0.310241\pi\)
\(158\) 0 0
\(159\) −1457.40 −0.726914
\(160\) 0 0
\(161\) −115.902 −0.0567349
\(162\) 0 0
\(163\) −1157.70 −0.556305 −0.278153 0.960537i \(-0.589722\pi\)
−0.278153 + 0.960537i \(0.589722\pi\)
\(164\) 0 0
\(165\) 1110.82 0.524106
\(166\) 0 0
\(167\) −271.949 −0.126012 −0.0630062 0.998013i \(-0.520069\pi\)
−0.0630062 + 0.998013i \(0.520069\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 0 0
\(171\) 171.000 0.0764719
\(172\) 0 0
\(173\) 1725.70 0.758395 0.379198 0.925316i \(-0.376200\pi\)
0.379198 + 0.925316i \(0.376200\pi\)
\(174\) 0 0
\(175\) 948.098 0.409540
\(176\) 0 0
\(177\) 1383.30 0.587430
\(178\) 0 0
\(179\) 1477.85 0.617093 0.308546 0.951209i \(-0.400157\pi\)
0.308546 + 0.951209i \(0.400157\pi\)
\(180\) 0 0
\(181\) −1855.00 −0.761773 −0.380886 0.924622i \(-0.624381\pi\)
−0.380886 + 0.924622i \(0.624381\pi\)
\(182\) 0 0
\(183\) 1104.22 0.446047
\(184\) 0 0
\(185\) 2750.50 1.09308
\(186\) 0 0
\(187\) −438.824 −0.171604
\(188\) 0 0
\(189\) −174.824 −0.0672836
\(190\) 0 0
\(191\) 706.523 0.267655 0.133828 0.991005i \(-0.457273\pi\)
0.133828 + 0.991005i \(0.457273\pi\)
\(192\) 0 0
\(193\) 2418.45 0.901989 0.450995 0.892527i \(-0.351069\pi\)
0.450995 + 0.892527i \(0.351069\pi\)
\(194\) 0 0
\(195\) −1285.05 −0.471919
\(196\) 0 0
\(197\) 86.3019 0.0312120 0.0156060 0.999878i \(-0.495032\pi\)
0.0156060 + 0.999878i \(0.495032\pi\)
\(198\) 0 0
\(199\) −1371.32 −0.488495 −0.244248 0.969713i \(-0.578541\pi\)
−0.244248 + 0.969713i \(0.578541\pi\)
\(200\) 0 0
\(201\) 2225.70 0.781039
\(202\) 0 0
\(203\) 1164.85 0.402740
\(204\) 0 0
\(205\) 5879.09 2.00299
\(206\) 0 0
\(207\) −161.099 −0.0540926
\(208\) 0 0
\(209\) −427.025 −0.141330
\(210\) 0 0
\(211\) −2099.80 −0.685099 −0.342550 0.939500i \(-0.611290\pi\)
−0.342550 + 0.939500i \(0.611290\pi\)
\(212\) 0 0
\(213\) −987.298 −0.317599
\(214\) 0 0
\(215\) 699.774 0.221973
\(216\) 0 0
\(217\) 1273.95 0.398532
\(218\) 0 0
\(219\) 2495.47 0.769992
\(220\) 0 0
\(221\) 507.651 0.154517
\(222\) 0 0
\(223\) −4160.59 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(224\) 0 0
\(225\) 1317.82 0.390466
\(226\) 0 0
\(227\) 3743.55 1.09457 0.547287 0.836945i \(-0.315661\pi\)
0.547287 + 0.836945i \(0.315661\pi\)
\(228\) 0 0
\(229\) 920.777 0.265706 0.132853 0.991136i \(-0.457586\pi\)
0.132853 + 0.991136i \(0.457586\pi\)
\(230\) 0 0
\(231\) 436.575 0.124349
\(232\) 0 0
\(233\) −3756.02 −1.05607 −0.528037 0.849221i \(-0.677072\pi\)
−0.528037 + 0.849221i \(0.677072\pi\)
\(234\) 0 0
\(235\) 3533.47 0.980843
\(236\) 0 0
\(237\) −327.298 −0.0897058
\(238\) 0 0
\(239\) −698.573 −0.189067 −0.0945334 0.995522i \(-0.530136\pi\)
−0.0945334 + 0.995522i \(0.530136\pi\)
\(240\) 0 0
\(241\) −5183.14 −1.38538 −0.692688 0.721237i \(-0.743574\pi\)
−0.692688 + 0.721237i \(0.743574\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −4960.20 −1.29345
\(246\) 0 0
\(247\) 494.000 0.127257
\(248\) 0 0
\(249\) 1060.50 0.269905
\(250\) 0 0
\(251\) −1589.13 −0.399621 −0.199811 0.979835i \(-0.564033\pi\)
−0.199811 + 0.979835i \(0.564033\pi\)
\(252\) 0 0
\(253\) 402.300 0.0999700
\(254\) 0 0
\(255\) −965.023 −0.236989
\(256\) 0 0
\(257\) −4199.95 −1.01940 −0.509699 0.860353i \(-0.670243\pi\)
−0.509699 + 0.860353i \(0.670243\pi\)
\(258\) 0 0
\(259\) 1081.00 0.259343
\(260\) 0 0
\(261\) 1619.10 0.383984
\(262\) 0 0
\(263\) 3145.07 0.737388 0.368694 0.929551i \(-0.379805\pi\)
0.368694 + 0.929551i \(0.379805\pi\)
\(264\) 0 0
\(265\) 8003.54 1.85530
\(266\) 0 0
\(267\) −647.700 −0.148459
\(268\) 0 0
\(269\) −1643.79 −0.372580 −0.186290 0.982495i \(-0.559646\pi\)
−0.186290 + 0.982495i \(0.559646\pi\)
\(270\) 0 0
\(271\) 2060.30 0.461823 0.230911 0.972975i \(-0.425829\pi\)
0.230911 + 0.972975i \(0.425829\pi\)
\(272\) 0 0
\(273\) −505.048 −0.111967
\(274\) 0 0
\(275\) −3290.90 −0.721631
\(276\) 0 0
\(277\) 8093.67 1.75560 0.877800 0.479026i \(-0.159010\pi\)
0.877800 + 0.479026i \(0.159010\pi\)
\(278\) 0 0
\(279\) 1770.75 0.379971
\(280\) 0 0
\(281\) −4415.30 −0.937348 −0.468674 0.883371i \(-0.655268\pi\)
−0.468674 + 0.883371i \(0.655268\pi\)
\(282\) 0 0
\(283\) 3866.37 0.812126 0.406063 0.913845i \(-0.366901\pi\)
0.406063 + 0.913845i \(0.366901\pi\)
\(284\) 0 0
\(285\) −939.074 −0.195179
\(286\) 0 0
\(287\) 2310.60 0.475227
\(288\) 0 0
\(289\) −4531.77 −0.922405
\(290\) 0 0
\(291\) 2887.50 0.581677
\(292\) 0 0
\(293\) −9959.75 −1.98585 −0.992926 0.118735i \(-0.962116\pi\)
−0.992926 + 0.118735i \(0.962116\pi\)
\(294\) 0 0
\(295\) −7596.60 −1.49929
\(296\) 0 0
\(297\) 606.824 0.118557
\(298\) 0 0
\(299\) −465.398 −0.0900156
\(300\) 0 0
\(301\) 275.025 0.0526650
\(302\) 0 0
\(303\) −3291.60 −0.624084
\(304\) 0 0
\(305\) −6064.02 −1.13844
\(306\) 0 0
\(307\) 9774.20 1.81708 0.908539 0.417800i \(-0.137199\pi\)
0.908539 + 0.417800i \(0.137199\pi\)
\(308\) 0 0
\(309\) −1898.54 −0.349529
\(310\) 0 0
\(311\) −8660.82 −1.57913 −0.789566 0.613666i \(-0.789694\pi\)
−0.789566 + 0.613666i \(0.789694\pi\)
\(312\) 0 0
\(313\) −2733.10 −0.493560 −0.246780 0.969072i \(-0.579372\pi\)
−0.246780 + 0.969072i \(0.579372\pi\)
\(314\) 0 0
\(315\) 960.076 0.171728
\(316\) 0 0
\(317\) −212.755 −0.0376956 −0.0188478 0.999822i \(-0.506000\pi\)
−0.0188478 + 0.999822i \(0.506000\pi\)
\(318\) 0 0
\(319\) −4043.25 −0.709650
\(320\) 0 0
\(321\) −3679.35 −0.639755
\(322\) 0 0
\(323\) 370.975 0.0639060
\(324\) 0 0
\(325\) 3807.05 0.649776
\(326\) 0 0
\(327\) −1452.75 −0.245679
\(328\) 0 0
\(329\) 1388.72 0.232713
\(330\) 0 0
\(331\) −7184.19 −1.19299 −0.596494 0.802618i \(-0.703440\pi\)
−0.596494 + 0.802618i \(0.703440\pi\)
\(332\) 0 0
\(333\) 1502.55 0.247265
\(334\) 0 0
\(335\) −12222.8 −1.99344
\(336\) 0 0
\(337\) −11190.8 −1.80891 −0.904453 0.426574i \(-0.859720\pi\)
−0.904453 + 0.426574i \(0.859720\pi\)
\(338\) 0 0
\(339\) 3915.29 0.627285
\(340\) 0 0
\(341\) −4421.95 −0.702234
\(342\) 0 0
\(343\) −4170.37 −0.656498
\(344\) 0 0
\(345\) 884.702 0.138060
\(346\) 0 0
\(347\) 7770.07 1.20207 0.601036 0.799222i \(-0.294755\pi\)
0.601036 + 0.799222i \(0.294755\pi\)
\(348\) 0 0
\(349\) 5313.37 0.814951 0.407476 0.913216i \(-0.366409\pi\)
0.407476 + 0.913216i \(0.366409\pi\)
\(350\) 0 0
\(351\) −702.000 −0.106752
\(352\) 0 0
\(353\) 6873.29 1.03634 0.518170 0.855277i \(-0.326613\pi\)
0.518170 + 0.855277i \(0.326613\pi\)
\(354\) 0 0
\(355\) 5421.90 0.810605
\(356\) 0 0
\(357\) −379.272 −0.0562275
\(358\) 0 0
\(359\) −3343.38 −0.491523 −0.245761 0.969330i \(-0.579038\pi\)
−0.245761 + 0.969330i \(0.579038\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 2477.63 0.358241
\(364\) 0 0
\(365\) −13704.3 −1.96525
\(366\) 0 0
\(367\) −12129.8 −1.72526 −0.862629 0.505837i \(-0.831184\pi\)
−0.862629 + 0.505837i \(0.831184\pi\)
\(368\) 0 0
\(369\) 3211.65 0.453094
\(370\) 0 0
\(371\) 3145.54 0.440185
\(372\) 0 0
\(373\) −4017.25 −0.557655 −0.278827 0.960341i \(-0.589946\pi\)
−0.278827 + 0.960341i \(0.589946\pi\)
\(374\) 0 0
\(375\) −1058.93 −0.145821
\(376\) 0 0
\(377\) 4677.40 0.638987
\(378\) 0 0
\(379\) 14104.7 1.91164 0.955820 0.293951i \(-0.0949704\pi\)
0.955820 + 0.293951i \(0.0949704\pi\)
\(380\) 0 0
\(381\) 4246.05 0.570949
\(382\) 0 0
\(383\) 10357.3 1.38182 0.690908 0.722943i \(-0.257211\pi\)
0.690908 + 0.722943i \(0.257211\pi\)
\(384\) 0 0
\(385\) −2397.52 −0.317374
\(386\) 0 0
\(387\) 382.275 0.0502122
\(388\) 0 0
\(389\) −7931.13 −1.03374 −0.516869 0.856064i \(-0.672903\pi\)
−0.516869 + 0.856064i \(0.672903\pi\)
\(390\) 0 0
\(391\) −349.496 −0.0452041
\(392\) 0 0
\(393\) 8741.17 1.12197
\(394\) 0 0
\(395\) 1797.41 0.228955
\(396\) 0 0
\(397\) 14121.2 1.78519 0.892595 0.450859i \(-0.148882\pi\)
0.892595 + 0.450859i \(0.148882\pi\)
\(398\) 0 0
\(399\) −369.074 −0.0463078
\(400\) 0 0
\(401\) 7142.94 0.889530 0.444765 0.895647i \(-0.353287\pi\)
0.444765 + 0.895647i \(0.353287\pi\)
\(402\) 0 0
\(403\) 5115.49 0.632310
\(404\) 0 0
\(405\) 1334.47 0.163730
\(406\) 0 0
\(407\) −3752.20 −0.456977
\(408\) 0 0
\(409\) −15385.6 −1.86007 −0.930034 0.367473i \(-0.880223\pi\)
−0.930034 + 0.367473i \(0.880223\pi\)
\(410\) 0 0
\(411\) −4265.17 −0.511886
\(412\) 0 0
\(413\) −2985.61 −0.355720
\(414\) 0 0
\(415\) −5823.90 −0.688877
\(416\) 0 0
\(417\) 7086.07 0.832150
\(418\) 0 0
\(419\) 15122.9 1.76325 0.881625 0.471950i \(-0.156450\pi\)
0.881625 + 0.471950i \(0.156450\pi\)
\(420\) 0 0
\(421\) −3903.99 −0.451946 −0.225973 0.974134i \(-0.572556\pi\)
−0.225973 + 0.974134i \(0.572556\pi\)
\(422\) 0 0
\(423\) 1930.27 0.221875
\(424\) 0 0
\(425\) 2858.95 0.326305
\(426\) 0 0
\(427\) −2383.28 −0.270105
\(428\) 0 0
\(429\) 1753.05 0.197291
\(430\) 0 0
\(431\) 12165.5 1.35961 0.679807 0.733391i \(-0.262064\pi\)
0.679807 + 0.733391i \(0.262064\pi\)
\(432\) 0 0
\(433\) 913.905 0.101431 0.0507153 0.998713i \(-0.483850\pi\)
0.0507153 + 0.998713i \(0.483850\pi\)
\(434\) 0 0
\(435\) −8891.54 −0.980039
\(436\) 0 0
\(437\) −340.098 −0.0372291
\(438\) 0 0
\(439\) 12892.5 1.40166 0.700828 0.713330i \(-0.252814\pi\)
0.700828 + 0.713330i \(0.252814\pi\)
\(440\) 0 0
\(441\) −2709.67 −0.292590
\(442\) 0 0
\(443\) −1227.01 −0.131596 −0.0657980 0.997833i \(-0.520959\pi\)
−0.0657980 + 0.997833i \(0.520959\pi\)
\(444\) 0 0
\(445\) 3556.95 0.378911
\(446\) 0 0
\(447\) 2649.52 0.280353
\(448\) 0 0
\(449\) −10804.2 −1.13560 −0.567799 0.823167i \(-0.692205\pi\)
−0.567799 + 0.823167i \(0.692205\pi\)
\(450\) 0 0
\(451\) −8020.19 −0.837375
\(452\) 0 0
\(453\) −975.298 −0.101156
\(454\) 0 0
\(455\) 2773.55 0.285772
\(456\) 0 0
\(457\) −6196.27 −0.634244 −0.317122 0.948385i \(-0.602716\pi\)
−0.317122 + 0.948385i \(0.602716\pi\)
\(458\) 0 0
\(459\) −527.176 −0.0536088
\(460\) 0 0
\(461\) −9333.36 −0.942946 −0.471473 0.881880i \(-0.656278\pi\)
−0.471473 + 0.881880i \(0.656278\pi\)
\(462\) 0 0
\(463\) 3356.22 0.336883 0.168441 0.985712i \(-0.446127\pi\)
0.168441 + 0.985712i \(0.446127\pi\)
\(464\) 0 0
\(465\) −9724.35 −0.969797
\(466\) 0 0
\(467\) 18217.0 1.80510 0.902549 0.430587i \(-0.141693\pi\)
0.902549 + 0.430587i \(0.141693\pi\)
\(468\) 0 0
\(469\) −4803.79 −0.472960
\(470\) 0 0
\(471\) −6627.00 −0.648314
\(472\) 0 0
\(473\) −954.624 −0.0927985
\(474\) 0 0
\(475\) 2782.07 0.268737
\(476\) 0 0
\(477\) 4372.20 0.419684
\(478\) 0 0
\(479\) −8736.59 −0.833372 −0.416686 0.909051i \(-0.636808\pi\)
−0.416686 + 0.909051i \(0.636808\pi\)
\(480\) 0 0
\(481\) 4340.70 0.411474
\(482\) 0 0
\(483\) 347.705 0.0327559
\(484\) 0 0
\(485\) −15857.1 −1.48461
\(486\) 0 0
\(487\) 6001.70 0.558446 0.279223 0.960226i \(-0.409923\pi\)
0.279223 + 0.960226i \(0.409923\pi\)
\(488\) 0 0
\(489\) 3473.09 0.321183
\(490\) 0 0
\(491\) 8182.99 0.752125 0.376062 0.926594i \(-0.377278\pi\)
0.376062 + 0.926594i \(0.377278\pi\)
\(492\) 0 0
\(493\) 3512.55 0.320887
\(494\) 0 0
\(495\) −3332.47 −0.302593
\(496\) 0 0
\(497\) 2130.91 0.192323
\(498\) 0 0
\(499\) 17960.8 1.61130 0.805648 0.592395i \(-0.201818\pi\)
0.805648 + 0.592395i \(0.201818\pi\)
\(500\) 0 0
\(501\) 815.847 0.0727532
\(502\) 0 0
\(503\) −2360.60 −0.209252 −0.104626 0.994512i \(-0.533365\pi\)
−0.104626 + 0.994512i \(0.533365\pi\)
\(504\) 0 0
\(505\) 18076.3 1.59284
\(506\) 0 0
\(507\) 4563.00 0.399704
\(508\) 0 0
\(509\) 9204.70 0.801554 0.400777 0.916176i \(-0.368740\pi\)
0.400777 + 0.916176i \(0.368740\pi\)
\(510\) 0 0
\(511\) −5386.04 −0.466271
\(512\) 0 0
\(513\) −513.000 −0.0441511
\(514\) 0 0
\(515\) 10426.2 0.892100
\(516\) 0 0
\(517\) −4820.32 −0.410053
\(518\) 0 0
\(519\) −5177.09 −0.437860
\(520\) 0 0
\(521\) 2188.74 0.184051 0.0920254 0.995757i \(-0.470666\pi\)
0.0920254 + 0.995757i \(0.470666\pi\)
\(522\) 0 0
\(523\) 8302.44 0.694150 0.347075 0.937837i \(-0.387175\pi\)
0.347075 + 0.937837i \(0.387175\pi\)
\(524\) 0 0
\(525\) −2844.30 −0.236448
\(526\) 0 0
\(527\) 3841.54 0.317534
\(528\) 0 0
\(529\) −11846.6 −0.973666
\(530\) 0 0
\(531\) −4149.89 −0.339153
\(532\) 0 0
\(533\) 9278.10 0.753994
\(534\) 0 0
\(535\) 20205.7 1.63284
\(536\) 0 0
\(537\) −4433.55 −0.356279
\(538\) 0 0
\(539\) 6766.65 0.540742
\(540\) 0 0
\(541\) −17308.0 −1.37547 −0.687734 0.725963i \(-0.741394\pi\)
−0.687734 + 0.725963i \(0.741394\pi\)
\(542\) 0 0
\(543\) 5564.99 0.439810
\(544\) 0 0
\(545\) 7978.00 0.627046
\(546\) 0 0
\(547\) 879.254 0.0687279 0.0343640 0.999409i \(-0.489059\pi\)
0.0343640 + 0.999409i \(0.489059\pi\)
\(548\) 0 0
\(549\) −3312.67 −0.257525
\(550\) 0 0
\(551\) 3418.10 0.264276
\(552\) 0 0
\(553\) 706.415 0.0543216
\(554\) 0 0
\(555\) −8251.49 −0.631092
\(556\) 0 0
\(557\) 18648.1 1.41857 0.709287 0.704919i \(-0.249017\pi\)
0.709287 + 0.704919i \(0.249017\pi\)
\(558\) 0 0
\(559\) 1104.35 0.0835581
\(560\) 0 0
\(561\) 1316.47 0.0990758
\(562\) 0 0
\(563\) 9300.78 0.696237 0.348118 0.937451i \(-0.386821\pi\)
0.348118 + 0.937451i \(0.386821\pi\)
\(564\) 0 0
\(565\) −21501.5 −1.60101
\(566\) 0 0
\(567\) 524.473 0.0388462
\(568\) 0 0
\(569\) 18660.2 1.37483 0.687413 0.726267i \(-0.258746\pi\)
0.687413 + 0.726267i \(0.258746\pi\)
\(570\) 0 0
\(571\) 3844.50 0.281764 0.140882 0.990026i \(-0.455006\pi\)
0.140882 + 0.990026i \(0.455006\pi\)
\(572\) 0 0
\(573\) −2119.57 −0.154531
\(574\) 0 0
\(575\) −2620.99 −0.190092
\(576\) 0 0
\(577\) 22136.5 1.59715 0.798575 0.601896i \(-0.205588\pi\)
0.798575 + 0.601896i \(0.205588\pi\)
\(578\) 0 0
\(579\) −7255.35 −0.520764
\(580\) 0 0
\(581\) −2288.90 −0.163442
\(582\) 0 0
\(583\) −10918.3 −0.775629
\(584\) 0 0
\(585\) 3855.15 0.272463
\(586\) 0 0
\(587\) −19056.1 −1.33991 −0.669957 0.742400i \(-0.733688\pi\)
−0.669957 + 0.742400i \(0.733688\pi\)
\(588\) 0 0
\(589\) 3738.25 0.261514
\(590\) 0 0
\(591\) −258.906 −0.0180202
\(592\) 0 0
\(593\) −19393.0 −1.34296 −0.671479 0.741023i \(-0.734341\pi\)
−0.671479 + 0.741023i \(0.734341\pi\)
\(594\) 0 0
\(595\) 2082.83 0.143509
\(596\) 0 0
\(597\) 4113.97 0.282033
\(598\) 0 0
\(599\) 9171.58 0.625611 0.312805 0.949817i \(-0.398731\pi\)
0.312805 + 0.949817i \(0.398731\pi\)
\(600\) 0 0
\(601\) −4335.06 −0.294228 −0.147114 0.989120i \(-0.546998\pi\)
−0.147114 + 0.989120i \(0.546998\pi\)
\(602\) 0 0
\(603\) −6677.10 −0.450933
\(604\) 0 0
\(605\) −13606.3 −0.914337
\(606\) 0 0
\(607\) −7349.45 −0.491441 −0.245721 0.969341i \(-0.579025\pi\)
−0.245721 + 0.969341i \(0.579025\pi\)
\(608\) 0 0
\(609\) −3494.54 −0.232522
\(610\) 0 0
\(611\) 5576.35 0.369223
\(612\) 0 0
\(613\) −7060.20 −0.465186 −0.232593 0.972574i \(-0.574721\pi\)
−0.232593 + 0.972574i \(0.574721\pi\)
\(614\) 0 0
\(615\) −17637.3 −1.15643
\(616\) 0 0
\(617\) −400.580 −0.0261374 −0.0130687 0.999915i \(-0.504160\pi\)
−0.0130687 + 0.999915i \(0.504160\pi\)
\(618\) 0 0
\(619\) −19511.6 −1.26694 −0.633470 0.773767i \(-0.718370\pi\)
−0.633470 + 0.773767i \(0.718370\pi\)
\(620\) 0 0
\(621\) 483.298 0.0312304
\(622\) 0 0
\(623\) 1397.95 0.0898998
\(624\) 0 0
\(625\) −12487.9 −0.799223
\(626\) 0 0
\(627\) 1281.07 0.0815967
\(628\) 0 0
\(629\) 3259.70 0.206634
\(630\) 0 0
\(631\) −16140.2 −1.01828 −0.509138 0.860685i \(-0.670036\pi\)
−0.509138 + 0.860685i \(0.670036\pi\)
\(632\) 0 0
\(633\) 6299.39 0.395542
\(634\) 0 0
\(635\) −23317.8 −1.45723
\(636\) 0 0
\(637\) −7827.94 −0.486898
\(638\) 0 0
\(639\) 2961.89 0.183366
\(640\) 0 0
\(641\) −1534.50 −0.0945539 −0.0472770 0.998882i \(-0.515054\pi\)
−0.0472770 + 0.998882i \(0.515054\pi\)
\(642\) 0 0
\(643\) −24603.9 −1.50899 −0.754497 0.656303i \(-0.772119\pi\)
−0.754497 + 0.656303i \(0.772119\pi\)
\(644\) 0 0
\(645\) −2099.32 −0.128156
\(646\) 0 0
\(647\) 30583.9 1.85839 0.929194 0.369591i \(-0.120502\pi\)
0.929194 + 0.369591i \(0.120502\pi\)
\(648\) 0 0
\(649\) 10363.2 0.626797
\(650\) 0 0
\(651\) −3821.85 −0.230092
\(652\) 0 0
\(653\) 15150.4 0.907935 0.453967 0.891018i \(-0.350008\pi\)
0.453967 + 0.891018i \(0.350008\pi\)
\(654\) 0 0
\(655\) −48003.5 −2.86359
\(656\) 0 0
\(657\) −7486.41 −0.444555
\(658\) 0 0
\(659\) −3451.45 −0.204021 −0.102010 0.994783i \(-0.532527\pi\)
−0.102010 + 0.994783i \(0.532527\pi\)
\(660\) 0 0
\(661\) −1542.56 −0.0907695 −0.0453847 0.998970i \(-0.514451\pi\)
−0.0453847 + 0.998970i \(0.514451\pi\)
\(662\) 0 0
\(663\) −1522.95 −0.0892105
\(664\) 0 0
\(665\) 2026.83 0.118191
\(666\) 0 0
\(667\) −3220.19 −0.186936
\(668\) 0 0
\(669\) 12481.8 0.721336
\(670\) 0 0
\(671\) 8272.47 0.475939
\(672\) 0 0
\(673\) −1881.27 −0.107753 −0.0538763 0.998548i \(-0.517158\pi\)
−0.0538763 + 0.998548i \(0.517158\pi\)
\(674\) 0 0
\(675\) −3953.47 −0.225436
\(676\) 0 0
\(677\) −1483.42 −0.0842135 −0.0421067 0.999113i \(-0.513407\pi\)
−0.0421067 + 0.999113i \(0.513407\pi\)
\(678\) 0 0
\(679\) −6232.16 −0.352236
\(680\) 0 0
\(681\) −11230.7 −0.631953
\(682\) 0 0
\(683\) 6629.35 0.371398 0.185699 0.982607i \(-0.440545\pi\)
0.185699 + 0.982607i \(0.440545\pi\)
\(684\) 0 0
\(685\) 23422.9 1.30648
\(686\) 0 0
\(687\) −2762.33 −0.153405
\(688\) 0 0
\(689\) 12630.8 0.698396
\(690\) 0 0
\(691\) −21856.7 −1.20328 −0.601641 0.798767i \(-0.705486\pi\)
−0.601641 + 0.798767i \(0.705486\pi\)
\(692\) 0 0
\(693\) −1309.73 −0.0717927
\(694\) 0 0
\(695\) −38914.3 −2.12389
\(696\) 0 0
\(697\) 6967.50 0.378641
\(698\) 0 0
\(699\) 11268.1 0.609725
\(700\) 0 0
\(701\) −25538.0 −1.37597 −0.687986 0.725724i \(-0.741505\pi\)
−0.687986 + 0.725724i \(0.741505\pi\)
\(702\) 0 0
\(703\) 3172.05 0.170179
\(704\) 0 0
\(705\) −10600.4 −0.566290
\(706\) 0 0
\(707\) 7104.34 0.377916
\(708\) 0 0
\(709\) 7419.19 0.392995 0.196498 0.980504i \(-0.437043\pi\)
0.196498 + 0.980504i \(0.437043\pi\)
\(710\) 0 0
\(711\) 981.893 0.0517917
\(712\) 0 0
\(713\) −3521.80 −0.184983
\(714\) 0 0
\(715\) −9627.15 −0.503545
\(716\) 0 0
\(717\) 2095.72 0.109158
\(718\) 0 0
\(719\) −8556.68 −0.443825 −0.221913 0.975067i \(-0.571230\pi\)
−0.221913 + 0.975067i \(0.571230\pi\)
\(720\) 0 0
\(721\) 4097.68 0.211658
\(722\) 0 0
\(723\) 15549.4 0.799847
\(724\) 0 0
\(725\) 26341.8 1.34939
\(726\) 0 0
\(727\) 18454.6 0.941463 0.470731 0.882277i \(-0.343990\pi\)
0.470731 + 0.882277i \(0.343990\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 829.325 0.0419613
\(732\) 0 0
\(733\) 33549.5 1.69056 0.845279 0.534325i \(-0.179434\pi\)
0.845279 + 0.534325i \(0.179434\pi\)
\(734\) 0 0
\(735\) 14880.6 0.746774
\(736\) 0 0
\(737\) 16674.2 0.833381
\(738\) 0 0
\(739\) −31214.6 −1.55378 −0.776892 0.629634i \(-0.783205\pi\)
−0.776892 + 0.629634i \(0.783205\pi\)
\(740\) 0 0
\(741\) −1482.00 −0.0734718
\(742\) 0 0
\(743\) −4365.58 −0.215555 −0.107778 0.994175i \(-0.534373\pi\)
−0.107778 + 0.994175i \(0.534373\pi\)
\(744\) 0 0
\(745\) −14550.2 −0.715543
\(746\) 0 0
\(747\) −3181.50 −0.155830
\(748\) 0 0
\(749\) 7941.24 0.387405
\(750\) 0 0
\(751\) −38096.7 −1.85109 −0.925545 0.378639i \(-0.876392\pi\)
−0.925545 + 0.378639i \(0.876392\pi\)
\(752\) 0 0
\(753\) 4767.38 0.230721
\(754\) 0 0
\(755\) 5356.00 0.258179
\(756\) 0 0
\(757\) 11366.1 0.545718 0.272859 0.962054i \(-0.412031\pi\)
0.272859 + 0.962054i \(0.412031\pi\)
\(758\) 0 0
\(759\) −1206.90 −0.0577177
\(760\) 0 0
\(761\) −15839.4 −0.754506 −0.377253 0.926110i \(-0.623131\pi\)
−0.377253 + 0.926110i \(0.623131\pi\)
\(762\) 0 0
\(763\) 3135.50 0.148772
\(764\) 0 0
\(765\) 2895.07 0.136825
\(766\) 0 0
\(767\) −11988.6 −0.564384
\(768\) 0 0
\(769\) 22054.9 1.03423 0.517113 0.855917i \(-0.327007\pi\)
0.517113 + 0.855917i \(0.327007\pi\)
\(770\) 0 0
\(771\) 12599.8 0.588550
\(772\) 0 0
\(773\) −23479.1 −1.09248 −0.546239 0.837629i \(-0.683941\pi\)
−0.546239 + 0.837629i \(0.683941\pi\)
\(774\) 0 0
\(775\) 28809.1 1.33529
\(776\) 0 0
\(777\) −3242.99 −0.149732
\(778\) 0 0
\(779\) 6780.15 0.311841
\(780\) 0 0
\(781\) −7396.50 −0.338883
\(782\) 0 0
\(783\) −4857.30 −0.221693
\(784\) 0 0
\(785\) 36393.2 1.65469
\(786\) 0 0
\(787\) 13540.3 0.613291 0.306645 0.951824i \(-0.400793\pi\)
0.306645 + 0.951824i \(0.400793\pi\)
\(788\) 0 0
\(789\) −9435.20 −0.425731
\(790\) 0 0
\(791\) −8450.48 −0.379854
\(792\) 0 0
\(793\) −9569.94 −0.428548
\(794\) 0 0
\(795\) −24010.6 −1.07116
\(796\) 0 0
\(797\) 24586.9 1.09274 0.546368 0.837545i \(-0.316010\pi\)
0.546368 + 0.837545i \(0.316010\pi\)
\(798\) 0 0
\(799\) 4187.63 0.185416
\(800\) 0 0
\(801\) 1943.10 0.0857129
\(802\) 0 0
\(803\) 18695.2 0.821594
\(804\) 0 0
\(805\) −1909.48 −0.0836027
\(806\) 0 0
\(807\) 4931.38 0.215109
\(808\) 0 0
\(809\) −10158.0 −0.441454 −0.220727 0.975336i \(-0.570843\pi\)
−0.220727 + 0.975336i \(0.570843\pi\)
\(810\) 0 0
\(811\) 39398.7 1.70589 0.852945 0.522001i \(-0.174814\pi\)
0.852945 + 0.522001i \(0.174814\pi\)
\(812\) 0 0
\(813\) −6180.89 −0.266634
\(814\) 0 0
\(815\) −19073.0 −0.819753
\(816\) 0 0
\(817\) 807.025 0.0345584
\(818\) 0 0
\(819\) 1515.15 0.0646440
\(820\) 0 0
\(821\) −23969.8 −1.01894 −0.509471 0.860488i \(-0.670159\pi\)
−0.509471 + 0.860488i \(0.670159\pi\)
\(822\) 0 0
\(823\) 25637.7 1.08587 0.542936 0.839774i \(-0.317313\pi\)
0.542936 + 0.839774i \(0.317313\pi\)
\(824\) 0 0
\(825\) 9872.69 0.416634
\(826\) 0 0
\(827\) −27913.4 −1.17369 −0.586846 0.809699i \(-0.699631\pi\)
−0.586846 + 0.809699i \(0.699631\pi\)
\(828\) 0 0
\(829\) 41489.4 1.73822 0.869112 0.494615i \(-0.164691\pi\)
0.869112 + 0.494615i \(0.164691\pi\)
\(830\) 0 0
\(831\) −24281.0 −1.01360
\(832\) 0 0
\(833\) −5878.49 −0.244511
\(834\) 0 0
\(835\) −4480.36 −0.185688
\(836\) 0 0
\(837\) −5312.24 −0.219376
\(838\) 0 0
\(839\) 19409.4 0.798672 0.399336 0.916805i \(-0.369241\pi\)
0.399336 + 0.916805i \(0.369241\pi\)
\(840\) 0 0
\(841\) 7974.98 0.326991
\(842\) 0 0
\(843\) 13245.9 0.541178
\(844\) 0 0
\(845\) −25058.4 −1.02016
\(846\) 0 0
\(847\) −5347.53 −0.216934
\(848\) 0 0
\(849\) −11599.1 −0.468881
\(850\) 0 0
\(851\) −2988.39 −0.120377
\(852\) 0 0
\(853\) −23801.7 −0.955397 −0.477698 0.878524i \(-0.658529\pi\)
−0.477698 + 0.878524i \(0.658529\pi\)
\(854\) 0 0
\(855\) 2817.22 0.112686
\(856\) 0 0
\(857\) 22763.1 0.907317 0.453659 0.891176i \(-0.350119\pi\)
0.453659 + 0.891176i \(0.350119\pi\)
\(858\) 0 0
\(859\) 36138.3 1.43542 0.717709 0.696343i \(-0.245191\pi\)
0.717709 + 0.696343i \(0.245191\pi\)
\(860\) 0 0
\(861\) −6931.79 −0.274372
\(862\) 0 0
\(863\) −3079.32 −0.121462 −0.0607308 0.998154i \(-0.519343\pi\)
−0.0607308 + 0.998154i \(0.519343\pi\)
\(864\) 0 0
\(865\) 28430.8 1.11755
\(866\) 0 0
\(867\) 13595.3 0.532551
\(868\) 0 0
\(869\) −2452.00 −0.0957175
\(870\) 0 0
\(871\) −19289.4 −0.750398
\(872\) 0 0
\(873\) −8662.49 −0.335831
\(874\) 0 0
\(875\) 2285.51 0.0883020
\(876\) 0 0
\(877\) −592.185 −0.0228012 −0.0114006 0.999935i \(-0.503629\pi\)
−0.0114006 + 0.999935i \(0.503629\pi\)
\(878\) 0 0
\(879\) 29879.2 1.14653
\(880\) 0 0
\(881\) 24642.0 0.942350 0.471175 0.882040i \(-0.343830\pi\)
0.471175 + 0.882040i \(0.343830\pi\)
\(882\) 0 0
\(883\) −2212.23 −0.0843119 −0.0421560 0.999111i \(-0.513423\pi\)
−0.0421560 + 0.999111i \(0.513423\pi\)
\(884\) 0 0
\(885\) 22789.8 0.865617
\(886\) 0 0
\(887\) −21990.5 −0.832433 −0.416216 0.909266i \(-0.636644\pi\)
−0.416216 + 0.909266i \(0.636644\pi\)
\(888\) 0 0
\(889\) −9164.35 −0.345740
\(890\) 0 0
\(891\) −1820.47 −0.0684491
\(892\) 0 0
\(893\) 4075.02 0.152705
\(894\) 0 0
\(895\) 24347.5 0.909328
\(896\) 0 0
\(897\) 1396.19 0.0519705
\(898\) 0 0
\(899\) 35395.3 1.31312
\(900\) 0 0
\(901\) 9485.25 0.350721
\(902\) 0 0
\(903\) −825.074 −0.0304061
\(904\) 0 0
\(905\) −30561.0 −1.12252
\(906\) 0 0
\(907\) 30234.0 1.10684 0.553420 0.832902i \(-0.313322\pi\)
0.553420 + 0.832902i \(0.313322\pi\)
\(908\) 0 0
\(909\) 9874.79 0.360315
\(910\) 0 0
\(911\) −17697.8 −0.643637 −0.321818 0.946801i \(-0.604294\pi\)
−0.321818 + 0.946801i \(0.604294\pi\)
\(912\) 0 0
\(913\) 7944.90 0.287993
\(914\) 0 0
\(915\) 18192.1 0.657280
\(916\) 0 0
\(917\) −18866.3 −0.679411
\(918\) 0 0
\(919\) −14971.6 −0.537395 −0.268698 0.963225i \(-0.586593\pi\)
−0.268698 + 0.963225i \(0.586593\pi\)
\(920\) 0 0
\(921\) −29322.6 −1.04909
\(922\) 0 0
\(923\) 8556.58 0.305139
\(924\) 0 0
\(925\) 24445.6 0.868938
\(926\) 0 0
\(927\) 5695.63 0.201801
\(928\) 0 0
\(929\) 11711.3 0.413601 0.206800 0.978383i \(-0.433695\pi\)
0.206800 + 0.978383i \(0.433695\pi\)
\(930\) 0 0
\(931\) −5720.42 −0.201374
\(932\) 0 0
\(933\) 25982.4 0.911712
\(934\) 0 0
\(935\) −7229.62 −0.252871
\(936\) 0 0
\(937\) 21703.5 0.756696 0.378348 0.925663i \(-0.376492\pi\)
0.378348 + 0.925663i \(0.376492\pi\)
\(938\) 0 0
\(939\) 8199.31 0.284957
\(940\) 0 0
\(941\) −4472.21 −0.154931 −0.0774654 0.996995i \(-0.524683\pi\)
−0.0774654 + 0.996995i \(0.524683\pi\)
\(942\) 0 0
\(943\) −6387.58 −0.220581
\(944\) 0 0
\(945\) −2880.23 −0.0991469
\(946\) 0 0
\(947\) 2492.89 0.0855418 0.0427709 0.999085i \(-0.486381\pi\)
0.0427709 + 0.999085i \(0.486381\pi\)
\(948\) 0 0
\(949\) −21627.4 −0.739785
\(950\) 0 0
\(951\) 638.264 0.0217636
\(952\) 0 0
\(953\) 12389.2 0.421119 0.210560 0.977581i \(-0.432471\pi\)
0.210560 + 0.977581i \(0.432471\pi\)
\(954\) 0 0
\(955\) 11639.9 0.394408
\(956\) 0 0
\(957\) 12129.7 0.409717
\(958\) 0 0
\(959\) 9205.63 0.309974
\(960\) 0 0
\(961\) 8919.48 0.299402
\(962\) 0 0
\(963\) 11038.0 0.369362
\(964\) 0 0
\(965\) 39843.9 1.32914
\(966\) 0 0
\(967\) −24561.6 −0.816802 −0.408401 0.912803i \(-0.633914\pi\)
−0.408401 + 0.912803i \(0.633914\pi\)
\(968\) 0 0
\(969\) −1112.93 −0.0368961
\(970\) 0 0
\(971\) −34972.4 −1.15584 −0.577918 0.816095i \(-0.696135\pi\)
−0.577918 + 0.816095i \(0.696135\pi\)
\(972\) 0 0
\(973\) −15294.1 −0.503910
\(974\) 0 0
\(975\) −11421.1 −0.375148
\(976\) 0 0
\(977\) −34669.6 −1.13529 −0.567645 0.823274i \(-0.692145\pi\)
−0.567645 + 0.823274i \(0.692145\pi\)
\(978\) 0 0
\(979\) −4852.35 −0.158408
\(980\) 0 0
\(981\) 4358.24 0.141843
\(982\) 0 0
\(983\) −36962.5 −1.19931 −0.599654 0.800260i \(-0.704695\pi\)
−0.599654 + 0.800260i \(0.704695\pi\)
\(984\) 0 0
\(985\) 1421.82 0.0459929
\(986\) 0 0
\(987\) −4166.16 −0.134357
\(988\) 0 0
\(989\) −760.299 −0.0244450
\(990\) 0 0
\(991\) −15655.1 −0.501816 −0.250908 0.968011i \(-0.580729\pi\)
−0.250908 + 0.968011i \(0.580729\pi\)
\(992\) 0 0
\(993\) 21552.6 0.688772
\(994\) 0 0
\(995\) −22592.5 −0.719830
\(996\) 0 0
\(997\) −39083.4 −1.24151 −0.620754 0.784005i \(-0.713174\pi\)
−0.620754 + 0.784005i \(0.713174\pi\)
\(998\) 0 0
\(999\) −4507.65 −0.142758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.4.a.d.1.2 2
3.2 odd 2 684.4.a.f.1.1 2
4.3 odd 2 912.4.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.4.a.d.1.2 2 1.1 even 1 trivial
684.4.a.f.1.1 2 3.2 odd 2
912.4.a.l.1.2 2 4.3 odd 2