Properties

Label 2280.1.dj.a.1907.2
Level $2280$
Weight $1$
Character 2280.1907
Analytic conductor $1.138$
Analytic rank $0$
Dimension $8$
Projective image $S_{4}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2280,1,Mod(83,2280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2280, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 6, 9, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2280.83");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2280.dj (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.13786822880\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.3249000.1

Embedding invariants

Embedding label 1907.2
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2280.1907
Dual form 2280.1.dj.a.923.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.866025 - 0.500000i) q^{4} +(-0.258819 + 0.965926i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.866025 - 0.500000i) q^{4} +(-0.258819 + 0.965926i) q^{5} +(-0.965926 + 0.258819i) q^{6} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.866025 + 0.500000i) q^{10} -1.00000i q^{11} +1.00000i q^{12} +(0.500000 + 0.866025i) q^{14} +(0.965926 - 0.258819i) q^{15} +(0.500000 + 0.866025i) q^{16} +(1.36603 + 0.366025i) q^{17} +(0.707107 + 0.707107i) q^{18} +(0.866025 - 0.500000i) q^{19} +(0.707107 - 0.707107i) q^{20} +(0.965926 + 0.258819i) q^{21} +(-0.965926 - 0.258819i) q^{22} +(0.258819 + 0.965926i) q^{23} +(0.965926 + 0.258819i) q^{24} +(-0.866025 - 0.500000i) q^{25} +1.00000 q^{27} +(0.965926 - 0.258819i) q^{28} -1.00000i q^{30} -1.41421i q^{31} +(0.965926 - 0.258819i) q^{32} +(-0.866025 + 0.500000i) q^{33} +(0.707107 - 1.22474i) q^{34} +(-0.500000 - 0.866025i) q^{35} +(0.866025 - 0.500000i) q^{36} +(0.707107 - 0.707107i) q^{37} +(-0.258819 - 0.965926i) q^{38} +(-0.500000 - 0.866025i) q^{40} +(-0.866025 + 0.500000i) q^{41} +(0.500000 - 0.866025i) q^{42} +(1.36603 + 0.366025i) q^{43} +(-0.500000 + 0.866025i) q^{44} +(-0.707107 - 0.707107i) q^{45} +1.00000 q^{46} +(0.500000 - 0.866025i) q^{48} +(-0.707107 + 0.707107i) q^{50} +(-0.366025 - 1.36603i) q^{51} +(0.258819 + 0.965926i) q^{53} +(0.258819 - 0.965926i) q^{54} +(0.965926 + 0.258819i) q^{55} -1.00000i q^{56} +(-0.866025 - 0.500000i) q^{57} +(-1.00000 - 1.73205i) q^{59} +(-0.965926 - 0.258819i) q^{60} +(1.22474 + 0.707107i) q^{61} +(-1.36603 - 0.366025i) q^{62} +(-0.258819 - 0.965926i) q^{63} -1.00000i q^{64} +(0.258819 + 0.965926i) q^{66} +(-1.00000 - 1.00000i) q^{68} +(0.707107 - 0.707107i) q^{69} +(-0.965926 + 0.258819i) q^{70} +(0.707107 + 1.22474i) q^{71} +(-0.258819 - 0.965926i) q^{72} +(1.36603 + 0.366025i) q^{73} +(-0.500000 - 0.866025i) q^{74} +1.00000i q^{75} -1.00000 q^{76} +(0.707107 + 0.707107i) q^{77} +(-0.965926 + 0.258819i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.258819 + 0.965926i) q^{82} +(1.00000 + 1.00000i) q^{83} +(-0.707107 - 0.707107i) q^{84} +(-0.707107 + 1.22474i) q^{85} +(0.707107 - 1.22474i) q^{86} +(0.707107 + 0.707107i) q^{88} +(-0.500000 + 0.866025i) q^{89} +(-0.866025 + 0.500000i) q^{90} +(0.258819 - 0.965926i) q^{92} +(-1.22474 + 0.707107i) q^{93} +(0.258819 + 0.965926i) q^{95} +(-0.707107 - 0.707107i) q^{96} +(0.866025 + 0.500000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{3} - 4 q^{9} + 4 q^{14} + 4 q^{16} + 4 q^{17} + 8 q^{27} - 4 q^{35} - 4 q^{40} + 4 q^{42} + 4 q^{43} - 4 q^{44} + 8 q^{46} + 4 q^{48} + 4 q^{51} - 8 q^{59} - 4 q^{62} - 8 q^{68} + 4 q^{73} - 4 q^{74} - 8 q^{76} - 4 q^{81} + 8 q^{83} - 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(761\) \(1141\) \(1711\) \(1921\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.258819 0.965926i
\(3\) −0.500000 0.866025i −0.500000 0.866025i
\(4\) −0.866025 0.500000i −0.866025 0.500000i
\(5\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(6\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(7\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(8\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(11\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(12\) 1.00000i 1.00000i
\(13\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(14\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(15\) 0.965926 0.258819i 0.965926 0.258819i
\(16\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(17\) 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i \(-0.166667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(19\) 0.866025 0.500000i 0.866025 0.500000i
\(20\) 0.707107 0.707107i 0.707107 0.707107i
\(21\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(22\) −0.965926 0.258819i −0.965926 0.258819i
\(23\) 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(25\) −0.866025 0.500000i −0.866025 0.500000i
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0.965926 0.258819i 0.965926 0.258819i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 1.00000i 1.00000i
\(31\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(32\) 0.965926 0.258819i 0.965926 0.258819i
\(33\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(34\) 0.707107 1.22474i 0.707107 1.22474i
\(35\) −0.500000 0.866025i −0.500000 0.866025i
\(36\) 0.866025 0.500000i 0.866025 0.500000i
\(37\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(38\) −0.258819 0.965926i −0.258819 0.965926i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.500000 0.866025i
\(41\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.500000 0.866025i 0.500000 0.866025i
\(43\) 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i \(-0.166667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(45\) −0.707107 0.707107i −0.707107 0.707107i
\(46\) 1.00000 1.00000
\(47\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(48\) 0.500000 0.866025i 0.500000 0.866025i
\(49\) 0 0
\(50\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(51\) −0.366025 1.36603i −0.366025 1.36603i
\(52\) 0 0
\(53\) 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0.258819 0.965926i 0.258819 0.965926i
\(55\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(56\) 1.00000i 1.00000i
\(57\) −0.866025 0.500000i −0.866025 0.500000i
\(58\) 0 0
\(59\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(60\) −0.965926 0.258819i −0.965926 0.258819i
\(61\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(62\) −1.36603 0.366025i −1.36603 0.366025i
\(63\) −0.258819 0.965926i −0.258819 0.965926i
\(64\) 1.00000i 1.00000i
\(65\) 0 0
\(66\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(67\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(68\) −1.00000 1.00000i −1.00000 1.00000i
\(69\) 0.707107 0.707107i 0.707107 0.707107i
\(70\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(71\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) −0.258819 0.965926i −0.258819 0.965926i
\(73\) 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i \(-0.166667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) −0.500000 0.866025i −0.500000 0.866025i
\(75\) 1.00000i 1.00000i
\(76\) −1.00000 −1.00000
\(77\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(83\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(84\) −0.707107 0.707107i −0.707107 0.707107i
\(85\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(86\) 0.707107 1.22474i 0.707107 1.22474i
\(87\) 0 0
\(88\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(89\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(90\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(91\) 0 0
\(92\) 0.258819 0.965926i 0.258819 0.965926i
\(93\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(94\) 0 0
\(95\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(96\) −0.707107 0.707107i −0.707107 0.707107i
\(97\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(98\) 0 0
\(99\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(100\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) −1.41421 −1.41421
\(103\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(104\) 0 0
\(105\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(106\) 1.00000 1.00000
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) −0.866025 0.500000i −0.866025 0.500000i
\(109\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(110\) 0.500000 0.866025i 0.500000 0.866025i
\(111\) −0.965926 0.258819i −0.965926 0.258819i
\(112\) −0.965926 0.258819i −0.965926 0.258819i
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(115\) −1.00000 −1.00000
\(116\) 0 0
\(117\) 0 0
\(118\) −1.93185 + 0.517638i −1.93185 + 0.517638i
\(119\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(120\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(121\) 0 0
\(122\) 1.00000 1.00000i 1.00000 1.00000i
\(123\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(124\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(125\) 0.707107 0.707107i 0.707107 0.707107i
\(126\) −1.00000 −1.00000
\(127\) −0.258819 0.965926i −0.258819 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(128\) −0.965926 0.258819i −0.965926 0.258819i
\(129\) −0.366025 1.36603i −0.366025 1.36603i
\(130\) 0 0
\(131\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(132\) 1.00000 1.00000
\(133\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(134\) 0 0
\(135\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(136\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(137\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(138\) −0.500000 0.866025i −0.500000 0.866025i
\(139\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 1.00000i 1.00000i
\(141\) 0 0
\(142\) 1.36603 0.366025i 1.36603 0.366025i
\(143\) 0 0
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0.707107 1.22474i 0.707107 1.22474i
\(147\) 0 0
\(148\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(151\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(152\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(153\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(154\) 0.866025 0.500000i 0.866025 0.500000i
\(155\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(156\) 0 0
\(157\) 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(158\) 0 0
\(159\) 0.707107 0.707107i 0.707107 0.707107i
\(160\) 1.00000i 1.00000i
\(161\) −0.866025 0.500000i −0.866025 0.500000i
\(162\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 1.00000 1.00000
\(165\) −0.258819 0.965926i −0.258819 0.965926i
\(166\) 1.22474 0.707107i 1.22474 0.707107i
\(167\) −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(169\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(170\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(171\) 1.00000i 1.00000i
\(172\) −1.00000 1.00000i −1.00000 1.00000i
\(173\) −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0.965926 0.258819i 0.965926 0.258819i
\(176\) 0.866025 0.500000i 0.866025 0.500000i
\(177\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(178\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(179\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 1.41421i 1.41421i
\(184\) −0.866025 0.500000i −0.866025 0.500000i
\(185\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(186\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(187\) 0.366025 1.36603i 0.366025 1.36603i
\(188\) 0 0
\(189\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(190\) 1.00000 1.00000
\(191\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(192\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(193\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0.707107 0.707107i 0.707107 0.707107i
\(199\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(200\) 0.965926 0.258819i 0.965926 0.258819i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(205\) −0.258819 0.965926i −0.258819 0.965926i
\(206\) 0.866025 0.500000i 0.866025 0.500000i
\(207\) −0.965926 0.258819i −0.965926 0.258819i
\(208\) 0 0
\(209\) −0.500000 0.866025i −0.500000 0.866025i
\(210\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(211\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(212\) 0.258819 0.965926i 0.258819 0.965926i
\(213\) 0.707107 1.22474i 0.707107 1.22474i
\(214\) 0 0
\(215\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(216\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(217\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(218\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(219\) −0.366025 1.36603i −0.366025 1.36603i
\(220\) −0.707107 0.707107i −0.707107 0.707107i
\(221\) 0 0
\(222\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(223\) −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i \(0.250000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(225\) 0.866025 0.500000i 0.866025 0.500000i
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(229\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(231\) 0.258819 0.965926i 0.258819 0.965926i
\(232\) 0 0
\(233\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.00000i 2.00000i
\(237\) 0 0
\(238\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(244\) −0.707107 1.22474i −0.707107 1.22474i
\(245\) 0 0
\(246\) 0.707107 0.707107i 0.707107 0.707107i
\(247\) 0 0
\(248\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(249\) 0.366025 1.36603i 0.366025 1.36603i
\(250\) −0.500000 0.866025i −0.500000 0.866025i
\(251\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(253\) 0.965926 0.258819i 0.965926 0.258819i
\(254\) −1.00000 −1.00000
\(255\) 1.41421 1.41421
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i \(0.166667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) −1.41421 −1.41421
\(259\) 1.00000i 1.00000i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(263\) −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0.258819 0.965926i 0.258819 0.965926i
\(265\) −1.00000 −1.00000
\(266\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(267\) 1.00000 1.00000
\(268\) 0 0
\(269\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(270\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(276\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(280\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(281\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(284\) 1.41421i 1.41421i
\(285\) 0.707107 0.707107i 0.707107 0.707107i
\(286\) 0 0
\(287\) 0.258819 0.965926i 0.258819 0.965926i
\(288\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(289\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 1.00000i −1.00000 1.00000i
\(293\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(294\) 0 0
\(295\) 1.93185 0.517638i 1.93185 0.517638i
\(296\) 1.00000i 1.00000i
\(297\) 1.00000i 1.00000i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.500000 0.866025i 0.500000 0.866025i
\(301\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(302\) −1.36603 0.366025i −1.36603 0.366025i
\(303\) 0 0
\(304\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(305\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(306\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(307\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(308\) −0.258819 0.965926i −0.258819 0.965926i
\(309\) 0.258819 0.965926i 0.258819 0.965926i
\(310\) 0.707107 1.22474i 0.707107 1.22474i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i \(-0.833333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(314\) 0.500000 0.866025i 0.500000 0.866025i
\(315\) 1.00000 1.00000
\(316\) 0 0
\(317\) 0.965926 0.258819i 0.965926 0.258819i 0.258819 0.965926i \(-0.416667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) −0.500000 0.866025i −0.500000 0.866025i
\(319\) 0 0
\(320\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(321\) 0 0
\(322\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(323\) 1.36603 0.366025i 1.36603 0.366025i
\(324\) 1.00000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(328\) 0.258819 0.965926i 0.258819 0.965926i
\(329\) 0 0
\(330\) −1.00000 −1.00000
\(331\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −0.366025 1.36603i −0.366025 1.36603i
\(333\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(334\) 1.00000i 1.00000i
\(335\) 0 0
\(336\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(337\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(338\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(339\) 0 0
\(340\) 1.22474 0.707107i 1.22474 0.707107i
\(341\) −1.41421 −1.41421
\(342\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(343\) −0.707107 0.707107i −0.707107 0.707107i
\(344\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(345\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(346\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(347\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(348\) 0 0
\(349\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) 1.00000i 1.00000i
\(351\) 0 0
\(352\) −0.258819 0.965926i −0.258819 0.965926i
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(355\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(356\) 0.866025 0.500000i 0.866025 0.500000i
\(357\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(358\) 0.258819 0.965926i 0.258819 0.965926i
\(359\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(360\) 1.00000 1.00000
\(361\) 0.500000 0.866025i 0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(366\) −1.36603 0.366025i −1.36603 0.366025i
\(367\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(368\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(369\) 1.00000i 1.00000i
\(370\) 0.965926 0.258819i 0.965926 0.258819i
\(371\) −0.866025 0.500000i −0.866025 0.500000i
\(372\) 1.41421 1.41421
\(373\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(374\) −1.22474 0.707107i −1.22474 0.707107i
\(375\) −0.965926 0.258819i −0.965926 0.258819i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0.258819 0.965926i 0.258819 0.965926i
\(381\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(382\) 0.366025 1.36603i 0.366025 1.36603i
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(385\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(386\) 0 0
\(387\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(388\) 0 0
\(389\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(390\) 0 0
\(391\) 1.41421i 1.41421i
\(392\) 0 0
\(393\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(394\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(395\) 0 0
\(396\) −0.500000 0.866025i −0.500000 0.866025i
\(397\) −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(399\) 0.965926 0.258819i 0.965926 0.258819i
\(400\) 1.00000i 1.00000i
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.965926 0.258819i 0.965926 0.258819i
\(406\) 0 0
\(407\) −0.707107 0.707107i −0.707107 0.707107i
\(408\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(409\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(410\) −1.00000 −1.00000
\(411\) 0 0
\(412\) −0.258819 0.965926i −0.258819 0.965926i
\(413\) 1.93185 + 0.517638i 1.93185 + 0.517638i
\(414\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(415\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(416\) 0 0
\(417\) 0 0
\(418\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(419\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0.866025 0.500000i 0.866025 0.500000i
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(423\) 0 0
\(424\) −0.866025 0.500000i −0.866025 0.500000i
\(425\) −1.00000 1.00000i −1.00000 1.00000i
\(426\) −1.00000 1.00000i −1.00000 1.00000i
\(427\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(428\) 0 0
\(429\) 0 0
\(430\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(433\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(434\) 1.22474 0.707107i 1.22474 0.707107i
\(435\) 0 0
\(436\) 1.41421i 1.41421i
\(437\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(438\) −1.41421 −1.41421
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(441\) 0 0
\(442\) 0 0
\(443\) −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i \(-0.833333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(445\) −0.707107 0.707107i −0.707107 0.707107i
\(446\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(447\) 0 0
\(448\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(449\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) −0.258819 0.965926i −0.258819 0.965926i
\(451\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(452\) 0 0
\(453\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(454\) 0 0
\(455\) 0 0
\(456\) 0.965926 0.258819i 0.965926 0.258819i
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0.366025 1.36603i 0.366025 1.36603i
\(459\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(460\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) −0.866025 0.500000i −0.866025 0.500000i
\(463\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(464\) 0 0
\(465\) −0.366025 1.36603i −0.366025 1.36603i
\(466\) 0 0
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.258819 0.965926i −0.258819 0.965926i
\(472\) 1.93185 + 0.517638i 1.93185 + 0.517638i
\(473\) 0.366025 1.36603i 0.366025 1.36603i
\(474\) 0 0
\(475\) −1.00000 −1.00000
\(476\) 1.41421 1.41421
\(477\) −0.965926 0.258819i −0.965926 0.258819i
\(478\) 0 0
\(479\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 0.866025 0.500000i 0.866025 0.500000i
\(481\) 0 0
\(482\) 0 0
\(483\) 1.00000i 1.00000i
\(484\) 0 0
\(485\) 0 0
\(486\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(487\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(488\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(492\) −0.500000 0.866025i −0.500000 0.866025i
\(493\) 0 0
\(494\) 0 0
\(495\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(496\) 1.22474 0.707107i 1.22474 0.707107i
\(497\) −1.36603 0.366025i −1.36603 0.366025i
\(498\) −1.22474 0.707107i −1.22474 0.707107i
\(499\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(500\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(501\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(502\) 0 0
\(503\) −0.258819 0.965926i −0.258819 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(504\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(505\) 0 0
\(506\) 1.00000i 1.00000i
\(507\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(508\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(509\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(510\) 0.366025 1.36603i 0.366025 1.36603i
\(511\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(512\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(513\) 0.866025 0.500000i 0.866025 0.500000i
\(514\) 1.41421 1.41421
\(515\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(516\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(517\) 0 0
\(518\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(519\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(524\) 1.00000 1.00000
\(525\) −0.707107 0.707107i −0.707107 0.707107i
\(526\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(527\) 0.517638 1.93185i 0.517638 1.93185i
\(528\) −0.866025 0.500000i −0.866025 0.500000i
\(529\) 0 0
\(530\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(531\) 2.00000 2.00000
\(532\) 0.707107 0.707107i 0.707107 0.707107i
\(533\) 0 0
\(534\) 0.258819 0.965926i 0.258819 0.965926i
\(535\) 0 0
\(536\) 0 0
\(537\) −0.500000 0.866025i −0.500000 0.866025i
\(538\) −0.366025 1.36603i −0.366025 1.36603i
\(539\) 0 0
\(540\) 0.707107 0.707107i 0.707107 0.707107i
\(541\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.41421 1.41421
\(545\) 1.36603 0.366025i 1.36603 0.366025i
\(546\) 0 0
\(547\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(548\) 0 0
\(549\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(550\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(551\) 0 0
\(552\) 1.00000i 1.00000i
\(553\) 0 0
\(554\) 0 0
\(555\) 0.500000 0.866025i 0.500000 0.866025i
\(556\) 0 0
\(557\) −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 1.00000 1.00000i 1.00000 1.00000i
\(559\) 0 0
\(560\) 0.500000 0.866025i 0.500000 0.866025i
\(561\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(562\) 0.707107 0.707107i 0.707107 0.707107i
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(568\) −1.36603 0.366025i −1.36603 0.366025i
\(569\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) −0.500000 0.866025i −0.500000 0.866025i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −0.707107 1.22474i −0.707107 1.22474i
\(574\) −0.866025 0.500000i −0.866025 0.500000i
\(575\) 0.258819 0.965926i 0.258819 0.965926i
\(576\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 0.707107 0.707107i 0.707107 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.41421 −1.41421
\(582\) 0 0
\(583\) 0.965926 0.258819i 0.965926 0.258819i
\(584\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(585\) 0 0
\(586\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(587\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(588\) 0 0
\(589\) −0.707107 1.22474i −0.707107 1.22474i
\(590\) 2.00000i 2.00000i
\(591\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(592\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(593\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(594\) −0.965926 0.258819i −0.965926 0.258819i
\(595\) −0.366025 1.36603i −0.366025 1.36603i
\(596\) 0 0
\(597\) 1.41421 1.41421
\(598\) 0 0
\(599\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(600\) −0.707107 0.707107i −0.707107 0.707107i
\(601\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(603\) 0 0
\(604\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(605\) 0 0
\(606\) 0 0
\(607\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(608\) 0.707107 0.707107i 0.707107 0.707107i
\(609\) 0 0
\(610\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(611\) 0 0
\(612\) 1.36603 0.366025i 1.36603 0.366025i
\(613\) −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i \(0.250000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) 0 0
\(615\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(616\) −1.00000 −1.00000
\(617\) −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i \(-0.833333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(618\) −0.866025 0.500000i −0.866025 0.500000i
\(619\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) −1.00000 1.00000i −1.00000 1.00000i
\(621\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(622\) 0 0
\(623\) −0.258819 0.965926i −0.258819 0.965926i
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(626\) −1.41421 −1.41421
\(627\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(628\) −0.707107 0.707107i −0.707107 0.707107i
\(629\) 1.22474 0.707107i 1.22474 0.707107i
\(630\) 0.258819 0.965926i 0.258819 0.965926i
\(631\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(632\) 0 0
\(633\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(634\) 1.00000i 1.00000i
\(635\) 1.00000 1.00000
\(636\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(637\) 0 0
\(638\) 0 0
\(639\) −1.41421 −1.41421
\(640\) 0.500000 0.866025i 0.500000 0.866025i
\(641\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i \(-0.666667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(644\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(645\) 1.41421 1.41421
\(646\) 1.41421i 1.41421i
\(647\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(648\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(649\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(650\) 0 0
\(651\) 0.366025 1.36603i 0.366025 1.36603i
\(652\) 0 0
\(653\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(654\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(655\) −0.258819 0.965926i −0.258819 0.965926i
\(656\) −0.866025 0.500000i −0.866025 0.500000i
\(657\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(658\) 0 0
\(659\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(660\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(661\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(662\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(663\) 0 0
\(664\) −1.41421 −1.41421
\(665\) −0.866025 0.500000i −0.866025 0.500000i
\(666\) 1.00000 1.00000
\(667\) 0 0
\(668\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(669\) 0.965926 0.258819i 0.965926 0.258819i
\(670\) 0 0
\(671\) 0.707107 1.22474i 0.707107 1.22474i
\(672\) 1.00000 1.00000
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) −0.866025 0.500000i −0.866025 0.500000i
\(676\) 1.00000 1.00000
\(677\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.366025 1.36603i −0.366025 1.36603i
\(681\) 0 0
\(682\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(683\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(684\) 0.500000 0.866025i 0.500000 0.866025i
\(685\) 0 0
\(686\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(687\) −0.707107 1.22474i −0.707107 1.22474i
\(688\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(689\) 0 0
\(690\) 0.965926 0.258819i 0.965926 0.258819i
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(693\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(698\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(699\) 0 0
\(700\) −0.965926 0.258819i −0.965926 0.258819i
\(701\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(702\) 0 0
\(703\) 0.258819 0.965926i 0.258819 0.965926i
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 1.73205 1.00000i 1.73205 1.00000i
\(709\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(710\) 1.41421i 1.41421i
\(711\) 0 0
\(712\) −0.258819 0.965926i −0.258819 0.965926i
\(713\) 1.36603 0.366025i 1.36603 0.366025i
\(714\) 1.00000 1.00000i 1.00000 1.00000i
\(715\) 0 0
\(716\) −0.866025 0.500000i −0.866025 0.500000i
\(717\) 0 0
\(718\) −0.366025 1.36603i −0.366025 1.36603i
\(719\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(720\) 0.258819 0.965926i 0.258819 0.965926i
\(721\) −1.00000 −1.00000
\(722\) −0.707107 0.707107i −0.707107 0.707107i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(731\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(732\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(733\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(737\) 0 0
\(738\) −0.965926 0.258819i −0.965926 0.258819i
\(739\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(740\) 1.00000i 1.00000i
\(741\) 0 0
\(742\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(743\) 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(744\) 0.366025 1.36603i 0.366025 1.36603i
\(745\) 0 0
\(746\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(747\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(748\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(749\) 0 0
\(750\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(751\) −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(756\) 0.965926 0.258819i 0.965926 0.258819i
\(757\) 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(758\) 0 0
\(759\) −0.707107 0.707107i −0.707107 0.707107i
\(760\) −0.866025 0.500000i −0.866025 0.500000i
\(761\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(762\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(763\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(764\) −1.22474 0.707107i −1.22474 0.707107i
\(765\) −0.707107 1.22474i −0.707107 1.22474i
\(766\) 0 0
\(767\) 0 0
\(768\) 1.00000 1.00000
\(769\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(770\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(771\) 1.00000 1.00000i 1.00000 1.00000i
\(772\) 0 0
\(773\) 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(775\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(776\) 0 0
\(777\) 0.866025 0.500000i 0.866025 0.500000i
\(778\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(779\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(780\) 0 0
\(781\) 1.22474 0.707107i 1.22474 0.707107i
\(782\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(783\) 0 0
\(784\) 0 0
\(785\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(786\) 0.707107 0.707107i 0.707107 0.707107i
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(789\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(790\) 0 0
\(791\) 0 0
\(792\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(793\) 0 0
\(794\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(795\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(796\) 1.22474 0.707107i 1.22474 0.707107i
\(797\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(798\) 1.00000i 1.00000i
\(799\) 0 0
\(800\) −0.965926 0.258819i −0.965926 0.258819i
\(801\) −0.500000 0.866025i −0.500000 0.866025i
\(802\) 0 0
\(803\) 0.366025 1.36603i 0.366025 1.36603i
\(804\) 0 0
\(805\) 0.707107 0.707107i 0.707107 0.707107i
\(806\) 0 0
\(807\) −1.22474 0.707107i −1.22474 0.707107i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 1.00000i 1.00000i
\(811\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(815\) 0 0
\(816\) 1.00000 1.00000i 1.00000 1.00000i
\(817\) 1.36603 0.366025i 1.36603 0.366025i
\(818\) 0.707107 0.707107i 0.707107 0.707107i
\(819\) 0 0
\(820\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(824\) −1.00000 −1.00000
\(825\) 1.00000 1.00000
\(826\) 1.00000 1.73205i 1.00000 1.73205i
\(827\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(828\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.00000i 1.00000i
\(836\) 1.00000i 1.00000i
\(837\) 1.41421i 1.41421i
\(838\) 0.258819 0.965926i 0.258819 0.965926i
\(839\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(840\) −0.258819 0.965926i −0.258819 0.965926i
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) 0 0
\(843\) 1.00000i 1.00000i
\(844\) 1.00000i 1.00000i
\(845\) −0.258819 0.965926i −0.258819 0.965926i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(849\) 0 0
\(850\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(851\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(852\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(853\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(854\) 1.41421i 1.41421i
\(855\) −0.965926 0.258819i −0.965926 0.258819i
\(856\) 0 0
\(857\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(858\) 0 0
\(859\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 1.22474 0.707107i 1.22474 0.707107i
\(861\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(862\) 0 0
\(863\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(864\) 0.965926 0.258819i 0.965926 0.258819i
\(865\) 0.500000 0.866025i 0.500000 0.866025i
\(866\) 0 0
\(867\) 1.00000i 1.00000i
\(868\) −0.366025 1.36603i −0.366025 1.36603i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(873\) 0 0
\(874\) 0.866025 0.500000i 0.866025 0.500000i
\(875\) 1.00000i 1.00000i
\(876\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(877\) −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(880\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(881\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(882\) 0 0
\(883\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(884\) 0 0
\(885\) −1.41421 1.41421i −1.41421 1.41421i
\(886\) 1.41421i 1.41421i
\(887\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(888\) 0.866025 0.500000i 0.866025 0.500000i
\(889\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(890\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(891\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(892\) 0.707107 0.707107i 0.707107 0.707107i
\(893\) 0 0
\(894\) 0 0
\(895\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(896\) 0.866025 0.500000i 0.866025 0.500000i
\(897\) 0 0
\(898\) 0.258819 0.965926i 0.258819 0.965926i
\(899\) 0 0
\(900\) −1.00000 −1.00000
\(901\) 1.41421i 1.41421i
\(902\) 0.965926 0.258819i 0.965926 0.258819i
\(903\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(904\) 0 0
\(905\) 0 0
\(906\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(907\) −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i \(0.333333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 1.00000i 1.00000i
\(913\) 1.00000 1.00000i 1.00000 1.00000i
\(914\) 0 0
\(915\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(916\) −1.22474 0.707107i −1.22474 0.707107i
\(917\) 0.258819 0.965926i 0.258819 0.965926i
\(918\) 0.707107 1.22474i 0.707107 1.22474i
\(919\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(920\) 0.707107 0.707107i 0.707107 0.707107i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(925\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(926\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(927\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(928\) 0 0
\(929\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) −1.41421 −1.41421
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(936\) 0 0
\(937\) 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i \(-0.333333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(938\) 0 0
\(939\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) −1.00000 −1.00000
\(943\) −0.707107 0.707107i −0.707107 0.707107i
\(944\) 1.00000 1.73205i 1.00000 1.73205i
\(945\) −0.500000 0.866025i −0.500000 0.866025i
\(946\) −1.22474 0.707107i −1.22474 0.707107i
\(947\) −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i \(-0.666667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(951\) −0.707107 0.707107i −0.707107 0.707107i
\(952\) 0.366025 1.36603i 0.366025 1.36603i
\(953\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(954\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(955\) −0.366025 + 1.36603i −0.366025 + 1.36603i
\(956\) 0 0
\(957\) 0 0
\(958\) 1.00000 1.00000i 1.00000 1.00000i
\(959\) 0 0
\(960\) −0.258819 0.965926i −0.258819 0.965926i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(967\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(968\) 0 0
\(969\) −1.00000 1.00000i −1.00000 1.00000i
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0.866025 0.500000i 0.866025 0.500000i
\(973\) 0 0
\(974\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(975\) 0 0
\(976\) 1.41421i 1.41421i
\(977\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0 0
\(979\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(980\) 0 0
\(981\) 1.41421 1.41421
\(982\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(983\) −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(985\) 0.866025 0.500000i 0.866025 0.500000i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.41421i 1.41421i
\(990\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) −0.366025 1.36603i −0.366025 1.36603i
\(993\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(994\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(995\) −1.00000 1.00000i −1.00000 1.00000i
\(996\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(997\) −0.258819 0.965926i −0.258819 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(998\) −0.258819 0.965926i −0.258819 0.965926i
\(999\) 0.707107 0.707107i 0.707107 0.707107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.dj.a.1907.2 yes 8
3.2 odd 2 2280.1.dj.b.1907.1 yes 8
5.3 odd 4 2280.1.dj.b.83.1 yes 8
8.3 odd 2 inner 2280.1.dj.a.1907.1 yes 8
15.8 even 4 inner 2280.1.dj.a.83.2 yes 8
19.11 even 3 inner 2280.1.dj.a.467.1 yes 8
24.11 even 2 2280.1.dj.b.1907.2 yes 8
40.3 even 4 2280.1.dj.b.83.2 yes 8
57.11 odd 6 2280.1.dj.b.467.2 yes 8
95.68 odd 12 2280.1.dj.b.923.2 yes 8
120.83 odd 4 inner 2280.1.dj.a.83.1 8
152.11 odd 6 inner 2280.1.dj.a.467.2 yes 8
285.68 even 12 inner 2280.1.dj.a.923.1 yes 8
456.11 even 6 2280.1.dj.b.467.1 yes 8
760.163 even 12 2280.1.dj.b.923.1 yes 8
2280.923 odd 12 inner 2280.1.dj.a.923.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.dj.a.83.1 8 120.83 odd 4 inner
2280.1.dj.a.83.2 yes 8 15.8 even 4 inner
2280.1.dj.a.467.1 yes 8 19.11 even 3 inner
2280.1.dj.a.467.2 yes 8 152.11 odd 6 inner
2280.1.dj.a.923.1 yes 8 285.68 even 12 inner
2280.1.dj.a.923.2 yes 8 2280.923 odd 12 inner
2280.1.dj.a.1907.1 yes 8 8.3 odd 2 inner
2280.1.dj.a.1907.2 yes 8 1.1 even 1 trivial
2280.1.dj.b.83.1 yes 8 5.3 odd 4
2280.1.dj.b.83.2 yes 8 40.3 even 4
2280.1.dj.b.467.1 yes 8 456.11 even 6
2280.1.dj.b.467.2 yes 8 57.11 odd 6
2280.1.dj.b.923.1 yes 8 760.163 even 12
2280.1.dj.b.923.2 yes 8 95.68 odd 12
2280.1.dj.b.1907.1 yes 8 3.2 odd 2
2280.1.dj.b.1907.2 yes 8 24.11 even 2