Properties

Label 2299.2.a.x.1.11
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,2,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 30 x^{18} + 28 x^{17} + 374 x^{16} - 321 x^{15} - 2521 x^{14} + 1965 x^{13} + \cdots + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-0.256781\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.256781 q^{2} +2.78089 q^{3} -1.93406 q^{4} -2.44163 q^{5} +0.714079 q^{6} +2.92963 q^{7} -1.01019 q^{8} +4.73332 q^{9} -0.626965 q^{10} -5.37841 q^{12} -1.49016 q^{13} +0.752273 q^{14} -6.78990 q^{15} +3.60873 q^{16} +4.19966 q^{17} +1.21543 q^{18} +1.00000 q^{19} +4.72227 q^{20} +8.14695 q^{21} +3.73331 q^{23} -2.80923 q^{24} +0.961568 q^{25} -0.382645 q^{26} +4.82017 q^{27} -5.66608 q^{28} -4.79978 q^{29} -1.74352 q^{30} +1.78497 q^{31} +2.94704 q^{32} +1.07839 q^{34} -7.15307 q^{35} -9.15455 q^{36} +8.45889 q^{37} +0.256781 q^{38} -4.14396 q^{39} +2.46652 q^{40} +2.21446 q^{41} +2.09198 q^{42} -11.0941 q^{43} -11.5570 q^{45} +0.958644 q^{46} +7.54957 q^{47} +10.0355 q^{48} +1.58270 q^{49} +0.246913 q^{50} +11.6788 q^{51} +2.88206 q^{52} +13.9149 q^{53} +1.23773 q^{54} -2.95949 q^{56} +2.78089 q^{57} -1.23249 q^{58} +9.76391 q^{59} +13.1321 q^{60} +12.3223 q^{61} +0.458346 q^{62} +13.8669 q^{63} -6.46071 q^{64} +3.63842 q^{65} +6.65052 q^{67} -8.12242 q^{68} +10.3819 q^{69} -1.83677 q^{70} -10.5453 q^{71} -4.78157 q^{72} +5.11743 q^{73} +2.17208 q^{74} +2.67401 q^{75} -1.93406 q^{76} -1.06409 q^{78} +1.30503 q^{79} -8.81119 q^{80} -0.795627 q^{81} +0.568631 q^{82} -9.16686 q^{83} -15.7567 q^{84} -10.2540 q^{85} -2.84877 q^{86} -13.3476 q^{87} -2.45131 q^{89} -2.96763 q^{90} -4.36561 q^{91} -7.22046 q^{92} +4.96379 q^{93} +1.93859 q^{94} -2.44163 q^{95} +8.19538 q^{96} +4.37412 q^{97} +0.406408 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + 4 q^{3} + 21 q^{4} + 18 q^{5} + 10 q^{6} + 2 q^{7} - 3 q^{8} + 32 q^{9} - 11 q^{10} + 10 q^{12} - q^{13} + 25 q^{14} + 28 q^{15} + 27 q^{16} - 2 q^{17} - 4 q^{18} + 20 q^{19} + 47 q^{20}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.256781 0.181572 0.0907859 0.995870i \(-0.471062\pi\)
0.0907859 + 0.995870i \(0.471062\pi\)
\(3\) 2.78089 1.60554 0.802772 0.596286i \(-0.203357\pi\)
0.802772 + 0.596286i \(0.203357\pi\)
\(4\) −1.93406 −0.967032
\(5\) −2.44163 −1.09193 −0.545966 0.837808i \(-0.683837\pi\)
−0.545966 + 0.837808i \(0.683837\pi\)
\(6\) 0.714079 0.291522
\(7\) 2.92963 1.10729 0.553647 0.832751i \(-0.313236\pi\)
0.553647 + 0.832751i \(0.313236\pi\)
\(8\) −1.01019 −0.357157
\(9\) 4.73332 1.57777
\(10\) −0.626965 −0.198264
\(11\) 0 0
\(12\) −5.37841 −1.55261
\(13\) −1.49016 −0.413296 −0.206648 0.978415i \(-0.566255\pi\)
−0.206648 + 0.978415i \(0.566255\pi\)
\(14\) 0.752273 0.201053
\(15\) −6.78990 −1.75314
\(16\) 3.60873 0.902182
\(17\) 4.19966 1.01857 0.509284 0.860598i \(-0.329910\pi\)
0.509284 + 0.860598i \(0.329910\pi\)
\(18\) 1.21543 0.286479
\(19\) 1.00000 0.229416
\(20\) 4.72227 1.05593
\(21\) 8.14695 1.77781
\(22\) 0 0
\(23\) 3.73331 0.778449 0.389225 0.921143i \(-0.372743\pi\)
0.389225 + 0.921143i \(0.372743\pi\)
\(24\) −2.80923 −0.573432
\(25\) 0.961568 0.192314
\(26\) −0.382645 −0.0750428
\(27\) 4.82017 0.927642
\(28\) −5.66608 −1.07079
\(29\) −4.79978 −0.891297 −0.445649 0.895208i \(-0.647027\pi\)
−0.445649 + 0.895208i \(0.647027\pi\)
\(30\) −1.74352 −0.318321
\(31\) 1.78497 0.320590 0.160295 0.987069i \(-0.448755\pi\)
0.160295 + 0.987069i \(0.448755\pi\)
\(32\) 2.94704 0.520968
\(33\) 0 0
\(34\) 1.07839 0.184943
\(35\) −7.15307 −1.20909
\(36\) −9.15455 −1.52576
\(37\) 8.45889 1.39063 0.695316 0.718704i \(-0.255264\pi\)
0.695316 + 0.718704i \(0.255264\pi\)
\(38\) 0.256781 0.0416554
\(39\) −4.14396 −0.663565
\(40\) 2.46652 0.389991
\(41\) 2.21446 0.345840 0.172920 0.984936i \(-0.444680\pi\)
0.172920 + 0.984936i \(0.444680\pi\)
\(42\) 2.09198 0.322800
\(43\) −11.0941 −1.69184 −0.845920 0.533310i \(-0.820948\pi\)
−0.845920 + 0.533310i \(0.820948\pi\)
\(44\) 0 0
\(45\) −11.5570 −1.72282
\(46\) 0.958644 0.141344
\(47\) 7.54957 1.10122 0.550609 0.834763i \(-0.314395\pi\)
0.550609 + 0.834763i \(0.314395\pi\)
\(48\) 10.0355 1.44849
\(49\) 1.58270 0.226100
\(50\) 0.246913 0.0349187
\(51\) 11.6788 1.63536
\(52\) 2.88206 0.399670
\(53\) 13.9149 1.91135 0.955677 0.294418i \(-0.0951257\pi\)
0.955677 + 0.294418i \(0.0951257\pi\)
\(54\) 1.23773 0.168434
\(55\) 0 0
\(56\) −2.95949 −0.395478
\(57\) 2.78089 0.368337
\(58\) −1.23249 −0.161834
\(59\) 9.76391 1.27115 0.635576 0.772038i \(-0.280763\pi\)
0.635576 + 0.772038i \(0.280763\pi\)
\(60\) 13.1321 1.69535
\(61\) 12.3223 1.57771 0.788857 0.614577i \(-0.210673\pi\)
0.788857 + 0.614577i \(0.210673\pi\)
\(62\) 0.458346 0.0582100
\(63\) 13.8669 1.74706
\(64\) −6.46071 −0.807589
\(65\) 3.63842 0.451290
\(66\) 0 0
\(67\) 6.65052 0.812491 0.406245 0.913764i \(-0.366838\pi\)
0.406245 + 0.913764i \(0.366838\pi\)
\(68\) −8.12242 −0.984988
\(69\) 10.3819 1.24983
\(70\) −1.83677 −0.219536
\(71\) −10.5453 −1.25149 −0.625747 0.780026i \(-0.715206\pi\)
−0.625747 + 0.780026i \(0.715206\pi\)
\(72\) −4.78157 −0.563514
\(73\) 5.11743 0.598950 0.299475 0.954104i \(-0.403188\pi\)
0.299475 + 0.954104i \(0.403188\pi\)
\(74\) 2.17208 0.252499
\(75\) 2.67401 0.308768
\(76\) −1.93406 −0.221852
\(77\) 0 0
\(78\) −1.06409 −0.120485
\(79\) 1.30503 0.146828 0.0734138 0.997302i \(-0.476611\pi\)
0.0734138 + 0.997302i \(0.476611\pi\)
\(80\) −8.81119 −0.985121
\(81\) −0.795627 −0.0884030
\(82\) 0.568631 0.0627947
\(83\) −9.16686 −1.00619 −0.503097 0.864230i \(-0.667806\pi\)
−0.503097 + 0.864230i \(0.667806\pi\)
\(84\) −15.7567 −1.71920
\(85\) −10.2540 −1.11221
\(86\) −2.84877 −0.307190
\(87\) −13.3476 −1.43102
\(88\) 0 0
\(89\) −2.45131 −0.259838 −0.129919 0.991525i \(-0.541472\pi\)
−0.129919 + 0.991525i \(0.541472\pi\)
\(90\) −2.96763 −0.312816
\(91\) −4.36561 −0.457640
\(92\) −7.22046 −0.752785
\(93\) 4.96379 0.514721
\(94\) 1.93859 0.199950
\(95\) −2.44163 −0.250506
\(96\) 8.19538 0.836438
\(97\) 4.37412 0.444125 0.222062 0.975032i \(-0.428721\pi\)
0.222062 + 0.975032i \(0.428721\pi\)
\(98\) 0.406408 0.0410534
\(99\) 0 0
\(100\) −1.85973 −0.185973
\(101\) 4.82056 0.479664 0.239832 0.970814i \(-0.422908\pi\)
0.239832 + 0.970814i \(0.422908\pi\)
\(102\) 2.99889 0.296935
\(103\) 10.9871 1.08259 0.541297 0.840831i \(-0.317933\pi\)
0.541297 + 0.840831i \(0.317933\pi\)
\(104\) 1.50535 0.147612
\(105\) −19.8919 −1.94125
\(106\) 3.57308 0.347048
\(107\) 15.4551 1.49410 0.747049 0.664769i \(-0.231470\pi\)
0.747049 + 0.664769i \(0.231470\pi\)
\(108\) −9.32252 −0.897059
\(109\) −10.5781 −1.01320 −0.506599 0.862182i \(-0.669098\pi\)
−0.506599 + 0.862182i \(0.669098\pi\)
\(110\) 0 0
\(111\) 23.5232 2.23272
\(112\) 10.5722 0.998981
\(113\) 9.00938 0.847531 0.423765 0.905772i \(-0.360708\pi\)
0.423765 + 0.905772i \(0.360708\pi\)
\(114\) 0.714079 0.0668796
\(115\) −9.11537 −0.850013
\(116\) 9.28309 0.861913
\(117\) −7.05340 −0.652087
\(118\) 2.50719 0.230805
\(119\) 12.3034 1.12785
\(120\) 6.85911 0.626148
\(121\) 0 0
\(122\) 3.16414 0.286468
\(123\) 6.15815 0.555261
\(124\) −3.45224 −0.310020
\(125\) 9.86037 0.881938
\(126\) 3.56075 0.317217
\(127\) −20.0203 −1.77652 −0.888259 0.459343i \(-0.848085\pi\)
−0.888259 + 0.459343i \(0.848085\pi\)
\(128\) −7.55307 −0.667603
\(129\) −30.8515 −2.71632
\(130\) 0.934278 0.0819416
\(131\) −8.41811 −0.735493 −0.367747 0.929926i \(-0.619871\pi\)
−0.367747 + 0.929926i \(0.619871\pi\)
\(132\) 0 0
\(133\) 2.92963 0.254031
\(134\) 1.70773 0.147525
\(135\) −11.7691 −1.01292
\(136\) −4.24247 −0.363789
\(137\) 13.5074 1.15401 0.577006 0.816740i \(-0.304221\pi\)
0.577006 + 0.816740i \(0.304221\pi\)
\(138\) 2.66588 0.226935
\(139\) 12.4161 1.05312 0.526561 0.850138i \(-0.323481\pi\)
0.526561 + 0.850138i \(0.323481\pi\)
\(140\) 13.8345 1.16923
\(141\) 20.9945 1.76806
\(142\) −2.70783 −0.227236
\(143\) 0 0
\(144\) 17.0813 1.42344
\(145\) 11.7193 0.973235
\(146\) 1.31406 0.108752
\(147\) 4.40132 0.363014
\(148\) −16.3600 −1.34479
\(149\) 2.98473 0.244519 0.122259 0.992498i \(-0.460986\pi\)
0.122259 + 0.992498i \(0.460986\pi\)
\(150\) 0.686636 0.0560636
\(151\) −19.3984 −1.57862 −0.789309 0.613997i \(-0.789561\pi\)
−0.789309 + 0.613997i \(0.789561\pi\)
\(152\) −1.01019 −0.0819375
\(153\) 19.8784 1.60707
\(154\) 0 0
\(155\) −4.35824 −0.350062
\(156\) 8.01468 0.641688
\(157\) −17.9657 −1.43382 −0.716911 0.697165i \(-0.754445\pi\)
−0.716911 + 0.697165i \(0.754445\pi\)
\(158\) 0.335108 0.0266597
\(159\) 38.6956 3.06876
\(160\) −7.19559 −0.568861
\(161\) 10.9372 0.861972
\(162\) −0.204302 −0.0160515
\(163\) −3.07101 −0.240540 −0.120270 0.992741i \(-0.538376\pi\)
−0.120270 + 0.992741i \(0.538376\pi\)
\(164\) −4.28290 −0.334438
\(165\) 0 0
\(166\) −2.35388 −0.182696
\(167\) −5.43104 −0.420266 −0.210133 0.977673i \(-0.567390\pi\)
−0.210133 + 0.977673i \(0.567390\pi\)
\(168\) −8.23000 −0.634958
\(169\) −10.7794 −0.829187
\(170\) −2.63304 −0.201945
\(171\) 4.73332 0.361966
\(172\) 21.4568 1.63606
\(173\) 15.3064 1.16372 0.581861 0.813288i \(-0.302325\pi\)
0.581861 + 0.813288i \(0.302325\pi\)
\(174\) −3.42742 −0.259832
\(175\) 2.81703 0.212948
\(176\) 0 0
\(177\) 27.1523 2.04089
\(178\) −0.629449 −0.0471792
\(179\) −14.0209 −1.04797 −0.523985 0.851728i \(-0.675555\pi\)
−0.523985 + 0.851728i \(0.675555\pi\)
\(180\) 22.3520 1.66602
\(181\) 3.08755 0.229496 0.114748 0.993395i \(-0.463394\pi\)
0.114748 + 0.993395i \(0.463394\pi\)
\(182\) −1.12101 −0.0830945
\(183\) 34.2670 2.53309
\(184\) −3.77137 −0.278029
\(185\) −20.6535 −1.51847
\(186\) 1.27461 0.0934588
\(187\) 0 0
\(188\) −14.6014 −1.06491
\(189\) 14.1213 1.02717
\(190\) −0.626965 −0.0454848
\(191\) −0.0810879 −0.00586731 −0.00293366 0.999996i \(-0.500934\pi\)
−0.00293366 + 0.999996i \(0.500934\pi\)
\(192\) −17.9665 −1.29662
\(193\) −25.8289 −1.85920 −0.929602 0.368564i \(-0.879849\pi\)
−0.929602 + 0.368564i \(0.879849\pi\)
\(194\) 1.12319 0.0806405
\(195\) 10.1180 0.724567
\(196\) −3.06105 −0.218646
\(197\) −12.5922 −0.897155 −0.448578 0.893744i \(-0.648069\pi\)
−0.448578 + 0.893744i \(0.648069\pi\)
\(198\) 0 0
\(199\) −12.4747 −0.884309 −0.442154 0.896939i \(-0.645786\pi\)
−0.442154 + 0.896939i \(0.645786\pi\)
\(200\) −0.971370 −0.0686862
\(201\) 18.4943 1.30449
\(202\) 1.23783 0.0870933
\(203\) −14.0616 −0.986928
\(204\) −22.5875 −1.58144
\(205\) −5.40689 −0.377633
\(206\) 2.82129 0.196569
\(207\) 17.6710 1.22822
\(208\) −5.37758 −0.372868
\(209\) 0 0
\(210\) −5.10785 −0.352475
\(211\) 2.77766 0.191222 0.0956111 0.995419i \(-0.469519\pi\)
0.0956111 + 0.995419i \(0.469519\pi\)
\(212\) −26.9122 −1.84834
\(213\) −29.3252 −2.00933
\(214\) 3.96857 0.271286
\(215\) 27.0878 1.84737
\(216\) −4.86930 −0.331314
\(217\) 5.22929 0.354987
\(218\) −2.71626 −0.183968
\(219\) 14.2310 0.961641
\(220\) 0 0
\(221\) −6.25817 −0.420970
\(222\) 6.04031 0.405399
\(223\) −1.99948 −0.133895 −0.0669474 0.997757i \(-0.521326\pi\)
−0.0669474 + 0.997757i \(0.521326\pi\)
\(224\) 8.63372 0.576865
\(225\) 4.55141 0.303427
\(226\) 2.31344 0.153888
\(227\) 13.6361 0.905057 0.452528 0.891750i \(-0.350522\pi\)
0.452528 + 0.891750i \(0.350522\pi\)
\(228\) −5.37841 −0.356194
\(229\) 8.29561 0.548189 0.274095 0.961703i \(-0.411622\pi\)
0.274095 + 0.961703i \(0.411622\pi\)
\(230\) −2.34066 −0.154338
\(231\) 0 0
\(232\) 4.84871 0.318333
\(233\) −28.8658 −1.89106 −0.945532 0.325529i \(-0.894458\pi\)
−0.945532 + 0.325529i \(0.894458\pi\)
\(234\) −1.81118 −0.118401
\(235\) −18.4333 −1.20245
\(236\) −18.8840 −1.22924
\(237\) 3.62915 0.235738
\(238\) 3.15929 0.204786
\(239\) 5.05315 0.326861 0.163431 0.986555i \(-0.447744\pi\)
0.163431 + 0.986555i \(0.447744\pi\)
\(240\) −24.5029 −1.58166
\(241\) 6.28489 0.404846 0.202423 0.979298i \(-0.435118\pi\)
0.202423 + 0.979298i \(0.435118\pi\)
\(242\) 0 0
\(243\) −16.6731 −1.06958
\(244\) −23.8322 −1.52570
\(245\) −3.86438 −0.246886
\(246\) 1.58130 0.100820
\(247\) −1.49016 −0.0948165
\(248\) −1.80316 −0.114501
\(249\) −25.4920 −1.61549
\(250\) 2.53196 0.160135
\(251\) −14.9127 −0.941284 −0.470642 0.882324i \(-0.655978\pi\)
−0.470642 + 0.882324i \(0.655978\pi\)
\(252\) −26.8194 −1.68946
\(253\) 0 0
\(254\) −5.14085 −0.322565
\(255\) −28.5153 −1.78570
\(256\) 10.9819 0.686371
\(257\) −2.09159 −0.130470 −0.0652348 0.997870i \(-0.520780\pi\)
−0.0652348 + 0.997870i \(0.520780\pi\)
\(258\) −7.92209 −0.493208
\(259\) 24.7814 1.53984
\(260\) −7.03693 −0.436412
\(261\) −22.7189 −1.40627
\(262\) −2.16161 −0.133545
\(263\) 0.765101 0.0471781 0.0235891 0.999722i \(-0.492491\pi\)
0.0235891 + 0.999722i \(0.492491\pi\)
\(264\) 0 0
\(265\) −33.9750 −2.08707
\(266\) 0.752273 0.0461248
\(267\) −6.81680 −0.417181
\(268\) −12.8625 −0.785704
\(269\) 6.11922 0.373095 0.186548 0.982446i \(-0.440270\pi\)
0.186548 + 0.982446i \(0.440270\pi\)
\(270\) −3.02208 −0.183918
\(271\) −28.4534 −1.72842 −0.864211 0.503130i \(-0.832182\pi\)
−0.864211 + 0.503130i \(0.832182\pi\)
\(272\) 15.1554 0.918934
\(273\) −12.1403 −0.734761
\(274\) 3.46844 0.209536
\(275\) 0 0
\(276\) −20.0793 −1.20863
\(277\) 21.2552 1.27710 0.638550 0.769580i \(-0.279534\pi\)
0.638550 + 0.769580i \(0.279534\pi\)
\(278\) 3.18823 0.191217
\(279\) 8.44883 0.505818
\(280\) 7.22598 0.431835
\(281\) −8.38783 −0.500376 −0.250188 0.968197i \(-0.580492\pi\)
−0.250188 + 0.968197i \(0.580492\pi\)
\(282\) 5.39099 0.321029
\(283\) 19.2757 1.14582 0.572911 0.819618i \(-0.305814\pi\)
0.572911 + 0.819618i \(0.305814\pi\)
\(284\) 20.3952 1.21024
\(285\) −6.78990 −0.402199
\(286\) 0 0
\(287\) 6.48752 0.382946
\(288\) 13.9493 0.821970
\(289\) 0.637175 0.0374809
\(290\) 3.00930 0.176712
\(291\) 12.1639 0.713063
\(292\) −9.89744 −0.579204
\(293\) −0.969687 −0.0566497 −0.0283249 0.999599i \(-0.509017\pi\)
−0.0283249 + 0.999599i \(0.509017\pi\)
\(294\) 1.13017 0.0659131
\(295\) −23.8399 −1.38801
\(296\) −8.54511 −0.496674
\(297\) 0 0
\(298\) 0.766422 0.0443977
\(299\) −5.56323 −0.321730
\(300\) −5.17171 −0.298589
\(301\) −32.5017 −1.87336
\(302\) −4.98114 −0.286632
\(303\) 13.4054 0.770121
\(304\) 3.60873 0.206975
\(305\) −30.0866 −1.72275
\(306\) 5.10439 0.291799
\(307\) −7.68745 −0.438746 −0.219373 0.975641i \(-0.570401\pi\)
−0.219373 + 0.975641i \(0.570401\pi\)
\(308\) 0 0
\(309\) 30.5540 1.73815
\(310\) −1.11911 −0.0635613
\(311\) 21.9520 1.24478 0.622391 0.782706i \(-0.286161\pi\)
0.622391 + 0.782706i \(0.286161\pi\)
\(312\) 4.18620 0.236997
\(313\) −29.0973 −1.64467 −0.822337 0.569000i \(-0.807330\pi\)
−0.822337 + 0.569000i \(0.807330\pi\)
\(314\) −4.61326 −0.260342
\(315\) −33.8578 −1.90767
\(316\) −2.52402 −0.141987
\(317\) 1.54378 0.0867075 0.0433537 0.999060i \(-0.486196\pi\)
0.0433537 + 0.999060i \(0.486196\pi\)
\(318\) 9.93631 0.557201
\(319\) 0 0
\(320\) 15.7747 0.881832
\(321\) 42.9788 2.39884
\(322\) 2.80847 0.156510
\(323\) 4.19966 0.233676
\(324\) 1.53879 0.0854885
\(325\) −1.43289 −0.0794824
\(326\) −0.788577 −0.0436752
\(327\) −29.4165 −1.62674
\(328\) −2.23703 −0.123519
\(329\) 22.1174 1.21937
\(330\) 0 0
\(331\) −16.3308 −0.897621 −0.448810 0.893627i \(-0.648152\pi\)
−0.448810 + 0.893627i \(0.648152\pi\)
\(332\) 17.7293 0.973021
\(333\) 40.0386 2.19410
\(334\) −1.39459 −0.0763085
\(335\) −16.2381 −0.887184
\(336\) 29.4001 1.60391
\(337\) 6.11074 0.332873 0.166437 0.986052i \(-0.446774\pi\)
0.166437 + 0.986052i \(0.446774\pi\)
\(338\) −2.76795 −0.150557
\(339\) 25.0540 1.36075
\(340\) 19.8320 1.07554
\(341\) 0 0
\(342\) 1.21543 0.0657228
\(343\) −15.8706 −0.856935
\(344\) 11.2072 0.604253
\(345\) −25.3488 −1.36473
\(346\) 3.93039 0.211299
\(347\) −17.4753 −0.938121 −0.469061 0.883166i \(-0.655407\pi\)
−0.469061 + 0.883166i \(0.655407\pi\)
\(348\) 25.8152 1.38384
\(349\) −18.8505 −1.00904 −0.504522 0.863399i \(-0.668331\pi\)
−0.504522 + 0.863399i \(0.668331\pi\)
\(350\) 0.723361 0.0386653
\(351\) −7.18282 −0.383391
\(352\) 0 0
\(353\) −22.3648 −1.19036 −0.595180 0.803592i \(-0.702919\pi\)
−0.595180 + 0.803592i \(0.702919\pi\)
\(354\) 6.97220 0.370568
\(355\) 25.7477 1.36655
\(356\) 4.74098 0.251271
\(357\) 34.2145 1.81082
\(358\) −3.60030 −0.190282
\(359\) 3.85510 0.203464 0.101732 0.994812i \(-0.467562\pi\)
0.101732 + 0.994812i \(0.467562\pi\)
\(360\) 11.6748 0.615318
\(361\) 1.00000 0.0526316
\(362\) 0.792825 0.0416700
\(363\) 0 0
\(364\) 8.44336 0.442552
\(365\) −12.4949 −0.654012
\(366\) 8.79912 0.459937
\(367\) 10.6739 0.557172 0.278586 0.960411i \(-0.410134\pi\)
0.278586 + 0.960411i \(0.410134\pi\)
\(368\) 13.4725 0.702303
\(369\) 10.4817 0.545657
\(370\) −5.30343 −0.275712
\(371\) 40.7653 2.11643
\(372\) −9.60029 −0.497752
\(373\) 23.2599 1.20435 0.602177 0.798363i \(-0.294300\pi\)
0.602177 + 0.798363i \(0.294300\pi\)
\(374\) 0 0
\(375\) 27.4205 1.41599
\(376\) −7.62653 −0.393308
\(377\) 7.15244 0.368369
\(378\) 3.62608 0.186506
\(379\) −32.6378 −1.67649 −0.838245 0.545293i \(-0.816418\pi\)
−0.838245 + 0.545293i \(0.816418\pi\)
\(380\) 4.72227 0.242247
\(381\) −55.6743 −2.85228
\(382\) −0.0208218 −0.00106534
\(383\) 5.05499 0.258298 0.129149 0.991625i \(-0.458775\pi\)
0.129149 + 0.991625i \(0.458775\pi\)
\(384\) −21.0042 −1.07187
\(385\) 0 0
\(386\) −6.63237 −0.337579
\(387\) −52.5121 −2.66934
\(388\) −8.45983 −0.429483
\(389\) 26.8157 1.35961 0.679806 0.733392i \(-0.262064\pi\)
0.679806 + 0.733392i \(0.262064\pi\)
\(390\) 2.59812 0.131561
\(391\) 15.6786 0.792903
\(392\) −1.59884 −0.0807534
\(393\) −23.4098 −1.18087
\(394\) −3.23343 −0.162898
\(395\) −3.18641 −0.160326
\(396\) 0 0
\(397\) 11.6677 0.585583 0.292791 0.956176i \(-0.405416\pi\)
0.292791 + 0.956176i \(0.405416\pi\)
\(398\) −3.20327 −0.160565
\(399\) 8.14695 0.407858
\(400\) 3.47004 0.173502
\(401\) −6.70200 −0.334682 −0.167341 0.985899i \(-0.553518\pi\)
−0.167341 + 0.985899i \(0.553518\pi\)
\(402\) 4.74900 0.236859
\(403\) −2.65989 −0.132498
\(404\) −9.32327 −0.463850
\(405\) 1.94263 0.0965299
\(406\) −3.61075 −0.179198
\(407\) 0 0
\(408\) −11.7978 −0.584080
\(409\) −19.5470 −0.966535 −0.483268 0.875473i \(-0.660550\pi\)
−0.483268 + 0.875473i \(0.660550\pi\)
\(410\) −1.38839 −0.0685675
\(411\) 37.5624 1.85282
\(412\) −21.2498 −1.04690
\(413\) 28.6046 1.40754
\(414\) 4.53757 0.223009
\(415\) 22.3821 1.09869
\(416\) −4.39156 −0.215314
\(417\) 34.5278 1.69083
\(418\) 0 0
\(419\) 15.0965 0.737511 0.368755 0.929526i \(-0.379784\pi\)
0.368755 + 0.929526i \(0.379784\pi\)
\(420\) 38.4721 1.87725
\(421\) −15.9915 −0.779379 −0.389690 0.920946i \(-0.627418\pi\)
−0.389690 + 0.920946i \(0.627418\pi\)
\(422\) 0.713251 0.0347205
\(423\) 35.7346 1.73747
\(424\) −14.0567 −0.682654
\(425\) 4.03826 0.195885
\(426\) −7.53016 −0.364838
\(427\) 36.0998 1.74699
\(428\) −29.8911 −1.44484
\(429\) 0 0
\(430\) 6.95564 0.335431
\(431\) −3.87143 −0.186480 −0.0932401 0.995644i \(-0.529722\pi\)
−0.0932401 + 0.995644i \(0.529722\pi\)
\(432\) 17.3947 0.836902
\(433\) −30.7123 −1.47594 −0.737970 0.674833i \(-0.764216\pi\)
−0.737970 + 0.674833i \(0.764216\pi\)
\(434\) 1.34278 0.0644556
\(435\) 32.5900 1.56257
\(436\) 20.4587 0.979795
\(437\) 3.73331 0.178588
\(438\) 3.65425 0.174607
\(439\) −9.99876 −0.477215 −0.238607 0.971116i \(-0.576691\pi\)
−0.238607 + 0.971116i \(0.576691\pi\)
\(440\) 0 0
\(441\) 7.49144 0.356735
\(442\) −1.60698 −0.0764362
\(443\) 14.5072 0.689258 0.344629 0.938739i \(-0.388005\pi\)
0.344629 + 0.938739i \(0.388005\pi\)
\(444\) −45.4953 −2.15911
\(445\) 5.98519 0.283725
\(446\) −0.513428 −0.0243115
\(447\) 8.30019 0.392586
\(448\) −18.9275 −0.894239
\(449\) 12.6360 0.596330 0.298165 0.954514i \(-0.403625\pi\)
0.298165 + 0.954514i \(0.403625\pi\)
\(450\) 1.16872 0.0550938
\(451\) 0 0
\(452\) −17.4247 −0.819589
\(453\) −53.9446 −2.53454
\(454\) 3.50148 0.164333
\(455\) 10.6592 0.499711
\(456\) −2.80923 −0.131554
\(457\) 4.67021 0.218463 0.109232 0.994016i \(-0.465161\pi\)
0.109232 + 0.994016i \(0.465161\pi\)
\(458\) 2.13016 0.0995356
\(459\) 20.2431 0.944867
\(460\) 17.6297 0.821989
\(461\) −1.86934 −0.0870639 −0.0435320 0.999052i \(-0.513861\pi\)
−0.0435320 + 0.999052i \(0.513861\pi\)
\(462\) 0 0
\(463\) 21.3757 0.993414 0.496707 0.867918i \(-0.334542\pi\)
0.496707 + 0.867918i \(0.334542\pi\)
\(464\) −17.3211 −0.804113
\(465\) −12.1198 −0.562040
\(466\) −7.41220 −0.343364
\(467\) −1.31534 −0.0608668 −0.0304334 0.999537i \(-0.509689\pi\)
−0.0304334 + 0.999537i \(0.509689\pi\)
\(468\) 13.6417 0.630589
\(469\) 19.4835 0.899666
\(470\) −4.73332 −0.218332
\(471\) −49.9607 −2.30207
\(472\) −9.86343 −0.454001
\(473\) 0 0
\(474\) 0.931896 0.0428034
\(475\) 0.961568 0.0441198
\(476\) −23.7956 −1.09067
\(477\) 65.8635 3.01568
\(478\) 1.29755 0.0593487
\(479\) 37.1620 1.69798 0.848988 0.528413i \(-0.177213\pi\)
0.848988 + 0.528413i \(0.177213\pi\)
\(480\) −20.0101 −0.913332
\(481\) −12.6051 −0.574742
\(482\) 1.61384 0.0735085
\(483\) 30.4151 1.38393
\(484\) 0 0
\(485\) −10.6800 −0.484954
\(486\) −4.28133 −0.194205
\(487\) 6.71033 0.304074 0.152037 0.988375i \(-0.451417\pi\)
0.152037 + 0.988375i \(0.451417\pi\)
\(488\) −12.4479 −0.563492
\(489\) −8.54012 −0.386197
\(490\) −0.992300 −0.0448275
\(491\) −27.8221 −1.25560 −0.627798 0.778376i \(-0.716044\pi\)
−0.627798 + 0.778376i \(0.716044\pi\)
\(492\) −11.9102 −0.536955
\(493\) −20.1575 −0.907847
\(494\) −0.382645 −0.0172160
\(495\) 0 0
\(496\) 6.44146 0.289230
\(497\) −30.8937 −1.38577
\(498\) −6.54586 −0.293327
\(499\) 26.1934 1.17258 0.586290 0.810101i \(-0.300588\pi\)
0.586290 + 0.810101i \(0.300588\pi\)
\(500\) −19.0706 −0.852862
\(501\) −15.1031 −0.674757
\(502\) −3.82931 −0.170911
\(503\) −9.22970 −0.411532 −0.205766 0.978601i \(-0.565969\pi\)
−0.205766 + 0.978601i \(0.565969\pi\)
\(504\) −14.0082 −0.623975
\(505\) −11.7700 −0.523760
\(506\) 0 0
\(507\) −29.9763 −1.33130
\(508\) 38.7206 1.71795
\(509\) 27.1395 1.20294 0.601468 0.798897i \(-0.294583\pi\)
0.601468 + 0.798897i \(0.294583\pi\)
\(510\) −7.32219 −0.324232
\(511\) 14.9922 0.663214
\(512\) 17.9261 0.792229
\(513\) 4.82017 0.212816
\(514\) −0.537080 −0.0236896
\(515\) −26.8265 −1.18212
\(516\) 59.6688 2.62677
\(517\) 0 0
\(518\) 6.36339 0.279591
\(519\) 42.5653 1.86841
\(520\) −3.67551 −0.161182
\(521\) −37.7841 −1.65535 −0.827676 0.561207i \(-0.810337\pi\)
−0.827676 + 0.561207i \(0.810337\pi\)
\(522\) −5.83379 −0.255338
\(523\) 19.2200 0.840434 0.420217 0.907424i \(-0.361954\pi\)
0.420217 + 0.907424i \(0.361954\pi\)
\(524\) 16.2812 0.711246
\(525\) 7.83385 0.341897
\(526\) 0.196463 0.00856621
\(527\) 7.49627 0.326542
\(528\) 0 0
\(529\) −9.06239 −0.394017
\(530\) −8.72414 −0.378952
\(531\) 46.2157 2.00559
\(532\) −5.66608 −0.245656
\(533\) −3.29989 −0.142934
\(534\) −1.75043 −0.0757483
\(535\) −37.7356 −1.63145
\(536\) −6.71831 −0.290187
\(537\) −38.9904 −1.68256
\(538\) 1.57130 0.0677436
\(539\) 0 0
\(540\) 22.7622 0.979527
\(541\) 11.6378 0.500348 0.250174 0.968201i \(-0.419512\pi\)
0.250174 + 0.968201i \(0.419512\pi\)
\(542\) −7.30630 −0.313832
\(543\) 8.58612 0.368466
\(544\) 12.3766 0.530641
\(545\) 25.8278 1.10634
\(546\) −3.11739 −0.133412
\(547\) 40.3150 1.72374 0.861872 0.507125i \(-0.169292\pi\)
0.861872 + 0.507125i \(0.169292\pi\)
\(548\) −26.1241 −1.11597
\(549\) 58.3256 2.48928
\(550\) 0 0
\(551\) −4.79978 −0.204478
\(552\) −10.4877 −0.446388
\(553\) 3.82326 0.162581
\(554\) 5.45793 0.231885
\(555\) −57.4350 −2.43798
\(556\) −24.0136 −1.01840
\(557\) −4.44738 −0.188442 −0.0942208 0.995551i \(-0.530036\pi\)
−0.0942208 + 0.995551i \(0.530036\pi\)
\(558\) 2.16950 0.0918423
\(559\) 16.5320 0.699230
\(560\) −25.8135 −1.09082
\(561\) 0 0
\(562\) −2.15384 −0.0908541
\(563\) 13.8633 0.584268 0.292134 0.956377i \(-0.405635\pi\)
0.292134 + 0.956377i \(0.405635\pi\)
\(564\) −40.6047 −1.70977
\(565\) −21.9976 −0.925445
\(566\) 4.94964 0.208049
\(567\) −2.33089 −0.0978881
\(568\) 10.6528 0.446980
\(569\) −28.6839 −1.20249 −0.601246 0.799064i \(-0.705329\pi\)
−0.601246 + 0.799064i \(0.705329\pi\)
\(570\) −1.74352 −0.0730279
\(571\) 8.27342 0.346232 0.173116 0.984901i \(-0.444616\pi\)
0.173116 + 0.984901i \(0.444616\pi\)
\(572\) 0 0
\(573\) −0.225496 −0.00942024
\(574\) 1.66587 0.0695322
\(575\) 3.58983 0.149706
\(576\) −30.5806 −1.27419
\(577\) −9.06405 −0.377341 −0.188671 0.982040i \(-0.560418\pi\)
−0.188671 + 0.982040i \(0.560418\pi\)
\(578\) 0.163615 0.00680547
\(579\) −71.8272 −2.98504
\(580\) −22.6659 −0.941150
\(581\) −26.8555 −1.11415
\(582\) 3.12347 0.129472
\(583\) 0 0
\(584\) −5.16960 −0.213919
\(585\) 17.2218 0.712034
\(586\) −0.248997 −0.0102860
\(587\) 12.1244 0.500428 0.250214 0.968191i \(-0.419499\pi\)
0.250214 + 0.968191i \(0.419499\pi\)
\(588\) −8.51242 −0.351046
\(589\) 1.78497 0.0735483
\(590\) −6.12163 −0.252023
\(591\) −35.0174 −1.44042
\(592\) 30.5258 1.25460
\(593\) −24.9107 −1.02296 −0.511481 0.859295i \(-0.670903\pi\)
−0.511481 + 0.859295i \(0.670903\pi\)
\(594\) 0 0
\(595\) −30.0405 −1.23154
\(596\) −5.77266 −0.236457
\(597\) −34.6907 −1.41980
\(598\) −1.42853 −0.0584170
\(599\) 41.4959 1.69548 0.847739 0.530414i \(-0.177963\pi\)
0.847739 + 0.530414i \(0.177963\pi\)
\(600\) −2.70127 −0.110279
\(601\) −16.2749 −0.663866 −0.331933 0.943303i \(-0.607701\pi\)
−0.331933 + 0.943303i \(0.607701\pi\)
\(602\) −8.34581 −0.340150
\(603\) 31.4791 1.28193
\(604\) 37.5177 1.52657
\(605\) 0 0
\(606\) 3.44226 0.139832
\(607\) 44.0021 1.78599 0.892994 0.450068i \(-0.148600\pi\)
0.892994 + 0.450068i \(0.148600\pi\)
\(608\) 2.94704 0.119518
\(609\) −39.1036 −1.58456
\(610\) −7.72568 −0.312803
\(611\) −11.2501 −0.455129
\(612\) −38.4460 −1.55409
\(613\) 2.71623 0.109708 0.0548538 0.998494i \(-0.482531\pi\)
0.0548538 + 0.998494i \(0.482531\pi\)
\(614\) −1.97399 −0.0796638
\(615\) −15.0359 −0.606307
\(616\) 0 0
\(617\) 35.6598 1.43561 0.717806 0.696244i \(-0.245147\pi\)
0.717806 + 0.696244i \(0.245147\pi\)
\(618\) 7.84568 0.315600
\(619\) −10.9080 −0.438431 −0.219215 0.975677i \(-0.570350\pi\)
−0.219215 + 0.975677i \(0.570350\pi\)
\(620\) 8.42910 0.338521
\(621\) 17.9952 0.722122
\(622\) 5.63686 0.226017
\(623\) −7.18141 −0.287717
\(624\) −14.9544 −0.598656
\(625\) −28.8832 −1.15533
\(626\) −7.47163 −0.298626
\(627\) 0 0
\(628\) 34.7469 1.38655
\(629\) 35.5245 1.41645
\(630\) −8.69404 −0.346379
\(631\) 15.1135 0.601658 0.300829 0.953678i \(-0.402737\pi\)
0.300829 + 0.953678i \(0.402737\pi\)
\(632\) −1.31834 −0.0524406
\(633\) 7.72436 0.307016
\(634\) 0.396414 0.0157436
\(635\) 48.8823 1.93984
\(636\) −74.8398 −2.96759
\(637\) −2.35848 −0.0934463
\(638\) 0 0
\(639\) −49.9142 −1.97458
\(640\) 18.4418 0.728977
\(641\) −8.52912 −0.336880 −0.168440 0.985712i \(-0.553873\pi\)
−0.168440 + 0.985712i \(0.553873\pi\)
\(642\) 11.0361 0.435562
\(643\) 18.5443 0.731315 0.365658 0.930749i \(-0.380844\pi\)
0.365658 + 0.930749i \(0.380844\pi\)
\(644\) −21.1532 −0.833554
\(645\) 75.3281 2.96604
\(646\) 1.07839 0.0424289
\(647\) 0.277869 0.0109241 0.00546207 0.999985i \(-0.498261\pi\)
0.00546207 + 0.999985i \(0.498261\pi\)
\(648\) 0.803737 0.0315738
\(649\) 0 0
\(650\) −0.367939 −0.0144318
\(651\) 14.5420 0.569948
\(652\) 5.93952 0.232610
\(653\) −13.4968 −0.528172 −0.264086 0.964499i \(-0.585070\pi\)
−0.264086 + 0.964499i \(0.585070\pi\)
\(654\) −7.55360 −0.295369
\(655\) 20.5539 0.803108
\(656\) 7.99137 0.312011
\(657\) 24.2225 0.945008
\(658\) 5.67934 0.221404
\(659\) −34.6157 −1.34843 −0.674217 0.738533i \(-0.735519\pi\)
−0.674217 + 0.738533i \(0.735519\pi\)
\(660\) 0 0
\(661\) −28.9833 −1.12732 −0.563660 0.826007i \(-0.690607\pi\)
−0.563660 + 0.826007i \(0.690607\pi\)
\(662\) −4.19344 −0.162983
\(663\) −17.4032 −0.675886
\(664\) 9.26030 0.359369
\(665\) −7.15307 −0.277384
\(666\) 10.2812 0.398387
\(667\) −17.9191 −0.693830
\(668\) 10.5040 0.406411
\(669\) −5.56032 −0.214974
\(670\) −4.16965 −0.161087
\(671\) 0 0
\(672\) 24.0094 0.926182
\(673\) 1.52562 0.0588085 0.0294043 0.999568i \(-0.490639\pi\)
0.0294043 + 0.999568i \(0.490639\pi\)
\(674\) 1.56912 0.0604403
\(675\) 4.63492 0.178398
\(676\) 20.8481 0.801850
\(677\) −20.7211 −0.796375 −0.398187 0.917304i \(-0.630361\pi\)
−0.398187 + 0.917304i \(0.630361\pi\)
\(678\) 6.43341 0.247074
\(679\) 12.8145 0.491777
\(680\) 10.3586 0.397233
\(681\) 37.9203 1.45311
\(682\) 0 0
\(683\) 8.44932 0.323304 0.161652 0.986848i \(-0.448318\pi\)
0.161652 + 0.986848i \(0.448318\pi\)
\(684\) −9.15455 −0.350033
\(685\) −32.9800 −1.26010
\(686\) −4.07528 −0.155595
\(687\) 23.0691 0.880142
\(688\) −40.0357 −1.52635
\(689\) −20.7354 −0.789954
\(690\) −6.50909 −0.247797
\(691\) −18.1105 −0.688958 −0.344479 0.938794i \(-0.611944\pi\)
−0.344479 + 0.938794i \(0.611944\pi\)
\(692\) −29.6035 −1.12536
\(693\) 0 0
\(694\) −4.48732 −0.170336
\(695\) −30.3156 −1.14994
\(696\) 13.4837 0.511099
\(697\) 9.29997 0.352261
\(698\) −4.84045 −0.183214
\(699\) −80.2726 −3.03619
\(700\) −5.44832 −0.205927
\(701\) −15.8274 −0.597792 −0.298896 0.954286i \(-0.596618\pi\)
−0.298896 + 0.954286i \(0.596618\pi\)
\(702\) −1.84441 −0.0696129
\(703\) 8.45889 0.319033
\(704\) 0 0
\(705\) −51.2608 −1.93060
\(706\) −5.74287 −0.216136
\(707\) 14.1224 0.531129
\(708\) −52.5143 −1.97361
\(709\) −14.1478 −0.531333 −0.265666 0.964065i \(-0.585592\pi\)
−0.265666 + 0.964065i \(0.585592\pi\)
\(710\) 6.61152 0.248126
\(711\) 6.17714 0.231661
\(712\) 2.47629 0.0928030
\(713\) 6.66384 0.249563
\(714\) 8.78563 0.328794
\(715\) 0 0
\(716\) 27.1173 1.01342
\(717\) 14.0522 0.524790
\(718\) 0.989916 0.0369433
\(719\) −14.4890 −0.540348 −0.270174 0.962812i \(-0.587081\pi\)
−0.270174 + 0.962812i \(0.587081\pi\)
\(720\) −41.7062 −1.55430
\(721\) 32.1882 1.19875
\(722\) 0.256781 0.00955641
\(723\) 17.4776 0.649998
\(724\) −5.97152 −0.221930
\(725\) −4.61532 −0.171409
\(726\) 0 0
\(727\) −5.90862 −0.219139 −0.109569 0.993979i \(-0.534947\pi\)
−0.109569 + 0.993979i \(0.534947\pi\)
\(728\) 4.41011 0.163449
\(729\) −43.9790 −1.62885
\(730\) −3.20845 −0.118750
\(731\) −46.5916 −1.72325
\(732\) −66.2746 −2.44958
\(733\) 35.5641 1.31359 0.656796 0.754069i \(-0.271911\pi\)
0.656796 + 0.754069i \(0.271911\pi\)
\(734\) 2.74085 0.101167
\(735\) −10.7464 −0.396387
\(736\) 11.0022 0.405547
\(737\) 0 0
\(738\) 2.69151 0.0990759
\(739\) −45.1654 −1.66144 −0.830718 0.556693i \(-0.812070\pi\)
−0.830718 + 0.556693i \(0.812070\pi\)
\(740\) 39.9452 1.46841
\(741\) −4.14396 −0.152232
\(742\) 10.4678 0.384284
\(743\) −26.6110 −0.976262 −0.488131 0.872770i \(-0.662321\pi\)
−0.488131 + 0.872770i \(0.662321\pi\)
\(744\) −5.01439 −0.183836
\(745\) −7.28761 −0.266997
\(746\) 5.97271 0.218676
\(747\) −43.3897 −1.58755
\(748\) 0 0
\(749\) 45.2776 1.65441
\(750\) 7.04108 0.257104
\(751\) 2.45561 0.0896065 0.0448032 0.998996i \(-0.485734\pi\)
0.0448032 + 0.998996i \(0.485734\pi\)
\(752\) 27.2444 0.993500
\(753\) −41.4706 −1.51127
\(754\) 1.83661 0.0668855
\(755\) 47.3637 1.72374
\(756\) −27.3115 −0.993309
\(757\) 37.3012 1.35573 0.677867 0.735184i \(-0.262904\pi\)
0.677867 + 0.735184i \(0.262904\pi\)
\(758\) −8.38077 −0.304403
\(759\) 0 0
\(760\) 2.46652 0.0894701
\(761\) 23.9679 0.868836 0.434418 0.900711i \(-0.356954\pi\)
0.434418 + 0.900711i \(0.356954\pi\)
\(762\) −14.2961 −0.517893
\(763\) −30.9899 −1.12191
\(764\) 0.156829 0.00567388
\(765\) −48.5357 −1.75481
\(766\) 1.29803 0.0468996
\(767\) −14.5498 −0.525362
\(768\) 30.5395 1.10200
\(769\) −10.6655 −0.384609 −0.192305 0.981335i \(-0.561596\pi\)
−0.192305 + 0.981335i \(0.561596\pi\)
\(770\) 0 0
\(771\) −5.81647 −0.209475
\(772\) 49.9547 1.79791
\(773\) 28.2846 1.01733 0.508664 0.860965i \(-0.330140\pi\)
0.508664 + 0.860965i \(0.330140\pi\)
\(774\) −13.4841 −0.484677
\(775\) 1.71637 0.0616538
\(776\) −4.41871 −0.158622
\(777\) 68.9141 2.47228
\(778\) 6.88578 0.246867
\(779\) 2.21446 0.0793411
\(780\) −19.5689 −0.700679
\(781\) 0 0
\(782\) 4.02598 0.143969
\(783\) −23.1358 −0.826805
\(784\) 5.71154 0.203984
\(785\) 43.8657 1.56564
\(786\) −6.01119 −0.214412
\(787\) 28.2203 1.00594 0.502972 0.864303i \(-0.332240\pi\)
0.502972 + 0.864303i \(0.332240\pi\)
\(788\) 24.3541 0.867578
\(789\) 2.12766 0.0757466
\(790\) −0.818210 −0.0291106
\(791\) 26.3941 0.938466
\(792\) 0 0
\(793\) −18.3622 −0.652062
\(794\) 2.99603 0.106325
\(795\) −94.4805 −3.35088
\(796\) 24.1269 0.855154
\(797\) −1.66168 −0.0588596 −0.0294298 0.999567i \(-0.509369\pi\)
−0.0294298 + 0.999567i \(0.509369\pi\)
\(798\) 2.09198 0.0740554
\(799\) 31.7057 1.12167
\(800\) 2.83378 0.100189
\(801\) −11.6028 −0.409965
\(802\) −1.72095 −0.0607687
\(803\) 0 0
\(804\) −35.7692 −1.26148
\(805\) −26.7046 −0.941214
\(806\) −0.683009 −0.0240580
\(807\) 17.0169 0.599021
\(808\) −4.86970 −0.171315
\(809\) −2.44069 −0.0858101 −0.0429051 0.999079i \(-0.513661\pi\)
−0.0429051 + 0.999079i \(0.513661\pi\)
\(810\) 0.498830 0.0175271
\(811\) −43.7575 −1.53654 −0.768268 0.640129i \(-0.778881\pi\)
−0.768268 + 0.640129i \(0.778881\pi\)
\(812\) 27.1960 0.954391
\(813\) −79.1257 −2.77506
\(814\) 0 0
\(815\) 7.49827 0.262653
\(816\) 42.1456 1.47539
\(817\) −11.0941 −0.388135
\(818\) −5.01929 −0.175495
\(819\) −20.6638 −0.722052
\(820\) 10.4573 0.365183
\(821\) −16.6519 −0.581156 −0.290578 0.956851i \(-0.593848\pi\)
−0.290578 + 0.956851i \(0.593848\pi\)
\(822\) 9.64532 0.336419
\(823\) −1.89733 −0.0661368 −0.0330684 0.999453i \(-0.510528\pi\)
−0.0330684 + 0.999453i \(0.510528\pi\)
\(824\) −11.0991 −0.386657
\(825\) 0 0
\(826\) 7.34512 0.255569
\(827\) 19.1547 0.666075 0.333038 0.942914i \(-0.391926\pi\)
0.333038 + 0.942914i \(0.391926\pi\)
\(828\) −34.1768 −1.18772
\(829\) −36.1229 −1.25460 −0.627300 0.778778i \(-0.715840\pi\)
−0.627300 + 0.778778i \(0.715840\pi\)
\(830\) 5.74730 0.199492
\(831\) 59.1082 2.05044
\(832\) 9.62749 0.333773
\(833\) 6.64682 0.230299
\(834\) 8.86609 0.307008
\(835\) 13.2606 0.458902
\(836\) 0 0
\(837\) 8.60385 0.297393
\(838\) 3.87649 0.133911
\(839\) −0.709258 −0.0244863 −0.0122431 0.999925i \(-0.503897\pi\)
−0.0122431 + 0.999925i \(0.503897\pi\)
\(840\) 20.0946 0.693330
\(841\) −5.96208 −0.205589
\(842\) −4.10632 −0.141513
\(843\) −23.3256 −0.803376
\(844\) −5.37217 −0.184918
\(845\) 26.3194 0.905415
\(846\) 9.17596 0.315476
\(847\) 0 0
\(848\) 50.2150 1.72439
\(849\) 53.6035 1.83967
\(850\) 1.03695 0.0355671
\(851\) 31.5796 1.08254
\(852\) 56.7168 1.94309
\(853\) 12.0002 0.410879 0.205439 0.978670i \(-0.434138\pi\)
0.205439 + 0.978670i \(0.434138\pi\)
\(854\) 9.26976 0.317205
\(855\) −11.5570 −0.395242
\(856\) −15.6126 −0.533628
\(857\) −24.5032 −0.837013 −0.418506 0.908214i \(-0.637446\pi\)
−0.418506 + 0.908214i \(0.637446\pi\)
\(858\) 0 0
\(859\) −1.96982 −0.0672093 −0.0336046 0.999435i \(-0.510699\pi\)
−0.0336046 + 0.999435i \(0.510699\pi\)
\(860\) −52.3895 −1.78647
\(861\) 18.0411 0.614838
\(862\) −0.994110 −0.0338595
\(863\) 35.5042 1.20858 0.604288 0.796766i \(-0.293458\pi\)
0.604288 + 0.796766i \(0.293458\pi\)
\(864\) 14.2052 0.483272
\(865\) −37.3726 −1.27071
\(866\) −7.88635 −0.267989
\(867\) 1.77191 0.0601773
\(868\) −10.1138 −0.343284
\(869\) 0 0
\(870\) 8.36851 0.283719
\(871\) −9.91034 −0.335799
\(872\) 10.6859 0.361871
\(873\) 20.7041 0.700729
\(874\) 0.958644 0.0324266
\(875\) 28.8872 0.976565
\(876\) −27.5236 −0.929938
\(877\) −15.1016 −0.509945 −0.254973 0.966948i \(-0.582066\pi\)
−0.254973 + 0.966948i \(0.582066\pi\)
\(878\) −2.56749 −0.0866487
\(879\) −2.69659 −0.0909537
\(880\) 0 0
\(881\) 26.3321 0.887151 0.443575 0.896237i \(-0.353710\pi\)
0.443575 + 0.896237i \(0.353710\pi\)
\(882\) 1.92366 0.0647731
\(883\) 4.12801 0.138918 0.0694592 0.997585i \(-0.477873\pi\)
0.0694592 + 0.997585i \(0.477873\pi\)
\(884\) 12.1037 0.407091
\(885\) −66.2959 −2.22851
\(886\) 3.72518 0.125150
\(887\) −15.1636 −0.509145 −0.254573 0.967054i \(-0.581935\pi\)
−0.254573 + 0.967054i \(0.581935\pi\)
\(888\) −23.7630 −0.797433
\(889\) −58.6521 −1.96713
\(890\) 1.53688 0.0515164
\(891\) 0 0
\(892\) 3.86712 0.129481
\(893\) 7.54957 0.252637
\(894\) 2.13133 0.0712824
\(895\) 34.2338 1.14431
\(896\) −22.1277 −0.739233
\(897\) −15.4707 −0.516551
\(898\) 3.24469 0.108277
\(899\) −8.56746 −0.285741
\(900\) −8.80272 −0.293424
\(901\) 58.4378 1.94684
\(902\) 0 0
\(903\) −90.3834 −3.00777
\(904\) −9.10121 −0.302702
\(905\) −7.53866 −0.250594
\(906\) −13.8520 −0.460201
\(907\) 8.67915 0.288186 0.144093 0.989564i \(-0.453974\pi\)
0.144093 + 0.989564i \(0.453974\pi\)
\(908\) −26.3730 −0.875219
\(909\) 22.8173 0.756801
\(910\) 2.73708 0.0907334
\(911\) −45.9917 −1.52377 −0.761887 0.647710i \(-0.775727\pi\)
−0.761887 + 0.647710i \(0.775727\pi\)
\(912\) 10.0355 0.332307
\(913\) 0 0
\(914\) 1.19922 0.0396668
\(915\) −83.6674 −2.76596
\(916\) −16.0442 −0.530116
\(917\) −24.6619 −0.814408
\(918\) 5.19805 0.171561
\(919\) −49.4285 −1.63049 −0.815247 0.579113i \(-0.803399\pi\)
−0.815247 + 0.579113i \(0.803399\pi\)
\(920\) 9.20829 0.303588
\(921\) −21.3779 −0.704426
\(922\) −0.480012 −0.0158083
\(923\) 15.7141 0.517237
\(924\) 0 0
\(925\) 8.13380 0.267438
\(926\) 5.48888 0.180376
\(927\) 52.0056 1.70809
\(928\) −14.1452 −0.464337
\(929\) −50.3985 −1.65352 −0.826760 0.562555i \(-0.809818\pi\)
−0.826760 + 0.562555i \(0.809818\pi\)
\(930\) −3.11212 −0.102051
\(931\) 1.58270 0.0518710
\(932\) 55.8284 1.82872
\(933\) 61.0459 1.99855
\(934\) −0.337755 −0.0110517
\(935\) 0 0
\(936\) 7.12530 0.232898
\(937\) −58.8816 −1.92358 −0.961789 0.273792i \(-0.911722\pi\)
−0.961789 + 0.273792i \(0.911722\pi\)
\(938\) 5.00301 0.163354
\(939\) −80.9162 −2.64060
\(940\) 35.6511 1.16281
\(941\) −5.87601 −0.191553 −0.0957763 0.995403i \(-0.530533\pi\)
−0.0957763 + 0.995403i \(0.530533\pi\)
\(942\) −12.8290 −0.417990
\(943\) 8.26725 0.269219
\(944\) 35.2353 1.14681
\(945\) −34.4790 −1.12160
\(946\) 0 0
\(947\) 40.9791 1.33164 0.665821 0.746111i \(-0.268081\pi\)
0.665821 + 0.746111i \(0.268081\pi\)
\(948\) −7.01900 −0.227966
\(949\) −7.62579 −0.247544
\(950\) 0.246913 0.00801090
\(951\) 4.29308 0.139213
\(952\) −12.4289 −0.402821
\(953\) −6.01629 −0.194887 −0.0974434 0.995241i \(-0.531067\pi\)
−0.0974434 + 0.995241i \(0.531067\pi\)
\(954\) 16.9125 0.547563
\(955\) 0.197987 0.00640670
\(956\) −9.77311 −0.316085
\(957\) 0 0
\(958\) 9.54250 0.308304
\(959\) 39.5715 1.27783
\(960\) 43.8676 1.41582
\(961\) −27.8139 −0.897222
\(962\) −3.23675 −0.104357
\(963\) 73.1539 2.35735
\(964\) −12.1554 −0.391498
\(965\) 63.0647 2.03012
\(966\) 7.81002 0.251283
\(967\) 15.5956 0.501522 0.250761 0.968049i \(-0.419319\pi\)
0.250761 + 0.968049i \(0.419319\pi\)
\(968\) 0 0
\(969\) 11.6788 0.375177
\(970\) −2.74242 −0.0880539
\(971\) −7.25518 −0.232830 −0.116415 0.993201i \(-0.537140\pi\)
−0.116415 + 0.993201i \(0.537140\pi\)
\(972\) 32.2468 1.03432
\(973\) 36.3746 1.16612
\(974\) 1.72309 0.0552112
\(975\) −3.98470 −0.127613
\(976\) 44.4680 1.42338
\(977\) −27.9251 −0.893404 −0.446702 0.894683i \(-0.647402\pi\)
−0.446702 + 0.894683i \(0.647402\pi\)
\(978\) −2.19294 −0.0701225
\(979\) 0 0
\(980\) 7.47395 0.238747
\(981\) −50.0696 −1.59860
\(982\) −7.14420 −0.227981
\(983\) 9.58015 0.305559 0.152780 0.988260i \(-0.451178\pi\)
0.152780 + 0.988260i \(0.451178\pi\)
\(984\) −6.22092 −0.198316
\(985\) 30.7455 0.979632
\(986\) −5.17606 −0.164839
\(987\) 61.5060 1.95776
\(988\) 2.88206 0.0916906
\(989\) −41.4179 −1.31701
\(990\) 0 0
\(991\) −4.40388 −0.139894 −0.0699470 0.997551i \(-0.522283\pi\)
−0.0699470 + 0.997551i \(0.522283\pi\)
\(992\) 5.26037 0.167017
\(993\) −45.4140 −1.44117
\(994\) −7.93293 −0.251617
\(995\) 30.4586 0.965604
\(996\) 49.3031 1.56223
\(997\) 37.7132 1.19439 0.597194 0.802097i \(-0.296282\pi\)
0.597194 + 0.802097i \(0.296282\pi\)
\(998\) 6.72598 0.212907
\(999\) 40.7733 1.29001
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.x.1.11 20
11.5 even 5 209.2.f.c.58.5 40
11.9 even 5 209.2.f.c.191.5 yes 40
11.10 odd 2 2299.2.a.y.1.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.f.c.58.5 40 11.5 even 5
209.2.f.c.191.5 yes 40 11.9 even 5
2299.2.a.x.1.11 20 1.1 even 1 trivial
2299.2.a.y.1.10 20 11.10 odd 2