Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [23,19,Mod(5,23)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 19, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("23.5");
S:= CuspForms(chi, 19);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 19 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.d (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(47.2388116732\) |
Analytic rank: | \(0\) |
Dimension: | \(350\) |
Relative dimension: | \(35\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −972.723 | − | 285.617i | −21289.0 | + | 24568.8i | 644082. | + | 413927.i | −2.61874e6 | − | 376518.i | 2.77256e7 | − | 1.78182e7i | 3.10489e7 | − | 1.41796e7i | −3.34254e8 | − | 3.85750e8i | −9.52698e7 | − | 6.62616e8i | 2.43977e9 | + | 1.11420e9i |
5.2 | −891.456 | − | 261.755i | 5322.19 | − | 6142.13i | 505648. | + | 324961.i | −224350. | − | 32256.6i | −6.35223e6 | + | 4.08233e6i | −3.58399e7 | + | 1.63675e7i | −2.06208e8 | − | 2.37977e8i | 4.57356e7 | + | 3.18098e8i | 1.91555e8 | + | 8.74800e7i |
5.3 | −879.175 | − | 258.149i | 23921.7 | − | 27607.1i | 485778. | + | 312191.i | −974965. | − | 140179.i | −2.81581e7 | + | 1.80961e7i | 2.92849e7 | − | 1.33739e7i | −1.89195e8 | − | 2.18342e8i | −1.34770e8 | − | 9.37344e8i | 8.20978e8 | + | 3.74928e8i |
5.4 | −834.018 | − | 244.890i | −6332.43 | + | 7308.02i | 415086. | + | 266759.i | 1.27505e6 | + | 183325.i | 7.07102e6 | − | 4.54427e6i | −6.57423e6 | + | 3.00235e6i | −1.31644e8 | − | 1.51925e8i | 4.18283e7 | + | 2.90922e8i | −1.01852e9 | − | 4.65144e8i |
5.5 | −813.243 | − | 238.790i | 5160.86 | − | 5955.95i | 383814. | + | 246662.i | 2.73369e6 | + | 393045.i | −5.61925e6 | + | 3.61127e6i | 6.24972e7 | − | 2.85415e7i | −1.07732e8 | − | 1.24329e8i | 4.62968e7 | + | 3.22001e8i | −2.12930e9 | − | 9.72418e8i |
5.6 | −705.605 | − | 207.184i | −21958.0 | + | 25340.9i | 234424. | + | 150655.i | 2.86413e6 | + | 411799.i | 2.07439e7 | − | 1.33313e7i | −1.89187e7 | + | 8.63986e6i | −7.95388e6 | − | 9.17927e6i | −1.04871e8 | − | 7.29392e8i | −1.93562e9 | − | 8.83970e8i |
5.7 | −661.855 | − | 194.338i | 5870.72 | − | 6775.17i | 179755. | + | 115521.i | −3.81094e6 | − | 547930.i | −5.20224e6 | + | 3.34328e6i | −1.09178e7 | + | 4.98598e6i | 2.18945e7 | + | 2.52676e7i | 4.36981e7 | + | 3.03927e8i | 2.41580e9 | + | 1.10326e9i |
5.8 | −600.804 | − | 176.412i | −14313.6 | + | 16518.7i | 109315. | + | 70252.3i | −817661. | − | 117562.i | 1.15138e7 | − | 7.39944e6i | −2.96412e7 | + | 1.35367e7i | 5.42096e7 | + | 6.25612e7i | −1.28549e7 | − | 8.94077e7i | 4.70515e8 | + | 2.14877e8i |
5.9 | −591.122 | − | 173.569i | 18020.4 | − | 20796.7i | 98769.1 | + | 63475.1i | 2.99880e6 | + | 431163.i | −1.42619e7 | + | 9.16557e6i | −5.80033e7 | + | 2.64892e7i | 5.83933e7 | + | 6.73895e7i | −5.26303e7 | − | 3.66052e8i | −1.69782e9 | − | 7.75369e8i |
5.10 | −583.928 | − | 171.457i | −9265.85 | + | 10693.4i | 91045.2 | + | 58511.2i | −1.09148e6 | − | 156932.i | 7.24404e6 | − | 4.65546e6i | 6.93679e7 | − | 3.16793e7i | 6.13419e7 | + | 7.07923e7i | 2.66437e7 | + | 1.85311e8i | 6.10441e8 | + | 2.78779e8i |
5.11 | −523.477 | − | 153.707i | 15666.4 | − | 18079.9i | 29872.9 | + | 19198.1i | −423720. | − | 60921.7i | −1.09800e7 | + | 7.05641e6i | 7.00584e6 | − | 3.19946e6i | 8.09711e7 | + | 9.34456e7i | −2.63138e7 | − | 1.83016e8i | 2.12444e8 | + | 9.70197e7i |
5.12 | −310.050 | − | 91.0388i | 14960.1 | − | 17264.9i | −132687. | − | 85272.6i | 85207.5 | + | 12251.0i | −6.21014e6 | + | 3.99102e6i | 2.90055e7 | − | 1.32464e7i | 8.88490e7 | + | 1.02537e8i | −1.91356e7 | − | 1.33091e8i | −2.53033e7 | − | 1.15556e7i |
5.13 | −280.355 | − | 82.3196i | −2850.60 | + | 3289.77i | −148707. | − | 95568.3i | 972005. | + | 139753.i | 1.06999e6 | − | 687642.i | −1.73624e7 | + | 7.92913e6i | 8.39834e7 | + | 9.69220e7i | 5.24390e7 | + | 3.64721e8i | −2.61002e8 | − | 1.19196e8i |
5.14 | −247.435 | − | 72.6536i | −2002.81 | + | 2311.37i | −164584. | − | 105772.i | 3.73299e6 | + | 536723.i | 663496. | − | 426403.i | 1.64144e7 | − | 7.49620e6i | 7.73091e7 | + | 8.92195e7i | 5.38045e7 | + | 3.74219e8i | −8.84679e8 | − | 4.04020e8i |
5.15 | −167.402 | − | 49.1537i | −20577.1 | + | 23747.3i | −194922. | − | 125269.i | −2.67014e6 | − | 383909.i | 4.61193e6 | − | 2.96391e6i | −3.86539e6 | + | 1.76527e6i | 5.64238e7 | + | 6.51165e7i | −8.53793e7 | − | 5.93826e8i | 4.28118e8 | + | 1.95515e8i |
5.16 | −139.648 | − | 41.0043i | −19251.5 | + | 22217.4i | −202709. | − | 130273.i | 1.62951e6 | + | 234288.i | 3.59943e6 | − | 2.31322e6i | 4.00472e7 | − | 1.82890e7i | 4.79512e7 | + | 5.53387e7i | −6.78573e7 | − | 4.71958e8i | −2.17951e8 | − | 9.95347e7i |
5.17 | −96.1002 | − | 28.2176i | −1918.13 | + | 2213.63i | −212091. | − | 136302.i | −623805. | − | 89689.6i | 246796. | − | 158606.i | −7.28887e7 | + | 3.32871e7i | 3.37296e7 | + | 3.89260e7i | 5.39147e7 | + | 3.74985e8i | 5.74170e7 | + | 2.62214e7i |
5.18 | −37.5676 | − | 11.0308i | 24217.8 | − | 27948.8i | −219240. | − | 140897.i | −2.98990e6 | − | 429883.i | −1.21810e6 | + | 782827.i | −5.94063e7 | + | 2.71300e7i | 1.34035e7 | + | 1.54685e7i | −1.39499e8 | − | 9.70239e8i | 1.07581e8 | + | 4.91308e7i |
5.19 | 39.3893 | + | 11.5657i | 6199.14 | − | 7154.19i | −219112. | − | 140815.i | −2.05139e6 | − | 294945.i | 326923. | − | 210101.i | 2.62723e7 | − | 1.19982e7i | −1.40494e7 | − | 1.62138e7i | 4.23826e7 | + | 2.94777e8i | −7.73915e7 | − | 3.53435e7i |
5.20 | 163.114 | + | 47.8946i | 20807.8 | − | 24013.5i | −196217. | − | 126101.i | 1.95816e6 | + | 281541.i | 4.54415e6 | − | 2.92035e6i | 3.27588e7 | − | 1.49604e7i | −5.51497e7 | − | 6.36462e7i | −8.85467e7 | − | 6.15856e8i | 3.05919e8 | + | 1.39709e8i |
See next 80 embeddings (of 350 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.d | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 23.19.d.a | ✓ | 350 |
23.d | odd | 22 | 1 | inner | 23.19.d.a | ✓ | 350 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
23.19.d.a | ✓ | 350 | 1.a | even | 1 | 1 | trivial |
23.19.d.a | ✓ | 350 | 23.d | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{19}^{\mathrm{new}}(23, [\chi])\).