Properties

Label 23.23.b.a
Level 2323
Weight 2323
Character orbit 23.b
Self dual yes
Analytic conductor 70.54370.543
Analytic rank 00
Dimension 33
CM discriminant -23
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,23,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 23, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 23);
 
N := Newforms(S);
 
Level: N N == 23 23
Weight: k k == 23 23
Character orbit: [χ][\chi] == 23.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 70.542710013670.5427100136
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x36x3 x^{3} - 6x - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(866β2+793β1)q2+(57383β2+119022β1)q3+(1252369β22244539β1+4194304)q4+(201646457β2++136944049)q6+(3632267264β2+16563886423)q8++(33 ⁣ ⁣34β2+31 ⁣ ⁣57β1)q98+O(q100) q + ( - 866 \beta_{2} + 793 \beta_1) q^{2} + (57383 \beta_{2} + 119022 \beta_1) q^{3} + (1252369 \beta_{2} - 2244539 \beta_1 + 4194304) q^{4} + (201646457 \beta_{2} + \cdots + 136944049) q^{6} + ( - 3632267264 \beta_{2} + \cdots - 16563886423) q^{8}+ \cdots + ( - 33\!\cdots\!34 \beta_{2} + 31\!\cdots\!57 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+12582912q4+410832147q649691659269q8+94143178827q91973013069453q12+52776558133248q16+307365542204331q1828 ⁣ ⁣81q23+17 ⁣ ⁣88q24+71 ⁣ ⁣75q25++32 ⁣ ⁣19q96+O(q100) 3 q + 12582912 q^{4} + 410832147 q^{6} - 49691659269 q^{8} + 94143178827 q^{9} - 1973013069453 q^{12} + 52776558133248 q^{16} + 307365542204331 q^{18} - 28\!\cdots\!81 q^{23} + 17\!\cdots\!88 q^{24} + 71\!\cdots\!75 q^{25}+ \cdots + 32\!\cdots\!19 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x36x3 x^{3} - 6x - 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν4 \nu^{2} - \nu - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+4 \beta_{2} + \beta _1 + 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/23Z)×\left(\mathbb{Z}/23\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
22.1
−2.14510
2.66908
−0.523976
−4079.59 −97708.1 1.24488e7 0 3.98609e8 0 −3.36749e10 −2.18342e10 0
22.2 1722.63 343783. −1.22684e6 0 5.92212e8 0 −9.33864e9 8.68056e10 0
22.3 2356.96 −246075. 1.36096e6 0 −5.79989e8 0 −6.67807e9 2.91718e10 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by Q(23)\Q(\sqrt{-23})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.23.b.a 3
23.b odd 2 1 CM 23.23.b.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.23.b.a 3 1.a even 1 1 trivial
23.23.b.a 3 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2312582912T2+16563886423 T_{2}^{3} - 12582912T_{2} + 16563886423 acting on S23new(23,[χ])S_{23}^{\mathrm{new}}(23, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3++16563886423 T^{3} + \cdots + 16563886423 Copy content Toggle raw display
33 T3+82 ⁣ ⁣58 T^{3} + \cdots - 82\!\cdots\!58 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3 T^{3} Copy content Toggle raw display
1111 T3 T^{3} Copy content Toggle raw display
1313 T3++45 ⁣ ⁣62 T^{3} + \cdots + 45\!\cdots\!62 Copy content Toggle raw display
1717 T3 T^{3} Copy content Toggle raw display
1919 T3 T^{3} Copy content Toggle raw display
2323 (T+952809757913927)3 (T + 952809757913927)^{3} Copy content Toggle raw display
2929 T3++34 ⁣ ⁣74 T^{3} + \cdots + 34\!\cdots\!74 Copy content Toggle raw display
3131 T3++85 ⁣ ⁣86 T^{3} + \cdots + 85\!\cdots\!86 Copy content Toggle raw display
3737 T3 T^{3} Copy content Toggle raw display
4141 T3+13 ⁣ ⁣74 T^{3} + \cdots - 13\!\cdots\!74 Copy content Toggle raw display
4343 T3 T^{3} Copy content Toggle raw display
4747 T3+20 ⁣ ⁣62 T^{3} + \cdots - 20\!\cdots\!62 Copy content Toggle raw display
5353 T3 T^{3} Copy content Toggle raw display
5959 (T+38 ⁣ ⁣94)3 (T + 38\!\cdots\!94)^{3} Copy content Toggle raw display
6161 T3 T^{3} Copy content Toggle raw display
6767 T3 T^{3} Copy content Toggle raw display
7171 T3++14 ⁣ ⁣26 T^{3} + \cdots + 14\!\cdots\!26 Copy content Toggle raw display
7373 T3++36 ⁣ ⁣42 T^{3} + \cdots + 36\!\cdots\!42 Copy content Toggle raw display
7979 T3 T^{3} Copy content Toggle raw display
8383 T3 T^{3} Copy content Toggle raw display
8989 T3 T^{3} Copy content Toggle raw display
9797 T3 T^{3} Copy content Toggle raw display
show more
show less