Properties

Label 23.25.b.a
Level 2323
Weight 2525
Character orbit 23.b
Self dual yes
Analytic conductor 83.94283.942
Analytic rank 00
Dimension 11
CM discriminant -23
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,25,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 25, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 25);
 
N := Newforms(S);
 
Level: N N == 23 23
Weight: k k == 25 25
Character orbit: [χ][\chi] == 23.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 83.942445019383.9424450193
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1951q21062686q312970815q4+2073300386q6+58038408481q8+846871998115q9+13783903509090q12+25363320370274q13+104381230004609q1616 ⁣ ⁣65q18+37 ⁣ ⁣51q98+O(q100) q - 1951 q^{2} - 1062686 q^{3} - 12970815 q^{4} + 2073300386 q^{6} + 58038408481 q^{8} + 846871998115 q^{9} + 13783903509090 q^{12} + 25363320370274 q^{13} + 104381230004609 q^{16} - 16\!\cdots\!65 q^{18}+ \cdots - 37\!\cdots\!51 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/23Z)×\left(\mathbb{Z}/23\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
22.1
0
−1951.00 −1.06269e6 −1.29708e7 0 2.07330e9 0 5.80384e10 8.46872e11 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by Q(23)\Q(\sqrt{-23})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 23.25.b.a 1
23.b odd 2 1 CM 23.25.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.25.b.a 1 1.a even 1 1 trivial
23.25.b.a 1 23.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+1951 T_{2} + 1951 acting on S25new(23,[χ])S_{25}^{\mathrm{new}}(23, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1951 T + 1951 Copy content Toggle raw display
33 T+1062686 T + 1062686 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T25363320370274 T - 25363320370274 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T21 ⁣ ⁣21 T - 21\!\cdots\!21 Copy content Toggle raw display
2929 T+64 ⁣ ⁣06 T + 64\!\cdots\!06 Copy content Toggle raw display
3131 T12 ⁣ ⁣94 T - 12\!\cdots\!94 Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T12 ⁣ ⁣14 T - 12\!\cdots\!14 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T19 ⁣ ⁣54 T - 19\!\cdots\!54 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T+31 ⁣ ⁣38 T + 31\!\cdots\!38 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T28 ⁣ ⁣94 T - 28\!\cdots\!94 Copy content Toggle raw display
7373 T39 ⁣ ⁣54 T - 39\!\cdots\!54 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less