Properties

Label 23.29.b
Level $23$
Weight $29$
Character orbit 23.b
Rep. character $\chi_{23}(22,\cdot)$
Character field $\Q$
Dimension $55$
Newform subspaces $2$
Sturm bound $58$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 29 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(58\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{29}(23, [\chi])\).

Total New Old
Modular forms 57 57 0
Cusp forms 55 55 0
Eisenstein series 2 2 0

Trace form

\( 55 q + 15832 q^{2} - 5427372 q^{3} + 7252157160 q^{4} - 212012223021 q^{6} - 1244821327357 q^{8} + 345647825074395 q^{9} - 20\!\cdots\!21 q^{12} - 17\!\cdots\!84 q^{13} + 10\!\cdots\!96 q^{16} - 28\!\cdots\!61 q^{18}+ \cdots - 48\!\cdots\!40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{29}^{\mathrm{new}}(23, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
23.29.b.a 23.b 23.b $3$ $114.237$ 3.3.621.1 \(\Q(\sqrt{-23}) \) 23.29.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-11759\beta _{1}-3026\beta _{2})q^{2}+(-3162522\beta _{1}+\cdots)q^{3}+\cdots\)
23.29.b.b 23.b 23.b $52$ $114.237$ None 23.29.b.b \(15832\) \(-5427372\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$