Defining parameters
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 29 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(58\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{29}(23, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 57 | 57 | 0 |
Cusp forms | 55 | 55 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{29}^{\mathrm{new}}(23, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
23.29.b.a | $3$ | $114.237$ | 3.3.621.1 | \(\Q(\sqrt{-23}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-11759\beta _{1}-3026\beta _{2})q^{2}+(-3162522\beta _{1}+\cdots)q^{3}+\cdots\) |
23.29.b.b | $52$ | $114.237$ | None | \(15832\) | \(-5427372\) | \(0\) | \(0\) |