Properties

Label 2304.2.c.i
Level $2304$
Weight $2$
Character orbit 2304.c
Analytic conductor $18.398$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,2,Mod(2303,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.2303");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{5} + \beta_{3} q^{7} + \beta_{6} q^{11} + \beta_{2} q^{13} - \beta_1 q^{17} + \beta_{4} q^{19} - \beta_{7} q^{23} - q^{25} - \beta_{5} q^{29} + \beta_{3} q^{31} + 3 \beta_{6} q^{35} + \beta_1 q^{41}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{25} - 40 q^{49} + 32 q^{73} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -\zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\zeta_{24}^{6} + 4\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\zeta_{24}^{4} - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 4\zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 2\zeta_{24}^{7} + \zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\zeta_{24}^{5} + 2\zeta_{24}^{3} + 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -4\zeta_{24}^{7} + 2\zeta_{24}^{5} + 2\zeta_{24}^{3} + 2\zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{5} + 2\beta_1 ) / 8 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{4} + 2\beta_{2} ) / 8 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{6} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( \beta_{3} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( \beta_{7} - \beta_{6} + 2\beta_{5} - 2\beta_1 ) / 8 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} + \beta_{6} + 2\beta_{5} - 2\beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2303.1
0.258819 + 0.965926i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.258819 0.965926i
0.965926 0.258819i
0.258819 0.965926i
−0.965926 0.258819i
0 0 0 2.44949i 0 3.46410i 0 0 0
2303.2 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.3 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.4 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.5 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.6 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.7 0 0 0 2.44949i 0 3.46410i 0 0 0
2303.8 0 0 0 2.44949i 0 3.46410i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2303.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.c.i 8
3.b odd 2 1 inner 2304.2.c.i 8
4.b odd 2 1 inner 2304.2.c.i 8
8.b even 2 1 inner 2304.2.c.i 8
8.d odd 2 1 inner 2304.2.c.i 8
12.b even 2 1 inner 2304.2.c.i 8
16.e even 4 1 72.2.f.a 4
16.e even 4 1 288.2.f.a 4
16.f odd 4 1 72.2.f.a 4
16.f odd 4 1 288.2.f.a 4
24.f even 2 1 inner 2304.2.c.i 8
24.h odd 2 1 inner 2304.2.c.i 8
48.i odd 4 1 72.2.f.a 4
48.i odd 4 1 288.2.f.a 4
48.k even 4 1 72.2.f.a 4
48.k even 4 1 288.2.f.a 4
80.i odd 4 1 1800.2.m.c 8
80.i odd 4 1 7200.2.m.c 8
80.j even 4 1 1800.2.m.c 8
80.j even 4 1 7200.2.m.c 8
80.k odd 4 1 1800.2.b.c 4
80.k odd 4 1 7200.2.b.c 4
80.q even 4 1 1800.2.b.c 4
80.q even 4 1 7200.2.b.c 4
80.s even 4 1 1800.2.m.c 8
80.s even 4 1 7200.2.m.c 8
80.t odd 4 1 1800.2.m.c 8
80.t odd 4 1 7200.2.m.c 8
144.u even 12 1 648.2.l.a 4
144.u even 12 1 648.2.l.c 4
144.u even 12 1 2592.2.p.a 4
144.u even 12 1 2592.2.p.c 4
144.v odd 12 1 648.2.l.a 4
144.v odd 12 1 648.2.l.c 4
144.v odd 12 1 2592.2.p.a 4
144.v odd 12 1 2592.2.p.c 4
144.w odd 12 1 648.2.l.a 4
144.w odd 12 1 648.2.l.c 4
144.w odd 12 1 2592.2.p.a 4
144.w odd 12 1 2592.2.p.c 4
144.x even 12 1 648.2.l.a 4
144.x even 12 1 648.2.l.c 4
144.x even 12 1 2592.2.p.a 4
144.x even 12 1 2592.2.p.c 4
240.t even 4 1 1800.2.b.c 4
240.t even 4 1 7200.2.b.c 4
240.z odd 4 1 1800.2.m.c 8
240.z odd 4 1 7200.2.m.c 8
240.bb even 4 1 1800.2.m.c 8
240.bb even 4 1 7200.2.m.c 8
240.bd odd 4 1 1800.2.m.c 8
240.bd odd 4 1 7200.2.m.c 8
240.bf even 4 1 1800.2.m.c 8
240.bf even 4 1 7200.2.m.c 8
240.bm odd 4 1 1800.2.b.c 4
240.bm odd 4 1 7200.2.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.2.f.a 4 16.e even 4 1
72.2.f.a 4 16.f odd 4 1
72.2.f.a 4 48.i odd 4 1
72.2.f.a 4 48.k even 4 1
288.2.f.a 4 16.e even 4 1
288.2.f.a 4 16.f odd 4 1
288.2.f.a 4 48.i odd 4 1
288.2.f.a 4 48.k even 4 1
648.2.l.a 4 144.u even 12 1
648.2.l.a 4 144.v odd 12 1
648.2.l.a 4 144.w odd 12 1
648.2.l.a 4 144.x even 12 1
648.2.l.c 4 144.u even 12 1
648.2.l.c 4 144.v odd 12 1
648.2.l.c 4 144.w odd 12 1
648.2.l.c 4 144.x even 12 1
1800.2.b.c 4 80.k odd 4 1
1800.2.b.c 4 80.q even 4 1
1800.2.b.c 4 240.t even 4 1
1800.2.b.c 4 240.bm odd 4 1
1800.2.m.c 8 80.i odd 4 1
1800.2.m.c 8 80.j even 4 1
1800.2.m.c 8 80.s even 4 1
1800.2.m.c 8 80.t odd 4 1
1800.2.m.c 8 240.z odd 4 1
1800.2.m.c 8 240.bb even 4 1
1800.2.m.c 8 240.bd odd 4 1
1800.2.m.c 8 240.bf even 4 1
2304.2.c.i 8 1.a even 1 1 trivial
2304.2.c.i 8 3.b odd 2 1 inner
2304.2.c.i 8 4.b odd 2 1 inner
2304.2.c.i 8 8.b even 2 1 inner
2304.2.c.i 8 8.d odd 2 1 inner
2304.2.c.i 8 12.b even 2 1 inner
2304.2.c.i 8 24.f even 2 1 inner
2304.2.c.i 8 24.h odd 2 1 inner
2592.2.p.a 4 144.u even 12 1
2592.2.p.a 4 144.v odd 12 1
2592.2.p.a 4 144.w odd 12 1
2592.2.p.a 4 144.x even 12 1
2592.2.p.c 4 144.u even 12 1
2592.2.p.c 4 144.v odd 12 1
2592.2.p.c 4 144.w odd 12 1
2592.2.p.c 4 144.x even 12 1
7200.2.b.c 4 80.k odd 4 1
7200.2.b.c 4 80.q even 4 1
7200.2.b.c 4 240.t even 4 1
7200.2.b.c 4 240.bm odd 4 1
7200.2.m.c 8 80.i odd 4 1
7200.2.m.c 8 80.j even 4 1
7200.2.m.c 8 80.s even 4 1
7200.2.m.c 8 80.t odd 4 1
7200.2.m.c 8 240.z odd 4 1
7200.2.m.c 8 240.bb even 4 1
7200.2.m.c 8 240.bd odd 4 1
7200.2.m.c 8 240.bf even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5}^{2} + 6 \) Copy content Toggle raw display
\( T_{7}^{2} + 12 \) Copy content Toggle raw display
\( T_{11}^{2} - 8 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 6)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 24)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 6)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 24)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 54)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 128)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 192)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 216)^{4} \) Copy content Toggle raw display
$73$ \( (T - 4)^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 200)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 50)^{4} \) Copy content Toggle raw display
$97$ \( (T - 8)^{8} \) Copy content Toggle raw display
show more
show less