Properties

Label 2304.4.a.bs
Level 23042304
Weight 44
Character orbit 2304.a
Self dual yes
Analytic conductor 135.940135.940
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,4,Mod(1,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2304=2832 2304 = 2^{8} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 135.940400653135.940400653
Analytic rank: 11
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x27 x^{2} - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 1152)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=87\beta = 8\sqrt{7}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+6q5βq7+2βq11+20q138q17+4βq198βq2389q2546q29βq316βq35164q37312q41+20βq438βq47+302q97+O(q100) q + 6 q^{5} - \beta q^{7} + 2 \beta q^{11} + 20 q^{13} - 8 q^{17} + 4 \beta q^{19} - 8 \beta q^{23} - 89 q^{25} - 46 q^{29} - \beta q^{31} - 6 \beta q^{35} - 164 q^{37} - 312 q^{41} + 20 \beta q^{43} - 8 \beta q^{47} + \cdots - 302 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+12q5+40q1316q17178q2592q29328q37624q41+210q49+532q53264q61+240q65+492q731792q7796q852784q89604q97+O(q100) 2 q + 12 q^{5} + 40 q^{13} - 16 q^{17} - 178 q^{25} - 92 q^{29} - 328 q^{37} - 624 q^{41} + 210 q^{49} + 532 q^{53} - 264 q^{61} + 240 q^{65} + 492 q^{73} - 1792 q^{77} - 96 q^{85} - 2784 q^{89} - 604 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.64575
−2.64575
0 0 0 6.00000 0 −21.1660 0 0 0
1.2 0 0 0 6.00000 0 21.1660 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.4.a.bs 2
3.b odd 2 1 2304.4.a.r 2
4.b odd 2 1 inner 2304.4.a.bs 2
8.b even 2 1 2304.4.a.q 2
8.d odd 2 1 2304.4.a.q 2
12.b even 2 1 2304.4.a.r 2
16.e even 4 2 1152.4.d.k 4
16.f odd 4 2 1152.4.d.k 4
24.f even 2 1 2304.4.a.br 2
24.h odd 2 1 2304.4.a.br 2
48.i odd 4 2 1152.4.d.m yes 4
48.k even 4 2 1152.4.d.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.4.d.k 4 16.e even 4 2
1152.4.d.k 4 16.f odd 4 2
1152.4.d.m yes 4 48.i odd 4 2
1152.4.d.m yes 4 48.k even 4 2
2304.4.a.q 2 8.b even 2 1
2304.4.a.q 2 8.d odd 2 1
2304.4.a.r 2 3.b odd 2 1
2304.4.a.r 2 12.b even 2 1
2304.4.a.br 2 24.f even 2 1
2304.4.a.br 2 24.h odd 2 1
2304.4.a.bs 2 1.a even 1 1 trivial
2304.4.a.bs 2 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2304))S_{4}^{\mathrm{new}}(\Gamma_0(2304)):

T56 T_{5} - 6 Copy content Toggle raw display
T72448 T_{7}^{2} - 448 Copy content Toggle raw display
T1121792 T_{11}^{2} - 1792 Copy content Toggle raw display
T1320 T_{13} - 20 Copy content Toggle raw display
T17+8 T_{17} + 8 Copy content Toggle raw display
T1927168 T_{19}^{2} - 7168 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T6)2 (T - 6)^{2} Copy content Toggle raw display
77 T2448 T^{2} - 448 Copy content Toggle raw display
1111 T21792 T^{2} - 1792 Copy content Toggle raw display
1313 (T20)2 (T - 20)^{2} Copy content Toggle raw display
1717 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
1919 T27168 T^{2} - 7168 Copy content Toggle raw display
2323 T228672 T^{2} - 28672 Copy content Toggle raw display
2929 (T+46)2 (T + 46)^{2} Copy content Toggle raw display
3131 T2448 T^{2} - 448 Copy content Toggle raw display
3737 (T+164)2 (T + 164)^{2} Copy content Toggle raw display
4141 (T+312)2 (T + 312)^{2} Copy content Toggle raw display
4343 T2179200 T^{2} - 179200 Copy content Toggle raw display
4747 T228672 T^{2} - 28672 Copy content Toggle raw display
5353 (T266)2 (T - 266)^{2} Copy content Toggle raw display
5959 T264512 T^{2} - 64512 Copy content Toggle raw display
6161 (T+132)2 (T + 132)^{2} Copy content Toggle raw display
6767 T2258048 T^{2} - 258048 Copy content Toggle raw display
7171 T2458752 T^{2} - 458752 Copy content Toggle raw display
7373 (T246)2 (T - 246)^{2} Copy content Toggle raw display
7979 T254208 T^{2} - 54208 Copy content Toggle raw display
8383 T2947968 T^{2} - 947968 Copy content Toggle raw display
8989 (T+1392)2 (T + 1392)^{2} Copy content Toggle raw display
9797 (T+302)2 (T + 302)^{2} Copy content Toggle raw display
show more
show less