gp: [N,k,chi] = [2304,4,Mod(1,2304)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2304.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,12,0,0,0,0,0,0,0,40,0,0,0,-16,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 8 7 \beta = 8\sqrt{7} β = 8 7 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 2304 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(2304)) S 4 n e w ( Γ 0 ( 2 3 0 4 ) ) :
T 5 − 6 T_{5} - 6 T 5 − 6
T5 - 6
T 7 2 − 448 T_{7}^{2} - 448 T 7 2 − 4 4 8
T7^2 - 448
T 11 2 − 1792 T_{11}^{2} - 1792 T 1 1 2 − 1 7 9 2
T11^2 - 1792
T 13 − 20 T_{13} - 20 T 1 3 − 2 0
T13 - 20
T 17 + 8 T_{17} + 8 T 1 7 + 8
T17 + 8
T 19 2 − 7168 T_{19}^{2} - 7168 T 1 9 2 − 7 1 6 8
T19^2 - 7168
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
7 7 7
T 2 − 448 T^{2} - 448 T 2 − 4 4 8
T^2 - 448
11 11 1 1
T 2 − 1792 T^{2} - 1792 T 2 − 1 7 9 2
T^2 - 1792
13 13 1 3
( T − 20 ) 2 (T - 20)^{2} ( T − 2 0 ) 2
(T - 20)^2
17 17 1 7
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
19 19 1 9
T 2 − 7168 T^{2} - 7168 T 2 − 7 1 6 8
T^2 - 7168
23 23 2 3
T 2 − 28672 T^{2} - 28672 T 2 − 2 8 6 7 2
T^2 - 28672
29 29 2 9
( T + 46 ) 2 (T + 46)^{2} ( T + 4 6 ) 2
(T + 46)^2
31 31 3 1
T 2 − 448 T^{2} - 448 T 2 − 4 4 8
T^2 - 448
37 37 3 7
( T + 164 ) 2 (T + 164)^{2} ( T + 1 6 4 ) 2
(T + 164)^2
41 41 4 1
( T + 312 ) 2 (T + 312)^{2} ( T + 3 1 2 ) 2
(T + 312)^2
43 43 4 3
T 2 − 179200 T^{2} - 179200 T 2 − 1 7 9 2 0 0
T^2 - 179200
47 47 4 7
T 2 − 28672 T^{2} - 28672 T 2 − 2 8 6 7 2
T^2 - 28672
53 53 5 3
( T − 266 ) 2 (T - 266)^{2} ( T − 2 6 6 ) 2
(T - 266)^2
59 59 5 9
T 2 − 64512 T^{2} - 64512 T 2 − 6 4 5 1 2
T^2 - 64512
61 61 6 1
( T + 132 ) 2 (T + 132)^{2} ( T + 1 3 2 ) 2
(T + 132)^2
67 67 6 7
T 2 − 258048 T^{2} - 258048 T 2 − 2 5 8 0 4 8
T^2 - 258048
71 71 7 1
T 2 − 458752 T^{2} - 458752 T 2 − 4 5 8 7 5 2
T^2 - 458752
73 73 7 3
( T − 246 ) 2 (T - 246)^{2} ( T − 2 4 6 ) 2
(T - 246)^2
79 79 7 9
T 2 − 54208 T^{2} - 54208 T 2 − 5 4 2 0 8
T^2 - 54208
83 83 8 3
T 2 − 947968 T^{2} - 947968 T 2 − 9 4 7 9 6 8
T^2 - 947968
89 89 8 9
( T + 1392 ) 2 (T + 1392)^{2} ( T + 1 3 9 2 ) 2
(T + 1392)^2
97 97 9 7
( T + 302 ) 2 (T + 302)^{2} ( T + 3 0 2 ) 2
(T + 302)^2
show more
show less