Properties

Label 231.4.a.j.1.4
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.50528\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50528 q^{2} -3.00000 q^{3} -5.73413 q^{4} -0.155265 q^{5} -4.51584 q^{6} -7.00000 q^{7} -20.6737 q^{8} +9.00000 q^{9} -0.233718 q^{10} -11.0000 q^{11} +17.2024 q^{12} +88.7135 q^{13} -10.5370 q^{14} +0.465796 q^{15} +14.7533 q^{16} +102.195 q^{17} +13.5475 q^{18} -26.8508 q^{19} +0.890312 q^{20} +21.0000 q^{21} -16.5581 q^{22} +65.1580 q^{23} +62.0212 q^{24} -124.976 q^{25} +133.539 q^{26} -27.0000 q^{27} +40.1389 q^{28} +136.493 q^{29} +0.701154 q^{30} -87.8011 q^{31} +187.598 q^{32} +33.0000 q^{33} +153.832 q^{34} +1.08686 q^{35} -51.6072 q^{36} +391.184 q^{37} -40.4180 q^{38} -266.140 q^{39} +3.20991 q^{40} -69.8526 q^{41} +31.6109 q^{42} +293.400 q^{43} +63.0754 q^{44} -1.39739 q^{45} +98.0811 q^{46} +122.585 q^{47} -44.2598 q^{48} +49.0000 q^{49} -188.124 q^{50} -306.584 q^{51} -508.694 q^{52} +140.132 q^{53} -40.6426 q^{54} +1.70792 q^{55} +144.716 q^{56} +80.5524 q^{57} +205.460 q^{58} -653.662 q^{59} -2.67094 q^{60} +295.112 q^{61} -132.165 q^{62} -63.0000 q^{63} +164.361 q^{64} -13.7741 q^{65} +49.6743 q^{66} -82.0975 q^{67} -585.998 q^{68} -195.474 q^{69} +1.63603 q^{70} -579.406 q^{71} -186.064 q^{72} -123.715 q^{73} +588.842 q^{74} +374.928 q^{75} +153.966 q^{76} +77.0000 q^{77} -400.616 q^{78} +420.453 q^{79} -2.29067 q^{80} +81.0000 q^{81} -105.148 q^{82} +59.7076 q^{83} -120.417 q^{84} -15.8673 q^{85} +441.650 q^{86} -409.478 q^{87} +227.411 q^{88} -280.345 q^{89} -2.10346 q^{90} -620.994 q^{91} -373.624 q^{92} +263.403 q^{93} +184.525 q^{94} +4.16900 q^{95} -562.793 q^{96} +19.1595 q^{97} +73.7588 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 7 q^{5} + 3 q^{6} - 35 q^{7} - 12 q^{8} + 45 q^{9} + 113 q^{10} - 55 q^{11} - 63 q^{12} + 23 q^{13} + 7 q^{14} - 21 q^{15} + 281 q^{16} - 102 q^{17} - 9 q^{18} - 155 q^{19}+ \cdots - 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50528 0.532197 0.266099 0.963946i \(-0.414265\pi\)
0.266099 + 0.963946i \(0.414265\pi\)
\(3\) −3.00000 −0.577350
\(4\) −5.73413 −0.716766
\(5\) −0.155265 −0.0138874 −0.00694368 0.999976i \(-0.502210\pi\)
−0.00694368 + 0.999976i \(0.502210\pi\)
\(6\) −4.51584 −0.307264
\(7\) −7.00000 −0.377964
\(8\) −20.6737 −0.913658
\(9\) 9.00000 0.333333
\(10\) −0.233718 −0.00739082
\(11\) −11.0000 −0.301511
\(12\) 17.2024 0.413825
\(13\) 88.7135 1.89267 0.946334 0.323190i \(-0.104755\pi\)
0.946334 + 0.323190i \(0.104755\pi\)
\(14\) −10.5370 −0.201152
\(15\) 0.465796 0.00801787
\(16\) 14.7533 0.230520
\(17\) 102.195 1.45799 0.728996 0.684518i \(-0.239987\pi\)
0.728996 + 0.684518i \(0.239987\pi\)
\(18\) 13.5475 0.177399
\(19\) −26.8508 −0.324210 −0.162105 0.986774i \(-0.551828\pi\)
−0.162105 + 0.986774i \(0.551828\pi\)
\(20\) 0.890312 0.00995399
\(21\) 21.0000 0.218218
\(22\) −16.5581 −0.160464
\(23\) 65.1580 0.590712 0.295356 0.955387i \(-0.404562\pi\)
0.295356 + 0.955387i \(0.404562\pi\)
\(24\) 62.0212 0.527501
\(25\) −124.976 −0.999807
\(26\) 133.539 1.00727
\(27\) −27.0000 −0.192450
\(28\) 40.1389 0.270912
\(29\) 136.493 0.874001 0.437001 0.899461i \(-0.356041\pi\)
0.437001 + 0.899461i \(0.356041\pi\)
\(30\) 0.701154 0.00426709
\(31\) −87.8011 −0.508695 −0.254348 0.967113i \(-0.581861\pi\)
−0.254348 + 0.967113i \(0.581861\pi\)
\(32\) 187.598 1.03634
\(33\) 33.0000 0.174078
\(34\) 153.832 0.775939
\(35\) 1.08686 0.00524893
\(36\) −51.6072 −0.238922
\(37\) 391.184 1.73812 0.869058 0.494710i \(-0.164726\pi\)
0.869058 + 0.494710i \(0.164726\pi\)
\(38\) −40.4180 −0.172544
\(39\) −266.140 −1.09273
\(40\) 3.20991 0.0126883
\(41\) −69.8526 −0.266077 −0.133038 0.991111i \(-0.542473\pi\)
−0.133038 + 0.991111i \(0.542473\pi\)
\(42\) 31.6109 0.116135
\(43\) 293.400 1.04054 0.520268 0.854003i \(-0.325832\pi\)
0.520268 + 0.854003i \(0.325832\pi\)
\(44\) 63.0754 0.216113
\(45\) −1.39739 −0.00462912
\(46\) 98.0811 0.314376
\(47\) 122.585 0.380445 0.190223 0.981741i \(-0.439079\pi\)
0.190223 + 0.981741i \(0.439079\pi\)
\(48\) −44.2598 −0.133091
\(49\) 49.0000 0.142857
\(50\) −188.124 −0.532095
\(51\) −306.584 −0.841772
\(52\) −508.694 −1.35660
\(53\) 140.132 0.363181 0.181591 0.983374i \(-0.441875\pi\)
0.181591 + 0.983374i \(0.441875\pi\)
\(54\) −40.6426 −0.102421
\(55\) 1.70792 0.00418720
\(56\) 144.716 0.345330
\(57\) 80.5524 0.187183
\(58\) 205.460 0.465141
\(59\) −653.662 −1.44237 −0.721183 0.692745i \(-0.756401\pi\)
−0.721183 + 0.692745i \(0.756401\pi\)
\(60\) −2.67094 −0.00574694
\(61\) 295.112 0.619431 0.309715 0.950829i \(-0.399766\pi\)
0.309715 + 0.950829i \(0.399766\pi\)
\(62\) −132.165 −0.270726
\(63\) −63.0000 −0.125988
\(64\) 164.361 0.321018
\(65\) −13.7741 −0.0262842
\(66\) 49.6743 0.0926437
\(67\) −82.0975 −0.149699 −0.0748493 0.997195i \(-0.523848\pi\)
−0.0748493 + 0.997195i \(0.523848\pi\)
\(68\) −585.998 −1.04504
\(69\) −195.474 −0.341048
\(70\) 1.63603 0.00279347
\(71\) −579.406 −0.968491 −0.484245 0.874932i \(-0.660906\pi\)
−0.484245 + 0.874932i \(0.660906\pi\)
\(72\) −186.064 −0.304553
\(73\) −123.715 −0.198352 −0.0991762 0.995070i \(-0.531621\pi\)
−0.0991762 + 0.995070i \(0.531621\pi\)
\(74\) 588.842 0.925021
\(75\) 374.928 0.577239
\(76\) 153.966 0.232383
\(77\) 77.0000 0.113961
\(78\) −400.616 −0.581549
\(79\) 420.453 0.598794 0.299397 0.954129i \(-0.403215\pi\)
0.299397 + 0.954129i \(0.403215\pi\)
\(80\) −2.29067 −0.00320131
\(81\) 81.0000 0.111111
\(82\) −105.148 −0.141605
\(83\) 59.7076 0.0789610 0.0394805 0.999220i \(-0.487430\pi\)
0.0394805 + 0.999220i \(0.487430\pi\)
\(84\) −120.417 −0.156411
\(85\) −15.8673 −0.0202477
\(86\) 441.650 0.553771
\(87\) −409.478 −0.504605
\(88\) 227.411 0.275478
\(89\) −280.345 −0.333894 −0.166947 0.985966i \(-0.553391\pi\)
−0.166947 + 0.985966i \(0.553391\pi\)
\(90\) −2.10346 −0.00246361
\(91\) −620.994 −0.715361
\(92\) −373.624 −0.423403
\(93\) 263.403 0.293695
\(94\) 184.525 0.202472
\(95\) 4.16900 0.00450242
\(96\) −562.793 −0.598331
\(97\) 19.1595 0.0200552 0.0100276 0.999950i \(-0.496808\pi\)
0.0100276 + 0.999950i \(0.496808\pi\)
\(98\) 73.7588 0.0760282
\(99\) −99.0000 −0.100504
\(100\) 716.628 0.716628
\(101\) −35.9731 −0.0354401 −0.0177201 0.999843i \(-0.505641\pi\)
−0.0177201 + 0.999843i \(0.505641\pi\)
\(102\) −461.495 −0.447989
\(103\) 1690.03 1.61674 0.808369 0.588676i \(-0.200350\pi\)
0.808369 + 0.588676i \(0.200350\pi\)
\(104\) −1834.04 −1.72925
\(105\) −3.26057 −0.00303047
\(106\) 210.938 0.193284
\(107\) 992.428 0.896651 0.448326 0.893870i \(-0.352021\pi\)
0.448326 + 0.893870i \(0.352021\pi\)
\(108\) 154.821 0.137942
\(109\) 607.598 0.533920 0.266960 0.963708i \(-0.413981\pi\)
0.266960 + 0.963708i \(0.413981\pi\)
\(110\) 2.57090 0.00222841
\(111\) −1173.55 −1.00350
\(112\) −103.273 −0.0871282
\(113\) −876.628 −0.729790 −0.364895 0.931049i \(-0.618895\pi\)
−0.364895 + 0.931049i \(0.618895\pi\)
\(114\) 121.254 0.0996182
\(115\) −10.1168 −0.00820344
\(116\) −782.666 −0.626454
\(117\) 798.421 0.630889
\(118\) −983.945 −0.767623
\(119\) −715.363 −0.551069
\(120\) −9.62974 −0.00732559
\(121\) 121.000 0.0909091
\(122\) 444.227 0.329659
\(123\) 209.558 0.153620
\(124\) 503.463 0.364615
\(125\) 38.8126 0.0277720
\(126\) −94.8327 −0.0670506
\(127\) 945.725 0.660784 0.330392 0.943844i \(-0.392819\pi\)
0.330392 + 0.943844i \(0.392819\pi\)
\(128\) −1253.37 −0.865495
\(129\) −880.200 −0.600754
\(130\) −20.7339 −0.0139884
\(131\) −112.396 −0.0749628 −0.0374814 0.999297i \(-0.511933\pi\)
−0.0374814 + 0.999297i \(0.511933\pi\)
\(132\) −189.226 −0.124773
\(133\) 187.956 0.122540
\(134\) −123.580 −0.0796692
\(135\) 4.19217 0.00267262
\(136\) −2112.75 −1.33211
\(137\) −1417.41 −0.883925 −0.441963 0.897033i \(-0.645718\pi\)
−0.441963 + 0.897033i \(0.645718\pi\)
\(138\) −294.243 −0.181505
\(139\) 336.386 0.205265 0.102633 0.994719i \(-0.467273\pi\)
0.102633 + 0.994719i \(0.467273\pi\)
\(140\) −6.23218 −0.00376225
\(141\) −367.756 −0.219650
\(142\) −872.169 −0.515428
\(143\) −975.848 −0.570661
\(144\) 132.779 0.0768399
\(145\) −21.1926 −0.0121376
\(146\) −186.226 −0.105563
\(147\) −147.000 −0.0824786
\(148\) −2243.10 −1.24582
\(149\) 3130.80 1.72138 0.860689 0.509132i \(-0.170033\pi\)
0.860689 + 0.509132i \(0.170033\pi\)
\(150\) 564.372 0.307205
\(151\) 3421.03 1.84371 0.921853 0.387540i \(-0.126675\pi\)
0.921853 + 0.387540i \(0.126675\pi\)
\(152\) 555.106 0.296217
\(153\) 919.753 0.485997
\(154\) 115.907 0.0606495
\(155\) 13.6325 0.00706443
\(156\) 1526.08 0.783234
\(157\) −1693.77 −0.861006 −0.430503 0.902589i \(-0.641664\pi\)
−0.430503 + 0.902589i \(0.641664\pi\)
\(158\) 632.901 0.318676
\(159\) −420.396 −0.209683
\(160\) −29.1274 −0.0143920
\(161\) −456.106 −0.223268
\(162\) 121.928 0.0591330
\(163\) −438.560 −0.210740 −0.105370 0.994433i \(-0.533603\pi\)
−0.105370 + 0.994433i \(0.533603\pi\)
\(164\) 400.544 0.190715
\(165\) −5.12376 −0.00241748
\(166\) 89.8767 0.0420228
\(167\) 2606.86 1.20793 0.603967 0.797009i \(-0.293586\pi\)
0.603967 + 0.797009i \(0.293586\pi\)
\(168\) −434.148 −0.199377
\(169\) 5673.08 2.58219
\(170\) −23.8848 −0.0107758
\(171\) −241.657 −0.108070
\(172\) −1682.39 −0.745822
\(173\) −4498.50 −1.97696 −0.988481 0.151343i \(-0.951640\pi\)
−0.988481 + 0.151343i \(0.951640\pi\)
\(174\) −616.379 −0.268549
\(175\) 874.831 0.377892
\(176\) −162.286 −0.0695043
\(177\) 1960.99 0.832750
\(178\) −421.998 −0.177697
\(179\) 589.770 0.246265 0.123133 0.992390i \(-0.460706\pi\)
0.123133 + 0.992390i \(0.460706\pi\)
\(180\) 8.01281 0.00331800
\(181\) −2377.96 −0.976534 −0.488267 0.872694i \(-0.662371\pi\)
−0.488267 + 0.872694i \(0.662371\pi\)
\(182\) −934.771 −0.380713
\(183\) −885.337 −0.357628
\(184\) −1347.06 −0.539709
\(185\) −60.7374 −0.0241379
\(186\) 396.496 0.156304
\(187\) −1124.14 −0.439601
\(188\) −702.920 −0.272690
\(189\) 189.000 0.0727393
\(190\) 6.27552 0.00239618
\(191\) −3698.73 −1.40121 −0.700605 0.713550i \(-0.747086\pi\)
−0.700605 + 0.713550i \(0.747086\pi\)
\(192\) −493.083 −0.185340
\(193\) 5199.41 1.93918 0.969589 0.244737i \(-0.0787016\pi\)
0.969589 + 0.244737i \(0.0787016\pi\)
\(194\) 28.8404 0.0106733
\(195\) 41.3224 0.0151752
\(196\) −280.972 −0.102395
\(197\) 1356.16 0.490469 0.245234 0.969464i \(-0.421135\pi\)
0.245234 + 0.969464i \(0.421135\pi\)
\(198\) −149.023 −0.0534878
\(199\) 2506.86 0.892999 0.446500 0.894784i \(-0.352670\pi\)
0.446500 + 0.894784i \(0.352670\pi\)
\(200\) 2583.72 0.913482
\(201\) 246.293 0.0864286
\(202\) −54.1496 −0.0188611
\(203\) −955.448 −0.330341
\(204\) 1757.99 0.603354
\(205\) 10.8457 0.00369510
\(206\) 2543.98 0.860424
\(207\) 586.422 0.196904
\(208\) 1308.81 0.436297
\(209\) 295.359 0.0977530
\(210\) −4.90808 −0.00161281
\(211\) 631.216 0.205947 0.102973 0.994684i \(-0.467164\pi\)
0.102973 + 0.994684i \(0.467164\pi\)
\(212\) −803.534 −0.260316
\(213\) 1738.22 0.559158
\(214\) 1493.88 0.477195
\(215\) −45.5549 −0.0144503
\(216\) 558.191 0.175834
\(217\) 614.608 0.192269
\(218\) 914.605 0.284151
\(219\) 371.145 0.114519
\(220\) −9.79343 −0.00300124
\(221\) 9066.05 2.75950
\(222\) −1766.53 −0.534061
\(223\) 2763.58 0.829879 0.414939 0.909849i \(-0.363803\pi\)
0.414939 + 0.909849i \(0.363803\pi\)
\(224\) −1313.18 −0.391700
\(225\) −1124.78 −0.333269
\(226\) −1319.57 −0.388392
\(227\) −5802.86 −1.69669 −0.848347 0.529441i \(-0.822402\pi\)
−0.848347 + 0.529441i \(0.822402\pi\)
\(228\) −461.898 −0.134166
\(229\) 6741.60 1.94540 0.972702 0.232057i \(-0.0745455\pi\)
0.972702 + 0.232057i \(0.0745455\pi\)
\(230\) −15.2286 −0.00436585
\(231\) −231.000 −0.0657952
\(232\) −2821.81 −0.798538
\(233\) 5358.60 1.50667 0.753333 0.657639i \(-0.228445\pi\)
0.753333 + 0.657639i \(0.228445\pi\)
\(234\) 1201.85 0.335758
\(235\) −19.0333 −0.00528338
\(236\) 3748.18 1.03384
\(237\) −1261.36 −0.345714
\(238\) −1076.82 −0.293278
\(239\) −5162.13 −1.39712 −0.698558 0.715554i \(-0.746174\pi\)
−0.698558 + 0.715554i \(0.746174\pi\)
\(240\) 6.87201 0.00184828
\(241\) −6404.70 −1.71188 −0.855939 0.517077i \(-0.827020\pi\)
−0.855939 + 0.517077i \(0.827020\pi\)
\(242\) 182.139 0.0483816
\(243\) −243.000 −0.0641500
\(244\) −1692.21 −0.443987
\(245\) −7.60801 −0.00198391
\(246\) 315.444 0.0817559
\(247\) −2382.03 −0.613622
\(248\) 1815.18 0.464773
\(249\) −179.123 −0.0455881
\(250\) 58.4239 0.0147802
\(251\) 308.457 0.0775682 0.0387841 0.999248i \(-0.487652\pi\)
0.0387841 + 0.999248i \(0.487652\pi\)
\(252\) 361.250 0.0903040
\(253\) −716.738 −0.178107
\(254\) 1423.58 0.351667
\(255\) 47.6019 0.0116900
\(256\) −3201.56 −0.781632
\(257\) 5546.96 1.34634 0.673171 0.739487i \(-0.264932\pi\)
0.673171 + 0.739487i \(0.264932\pi\)
\(258\) −1324.95 −0.319720
\(259\) −2738.29 −0.656946
\(260\) 78.9826 0.0188396
\(261\) 1228.43 0.291334
\(262\) −169.188 −0.0398950
\(263\) 885.702 0.207661 0.103830 0.994595i \(-0.466890\pi\)
0.103830 + 0.994595i \(0.466890\pi\)
\(264\) −682.233 −0.159047
\(265\) −21.7576 −0.00504363
\(266\) 282.926 0.0652154
\(267\) 841.035 0.192774
\(268\) 470.758 0.107299
\(269\) 4452.77 1.00926 0.504629 0.863336i \(-0.331629\pi\)
0.504629 + 0.863336i \(0.331629\pi\)
\(270\) 6.31039 0.00142236
\(271\) −2577.98 −0.577863 −0.288932 0.957350i \(-0.593300\pi\)
−0.288932 + 0.957350i \(0.593300\pi\)
\(272\) 1507.71 0.336096
\(273\) 1862.98 0.413014
\(274\) −2133.60 −0.470423
\(275\) 1374.73 0.301453
\(276\) 1120.87 0.244452
\(277\) −683.280 −0.148210 −0.0741052 0.997250i \(-0.523610\pi\)
−0.0741052 + 0.997250i \(0.523610\pi\)
\(278\) 506.355 0.109242
\(279\) −790.210 −0.169565
\(280\) −22.4694 −0.00479573
\(281\) −8624.47 −1.83094 −0.915468 0.402391i \(-0.868179\pi\)
−0.915468 + 0.402391i \(0.868179\pi\)
\(282\) −553.576 −0.116897
\(283\) 1252.68 0.263123 0.131562 0.991308i \(-0.458001\pi\)
0.131562 + 0.991308i \(0.458001\pi\)
\(284\) 3322.39 0.694181
\(285\) −12.5070 −0.00259948
\(286\) −1468.93 −0.303704
\(287\) 488.968 0.100568
\(288\) 1688.38 0.345447
\(289\) 5530.77 1.12574
\(290\) −31.9008 −0.00645958
\(291\) −57.4785 −0.0115789
\(292\) 709.397 0.142172
\(293\) −6342.78 −1.26467 −0.632337 0.774694i \(-0.717904\pi\)
−0.632337 + 0.774694i \(0.717904\pi\)
\(294\) −221.276 −0.0438949
\(295\) 101.491 0.0200306
\(296\) −8087.24 −1.58804
\(297\) 297.000 0.0580259
\(298\) 4712.74 0.916112
\(299\) 5780.39 1.11802
\(300\) −2149.88 −0.413745
\(301\) −2053.80 −0.393286
\(302\) 5149.61 0.981215
\(303\) 107.919 0.0204614
\(304\) −396.137 −0.0747368
\(305\) −45.8207 −0.00860226
\(306\) 1384.49 0.258646
\(307\) −5508.30 −1.02402 −0.512012 0.858979i \(-0.671100\pi\)
−0.512012 + 0.858979i \(0.671100\pi\)
\(308\) −441.528 −0.0816831
\(309\) −5070.10 −0.933424
\(310\) 20.5207 0.00375967
\(311\) −5363.85 −0.977993 −0.488996 0.872286i \(-0.662637\pi\)
−0.488996 + 0.872286i \(0.662637\pi\)
\(312\) 5502.11 0.998384
\(313\) −5825.07 −1.05192 −0.525962 0.850508i \(-0.676295\pi\)
−0.525962 + 0.850508i \(0.676295\pi\)
\(314\) −2549.61 −0.458225
\(315\) 9.78172 0.00174964
\(316\) −2410.93 −0.429195
\(317\) −5798.44 −1.02736 −0.513680 0.857982i \(-0.671718\pi\)
−0.513680 + 0.857982i \(0.671718\pi\)
\(318\) −632.814 −0.111593
\(319\) −1501.42 −0.263521
\(320\) −25.5196 −0.00445809
\(321\) −2977.29 −0.517682
\(322\) −686.568 −0.118823
\(323\) −2744.01 −0.472696
\(324\) −464.464 −0.0796407
\(325\) −11087.0 −1.89230
\(326\) −660.157 −0.112156
\(327\) −1822.79 −0.308259
\(328\) 1444.11 0.243103
\(329\) −858.098 −0.143795
\(330\) −7.71270 −0.00128658
\(331\) −9130.56 −1.51620 −0.758098 0.652140i \(-0.773871\pi\)
−0.758098 + 0.652140i \(0.773871\pi\)
\(332\) −342.371 −0.0565965
\(333\) 3520.66 0.579372
\(334\) 3924.06 0.642859
\(335\) 12.7469 0.00207892
\(336\) 309.818 0.0503035
\(337\) −2404.87 −0.388729 −0.194364 0.980929i \(-0.562264\pi\)
−0.194364 + 0.980929i \(0.562264\pi\)
\(338\) 8539.58 1.37424
\(339\) 2629.88 0.421344
\(340\) 90.9852 0.0145128
\(341\) 965.812 0.153377
\(342\) −363.762 −0.0575146
\(343\) −343.000 −0.0539949
\(344\) −6065.67 −0.950695
\(345\) 30.3504 0.00473626
\(346\) −6771.51 −1.05213
\(347\) 7248.76 1.12142 0.560712 0.828011i \(-0.310528\pi\)
0.560712 + 0.828011i \(0.310528\pi\)
\(348\) 2348.00 0.361684
\(349\) −4150.91 −0.636657 −0.318329 0.947980i \(-0.603122\pi\)
−0.318329 + 0.947980i \(0.603122\pi\)
\(350\) 1316.87 0.201113
\(351\) −2395.26 −0.364244
\(352\) −2063.57 −0.312468
\(353\) 1592.84 0.240165 0.120082 0.992764i \(-0.461684\pi\)
0.120082 + 0.992764i \(0.461684\pi\)
\(354\) 2951.84 0.443187
\(355\) 89.9617 0.0134498
\(356\) 1607.54 0.239324
\(357\) 2146.09 0.318160
\(358\) 887.770 0.131062
\(359\) −8489.06 −1.24801 −0.624005 0.781420i \(-0.714496\pi\)
−0.624005 + 0.781420i \(0.714496\pi\)
\(360\) 28.8892 0.00422943
\(361\) −6138.04 −0.894888
\(362\) −3579.50 −0.519708
\(363\) −363.000 −0.0524864
\(364\) 3560.86 0.512747
\(365\) 19.2086 0.00275459
\(366\) −1332.68 −0.190329
\(367\) −6646.14 −0.945301 −0.472650 0.881250i \(-0.656703\pi\)
−0.472650 + 0.881250i \(0.656703\pi\)
\(368\) 961.293 0.136171
\(369\) −628.674 −0.0886923
\(370\) −91.4269 −0.0128461
\(371\) −980.923 −0.137270
\(372\) −1510.39 −0.210511
\(373\) 5110.79 0.709455 0.354728 0.934970i \(-0.384574\pi\)
0.354728 + 0.934970i \(0.384574\pi\)
\(374\) −1692.15 −0.233955
\(375\) −116.438 −0.0160342
\(376\) −2534.30 −0.347597
\(377\) 12108.7 1.65419
\(378\) 284.498 0.0387117
\(379\) −8198.11 −1.11111 −0.555553 0.831481i \(-0.687493\pi\)
−0.555553 + 0.831481i \(0.687493\pi\)
\(380\) −23.9056 −0.00322718
\(381\) −2837.18 −0.381504
\(382\) −5567.63 −0.745720
\(383\) −1917.46 −0.255816 −0.127908 0.991786i \(-0.540826\pi\)
−0.127908 + 0.991786i \(0.540826\pi\)
\(384\) 3760.11 0.499694
\(385\) −11.9554 −0.00158261
\(386\) 7826.57 1.03203
\(387\) 2640.60 0.346846
\(388\) −109.863 −0.0143749
\(389\) 5140.00 0.669944 0.334972 0.942228i \(-0.391273\pi\)
0.334972 + 0.942228i \(0.391273\pi\)
\(390\) 62.2018 0.00807618
\(391\) 6658.81 0.861254
\(392\) −1013.01 −0.130523
\(393\) 337.189 0.0432798
\(394\) 2041.40 0.261026
\(395\) −65.2819 −0.00831567
\(396\) 567.679 0.0720377
\(397\) 12960.0 1.63840 0.819202 0.573506i \(-0.194417\pi\)
0.819202 + 0.573506i \(0.194417\pi\)
\(398\) 3773.53 0.475252
\(399\) −563.867 −0.0707485
\(400\) −1843.80 −0.230475
\(401\) −5292.84 −0.659131 −0.329566 0.944133i \(-0.606902\pi\)
−0.329566 + 0.944133i \(0.606902\pi\)
\(402\) 370.740 0.0459970
\(403\) −7789.14 −0.962791
\(404\) 206.274 0.0254023
\(405\) −12.5765 −0.00154304
\(406\) −1438.22 −0.175807
\(407\) −4303.03 −0.524062
\(408\) 6338.24 0.769092
\(409\) 5545.03 0.670377 0.335188 0.942151i \(-0.391200\pi\)
0.335188 + 0.942151i \(0.391200\pi\)
\(410\) 16.3258 0.00196652
\(411\) 4252.24 0.510334
\(412\) −9690.88 −1.15882
\(413\) 4575.63 0.545163
\(414\) 882.730 0.104792
\(415\) −9.27053 −0.00109656
\(416\) 16642.4 1.96145
\(417\) −1009.16 −0.118510
\(418\) 444.598 0.0520239
\(419\) 3492.31 0.407185 0.203593 0.979056i \(-0.434738\pi\)
0.203593 + 0.979056i \(0.434738\pi\)
\(420\) 18.6965 0.00217214
\(421\) 15448.2 1.78836 0.894181 0.447706i \(-0.147759\pi\)
0.894181 + 0.447706i \(0.147759\pi\)
\(422\) 950.158 0.109604
\(423\) 1103.27 0.126815
\(424\) −2897.05 −0.331823
\(425\) −12771.9 −1.45771
\(426\) 2616.51 0.297583
\(427\) −2065.79 −0.234123
\(428\) −5690.71 −0.642689
\(429\) 2927.54 0.329471
\(430\) −68.5729 −0.00769042
\(431\) −6938.29 −0.775420 −0.387710 0.921781i \(-0.626734\pi\)
−0.387710 + 0.921781i \(0.626734\pi\)
\(432\) −398.338 −0.0443635
\(433\) −2820.31 −0.313015 −0.156508 0.987677i \(-0.550024\pi\)
−0.156508 + 0.987677i \(0.550024\pi\)
\(434\) 925.158 0.102325
\(435\) 63.5777 0.00700763
\(436\) −3484.04 −0.382696
\(437\) −1749.54 −0.191515
\(438\) 558.677 0.0609466
\(439\) 15521.6 1.68748 0.843740 0.536752i \(-0.180349\pi\)
0.843740 + 0.536752i \(0.180349\pi\)
\(440\) −35.3091 −0.00382567
\(441\) 441.000 0.0476190
\(442\) 13647.0 1.46860
\(443\) 12187.2 1.30707 0.653536 0.756896i \(-0.273285\pi\)
0.653536 + 0.756896i \(0.273285\pi\)
\(444\) 6729.30 0.719276
\(445\) 43.5279 0.00463690
\(446\) 4159.96 0.441659
\(447\) −9392.40 −0.993838
\(448\) −1150.53 −0.121333
\(449\) 9058.45 0.952104 0.476052 0.879417i \(-0.342067\pi\)
0.476052 + 0.879417i \(0.342067\pi\)
\(450\) −1693.11 −0.177365
\(451\) 768.379 0.0802252
\(452\) 5026.70 0.523088
\(453\) −10263.1 −1.06446
\(454\) −8734.94 −0.902975
\(455\) 96.4189 0.00993448
\(456\) −1665.32 −0.171021
\(457\) −1070.77 −0.109603 −0.0548013 0.998497i \(-0.517453\pi\)
−0.0548013 + 0.998497i \(0.517453\pi\)
\(458\) 10148.0 1.03534
\(459\) −2759.26 −0.280591
\(460\) 58.0110 0.00587995
\(461\) −10368.9 −1.04756 −0.523781 0.851853i \(-0.675479\pi\)
−0.523781 + 0.851853i \(0.675479\pi\)
\(462\) −347.720 −0.0350160
\(463\) −6335.12 −0.635892 −0.317946 0.948109i \(-0.602993\pi\)
−0.317946 + 0.948109i \(0.602993\pi\)
\(464\) 2013.71 0.201474
\(465\) −40.8974 −0.00407865
\(466\) 8066.19 0.801844
\(467\) −12922.6 −1.28048 −0.640241 0.768174i \(-0.721166\pi\)
−0.640241 + 0.768174i \(0.721166\pi\)
\(468\) −4578.25 −0.452200
\(469\) 574.683 0.0565808
\(470\) −28.6504 −0.00281180
\(471\) 5081.32 0.497102
\(472\) 13513.6 1.31783
\(473\) −3227.40 −0.313734
\(474\) −1898.70 −0.183988
\(475\) 3355.70 0.324148
\(476\) 4101.98 0.394988
\(477\) 1261.19 0.121060
\(478\) −7770.46 −0.743541
\(479\) −14681.6 −1.40046 −0.700228 0.713920i \(-0.746918\pi\)
−0.700228 + 0.713920i \(0.746918\pi\)
\(480\) 87.3823 0.00830924
\(481\) 34703.3 3.28968
\(482\) −9640.87 −0.911057
\(483\) 1368.32 0.128904
\(484\) −693.830 −0.0651606
\(485\) −2.97481 −0.000278514 0
\(486\) −365.783 −0.0341405
\(487\) 380.027 0.0353607 0.0176804 0.999844i \(-0.494372\pi\)
0.0176804 + 0.999844i \(0.494372\pi\)
\(488\) −6101.07 −0.565948
\(489\) 1315.68 0.121671
\(490\) −11.4522 −0.00105583
\(491\) −5026.47 −0.461999 −0.230999 0.972954i \(-0.574199\pi\)
−0.230999 + 0.972954i \(0.574199\pi\)
\(492\) −1201.63 −0.110109
\(493\) 13948.8 1.27429
\(494\) −3585.62 −0.326568
\(495\) 15.3713 0.00139573
\(496\) −1295.35 −0.117264
\(497\) 4055.84 0.366055
\(498\) −269.630 −0.0242619
\(499\) 13825.8 1.24033 0.620167 0.784470i \(-0.287065\pi\)
0.620167 + 0.784470i \(0.287065\pi\)
\(500\) −222.557 −0.0199061
\(501\) −7820.58 −0.697401
\(502\) 464.314 0.0412816
\(503\) 12089.2 1.07164 0.535818 0.844334i \(-0.320003\pi\)
0.535818 + 0.844334i \(0.320003\pi\)
\(504\) 1302.44 0.115110
\(505\) 5.58537 0.000492170 0
\(506\) −1078.89 −0.0947878
\(507\) −17019.2 −1.49083
\(508\) −5422.91 −0.473627
\(509\) −6405.45 −0.557792 −0.278896 0.960321i \(-0.589969\pi\)
−0.278896 + 0.960321i \(0.589969\pi\)
\(510\) 71.6543 0.00622138
\(511\) 866.004 0.0749702
\(512\) 5207.71 0.449513
\(513\) 724.971 0.0623943
\(514\) 8349.74 0.716520
\(515\) −262.404 −0.0224522
\(516\) 5047.18 0.430600
\(517\) −1348.44 −0.114708
\(518\) −4121.90 −0.349625
\(519\) 13495.5 1.14140
\(520\) 284.763 0.0240147
\(521\) 9757.40 0.820498 0.410249 0.911974i \(-0.365442\pi\)
0.410249 + 0.911974i \(0.365442\pi\)
\(522\) 1849.14 0.155047
\(523\) −8930.92 −0.746696 −0.373348 0.927691i \(-0.621790\pi\)
−0.373348 + 0.927691i \(0.621790\pi\)
\(524\) 644.496 0.0537308
\(525\) −2624.49 −0.218176
\(526\) 1333.23 0.110516
\(527\) −8972.81 −0.741673
\(528\) 486.858 0.0401283
\(529\) −7921.43 −0.651059
\(530\) −32.7514 −0.00268420
\(531\) −5882.96 −0.480788
\(532\) −1077.76 −0.0878325
\(533\) −6196.87 −0.503595
\(534\) 1265.99 0.102594
\(535\) −154.090 −0.0124521
\(536\) 1697.26 0.136773
\(537\) −1769.31 −0.142181
\(538\) 6702.67 0.537124
\(539\) −539.000 −0.0430730
\(540\) −24.0384 −0.00191565
\(541\) −14163.8 −1.12560 −0.562800 0.826593i \(-0.690276\pi\)
−0.562800 + 0.826593i \(0.690276\pi\)
\(542\) −3880.58 −0.307537
\(543\) 7133.89 0.563802
\(544\) 19171.5 1.51098
\(545\) −94.3389 −0.00741474
\(546\) 2804.31 0.219805
\(547\) 13587.7 1.06210 0.531050 0.847341i \(-0.321798\pi\)
0.531050 + 0.847341i \(0.321798\pi\)
\(548\) 8127.63 0.633568
\(549\) 2656.01 0.206477
\(550\) 2069.36 0.160433
\(551\) −3664.93 −0.283360
\(552\) 4041.18 0.311601
\(553\) −2943.17 −0.226323
\(554\) −1028.53 −0.0788772
\(555\) 182.212 0.0139360
\(556\) −1928.88 −0.147127
\(557\) −4396.25 −0.334425 −0.167213 0.985921i \(-0.553477\pi\)
−0.167213 + 0.985921i \(0.553477\pi\)
\(558\) −1189.49 −0.0902420
\(559\) 26028.5 1.96939
\(560\) 16.0347 0.00120998
\(561\) 3372.43 0.253804
\(562\) −12982.3 −0.974419
\(563\) −15806.4 −1.18323 −0.591615 0.806221i \(-0.701509\pi\)
−0.591615 + 0.806221i \(0.701509\pi\)
\(564\) 2108.76 0.157438
\(565\) 136.110 0.0101349
\(566\) 1885.63 0.140033
\(567\) −567.000 −0.0419961
\(568\) 11978.5 0.884869
\(569\) 7381.00 0.543810 0.271905 0.962324i \(-0.412346\pi\)
0.271905 + 0.962324i \(0.412346\pi\)
\(570\) −18.8265 −0.00138343
\(571\) −20365.2 −1.49257 −0.746285 0.665627i \(-0.768164\pi\)
−0.746285 + 0.665627i \(0.768164\pi\)
\(572\) 5595.64 0.409030
\(573\) 11096.2 0.808989
\(574\) 736.035 0.0535218
\(575\) −8143.18 −0.590599
\(576\) 1479.25 0.107006
\(577\) −2587.33 −0.186676 −0.0933378 0.995634i \(-0.529754\pi\)
−0.0933378 + 0.995634i \(0.529754\pi\)
\(578\) 8325.36 0.599116
\(579\) −15598.2 −1.11959
\(580\) 121.521 0.00869980
\(581\) −417.953 −0.0298444
\(582\) −86.5213 −0.00616224
\(583\) −1541.45 −0.109503
\(584\) 2557.65 0.181226
\(585\) −123.967 −0.00876139
\(586\) −9547.67 −0.673056
\(587\) −26606.6 −1.87082 −0.935410 0.353565i \(-0.884969\pi\)
−0.935410 + 0.353565i \(0.884969\pi\)
\(588\) 842.917 0.0591179
\(589\) 2357.53 0.164924
\(590\) 152.773 0.0106603
\(591\) −4068.48 −0.283172
\(592\) 5771.24 0.400670
\(593\) −26279.4 −1.81984 −0.909920 0.414783i \(-0.863857\pi\)
−0.909920 + 0.414783i \(0.863857\pi\)
\(594\) 447.069 0.0308812
\(595\) 111.071 0.00765290
\(596\) −17952.4 −1.23382
\(597\) −7520.59 −0.515573
\(598\) 8701.12 0.595009
\(599\) 26971.4 1.83977 0.919884 0.392190i \(-0.128282\pi\)
0.919884 + 0.392190i \(0.128282\pi\)
\(600\) −7751.15 −0.527399
\(601\) 11604.8 0.787639 0.393819 0.919188i \(-0.371154\pi\)
0.393819 + 0.919188i \(0.371154\pi\)
\(602\) −3091.55 −0.209306
\(603\) −738.878 −0.0498996
\(604\) −19616.6 −1.32151
\(605\) −18.7871 −0.00126249
\(606\) 162.449 0.0108895
\(607\) 1612.10 0.107797 0.0538987 0.998546i \(-0.482835\pi\)
0.0538987 + 0.998546i \(0.482835\pi\)
\(608\) −5037.14 −0.335992
\(609\) 2866.34 0.190723
\(610\) −68.9731 −0.00457810
\(611\) 10875.0 0.720056
\(612\) −5273.98 −0.348346
\(613\) −11448.9 −0.754348 −0.377174 0.926142i \(-0.623104\pi\)
−0.377174 + 0.926142i \(0.623104\pi\)
\(614\) −8291.54 −0.544982
\(615\) −32.5371 −0.00213337
\(616\) −1591.88 −0.104121
\(617\) 23635.8 1.54221 0.771104 0.636710i \(-0.219705\pi\)
0.771104 + 0.636710i \(0.219705\pi\)
\(618\) −7631.93 −0.496766
\(619\) 4143.73 0.269064 0.134532 0.990909i \(-0.457047\pi\)
0.134532 + 0.990909i \(0.457047\pi\)
\(620\) −78.1704 −0.00506355
\(621\) −1759.27 −0.113683
\(622\) −8074.10 −0.520485
\(623\) 1962.42 0.126200
\(624\) −3926.44 −0.251896
\(625\) 15616.0 0.999421
\(626\) −8768.37 −0.559831
\(627\) −886.076 −0.0564377
\(628\) 9712.32 0.617140
\(629\) 39977.0 2.53416
\(630\) 14.7242 0.000931155 0
\(631\) 16119.6 1.01697 0.508487 0.861070i \(-0.330205\pi\)
0.508487 + 0.861070i \(0.330205\pi\)
\(632\) −8692.34 −0.547093
\(633\) −1893.65 −0.118903
\(634\) −8728.29 −0.546758
\(635\) −146.838 −0.00917654
\(636\) 2410.60 0.150293
\(637\) 4346.96 0.270381
\(638\) −2260.06 −0.140245
\(639\) −5214.65 −0.322830
\(640\) 194.605 0.0120194
\(641\) 1045.51 0.0644231 0.0322116 0.999481i \(-0.489745\pi\)
0.0322116 + 0.999481i \(0.489745\pi\)
\(642\) −4481.65 −0.275509
\(643\) −7915.19 −0.485451 −0.242725 0.970095i \(-0.578041\pi\)
−0.242725 + 0.970095i \(0.578041\pi\)
\(644\) 2615.37 0.160031
\(645\) 136.665 0.00834289
\(646\) −4130.51 −0.251567
\(647\) 6116.20 0.371642 0.185821 0.982584i \(-0.440506\pi\)
0.185821 + 0.982584i \(0.440506\pi\)
\(648\) −1674.57 −0.101518
\(649\) 7190.28 0.434889
\(650\) −16689.1 −1.00708
\(651\) −1843.82 −0.111006
\(652\) 2514.76 0.151052
\(653\) 6143.47 0.368166 0.184083 0.982911i \(-0.441068\pi\)
0.184083 + 0.982911i \(0.441068\pi\)
\(654\) −2743.82 −0.164055
\(655\) 17.4513 0.00104104
\(656\) −1030.55 −0.0613359
\(657\) −1113.43 −0.0661175
\(658\) −1291.68 −0.0765271
\(659\) 18463.0 1.09138 0.545688 0.837989i \(-0.316269\pi\)
0.545688 + 0.837989i \(0.316269\pi\)
\(660\) 29.3803 0.00173277
\(661\) −22732.1 −1.33764 −0.668818 0.743426i \(-0.733200\pi\)
−0.668818 + 0.743426i \(0.733200\pi\)
\(662\) −13744.1 −0.806916
\(663\) −27198.1 −1.59320
\(664\) −1234.38 −0.0721433
\(665\) −29.1830 −0.00170176
\(666\) 5299.58 0.308340
\(667\) 8893.59 0.516283
\(668\) −14948.1 −0.865806
\(669\) −8290.74 −0.479131
\(670\) 19.1877 0.00110640
\(671\) −3246.24 −0.186765
\(672\) 3939.55 0.226148
\(673\) −5912.78 −0.338664 −0.169332 0.985559i \(-0.554161\pi\)
−0.169332 + 0.985559i \(0.554161\pi\)
\(674\) −3620.00 −0.206880
\(675\) 3374.35 0.192413
\(676\) −32530.2 −1.85083
\(677\) −23649.2 −1.34256 −0.671280 0.741204i \(-0.734255\pi\)
−0.671280 + 0.741204i \(0.734255\pi\)
\(678\) 3958.72 0.224238
\(679\) −134.117 −0.00758015
\(680\) 328.036 0.0184994
\(681\) 17408.6 0.979586
\(682\) 1453.82 0.0816270
\(683\) −17165.7 −0.961677 −0.480839 0.876809i \(-0.659668\pi\)
−0.480839 + 0.876809i \(0.659668\pi\)
\(684\) 1385.69 0.0774610
\(685\) 220.075 0.0122754
\(686\) −516.311 −0.0287360
\(687\) −20224.8 −1.12318
\(688\) 4328.61 0.239864
\(689\) 12431.6 0.687381
\(690\) 45.6858 0.00252062
\(691\) −6932.25 −0.381643 −0.190821 0.981625i \(-0.561115\pi\)
−0.190821 + 0.981625i \(0.561115\pi\)
\(692\) 25795.0 1.41702
\(693\) 693.000 0.0379869
\(694\) 10911.4 0.596819
\(695\) −52.2291 −0.00285059
\(696\) 8465.43 0.461036
\(697\) −7138.57 −0.387938
\(698\) −6248.29 −0.338827
\(699\) −16075.8 −0.869874
\(700\) −5016.39 −0.270860
\(701\) −12751.9 −0.687065 −0.343533 0.939141i \(-0.611624\pi\)
−0.343533 + 0.939141i \(0.611624\pi\)
\(702\) −3605.54 −0.193850
\(703\) −10503.6 −0.563515
\(704\) −1807.97 −0.0967905
\(705\) 57.0998 0.00305036
\(706\) 2397.67 0.127815
\(707\) 251.811 0.0133951
\(708\) −11244.5 −0.596887
\(709\) −7860.09 −0.416350 −0.208175 0.978092i \(-0.566752\pi\)
−0.208175 + 0.978092i \(0.566752\pi\)
\(710\) 135.418 0.00715794
\(711\) 3784.08 0.199598
\(712\) 5795.78 0.305065
\(713\) −5720.95 −0.300493
\(714\) 3230.47 0.169324
\(715\) 151.515 0.00792497
\(716\) −3381.82 −0.176515
\(717\) 15486.4 0.806625
\(718\) −12778.4 −0.664188
\(719\) −17425.0 −0.903816 −0.451908 0.892065i \(-0.649256\pi\)
−0.451908 + 0.892065i \(0.649256\pi\)
\(720\) −20.6160 −0.00106710
\(721\) −11830.2 −0.611070
\(722\) −9239.47 −0.476257
\(723\) 19214.1 0.988353
\(724\) 13635.5 0.699946
\(725\) −17058.3 −0.873833
\(726\) −546.417 −0.0279331
\(727\) 23685.4 1.20831 0.604156 0.796866i \(-0.293510\pi\)
0.604156 + 0.796866i \(0.293510\pi\)
\(728\) 12838.3 0.653596
\(729\) 729.000 0.0370370
\(730\) 28.9144 0.00146599
\(731\) 29983.9 1.51709
\(732\) 5076.64 0.256336
\(733\) −21418.3 −1.07927 −0.539634 0.841899i \(-0.681438\pi\)
−0.539634 + 0.841899i \(0.681438\pi\)
\(734\) −10004.3 −0.503087
\(735\) 22.8240 0.00114541
\(736\) 12223.5 0.612179
\(737\) 903.073 0.0451358
\(738\) −946.331 −0.0472018
\(739\) −8761.40 −0.436121 −0.218060 0.975935i \(-0.569973\pi\)
−0.218060 + 0.975935i \(0.569973\pi\)
\(740\) 348.276 0.0173012
\(741\) 7146.08 0.354275
\(742\) −1476.57 −0.0730545
\(743\) 10338.8 0.510489 0.255245 0.966877i \(-0.417844\pi\)
0.255245 + 0.966877i \(0.417844\pi\)
\(744\) −5445.53 −0.268337
\(745\) −486.105 −0.0239054
\(746\) 7693.18 0.377570
\(747\) 537.368 0.0263203
\(748\) 6445.98 0.315091
\(749\) −6947.00 −0.338902
\(750\) −175.272 −0.00853336
\(751\) 14703.4 0.714426 0.357213 0.934023i \(-0.383727\pi\)
0.357213 + 0.934023i \(0.383727\pi\)
\(752\) 1808.53 0.0877001
\(753\) −925.371 −0.0447840
\(754\) 18227.0 0.880358
\(755\) −531.168 −0.0256042
\(756\) −1083.75 −0.0521371
\(757\) −26676.3 −1.28080 −0.640400 0.768041i \(-0.721232\pi\)
−0.640400 + 0.768041i \(0.721232\pi\)
\(758\) −12340.5 −0.591327
\(759\) 2150.21 0.102830
\(760\) −86.1887 −0.00411368
\(761\) 26816.8 1.27741 0.638704 0.769453i \(-0.279471\pi\)
0.638704 + 0.769453i \(0.279471\pi\)
\(762\) −4270.75 −0.203035
\(763\) −4253.18 −0.201803
\(764\) 21209.0 1.00434
\(765\) −142.806 −0.00674922
\(766\) −2886.31 −0.136144
\(767\) −57988.6 −2.72992
\(768\) 9604.69 0.451275
\(769\) 40144.7 1.88251 0.941257 0.337690i \(-0.109646\pi\)
0.941257 + 0.337690i \(0.109646\pi\)
\(770\) −17.9963 −0.000842262 0
\(771\) −16640.9 −0.777311
\(772\) −29814.1 −1.38994
\(773\) 36628.4 1.70431 0.852156 0.523288i \(-0.175295\pi\)
0.852156 + 0.523288i \(0.175295\pi\)
\(774\) 3974.85 0.184590
\(775\) 10973.0 0.508597
\(776\) −396.098 −0.0183236
\(777\) 8214.87 0.379288
\(778\) 7737.14 0.356542
\(779\) 1875.60 0.0862648
\(780\) −236.948 −0.0108770
\(781\) 6373.47 0.292011
\(782\) 10023.4 0.458357
\(783\) −3685.30 −0.168202
\(784\) 722.910 0.0329314
\(785\) 262.985 0.0119571
\(786\) 507.565 0.0230334
\(787\) 19339.8 0.875973 0.437987 0.898982i \(-0.355692\pi\)
0.437987 + 0.898982i \(0.355692\pi\)
\(788\) −7776.40 −0.351552
\(789\) −2657.11 −0.119893
\(790\) −98.2676 −0.00442557
\(791\) 6136.40 0.275835
\(792\) 2046.70 0.0918261
\(793\) 26180.4 1.17238
\(794\) 19508.5 0.871954
\(795\) 65.2729 0.00291194
\(796\) −14374.7 −0.640071
\(797\) 22734.8 1.01042 0.505211 0.862996i \(-0.331415\pi\)
0.505211 + 0.862996i \(0.331415\pi\)
\(798\) −848.778 −0.0376521
\(799\) 12527.6 0.554686
\(800\) −23445.2 −1.03614
\(801\) −2523.11 −0.111298
\(802\) −7967.21 −0.350788
\(803\) 1360.86 0.0598055
\(804\) −1412.27 −0.0619491
\(805\) 70.8175 0.00310061
\(806\) −11724.8 −0.512395
\(807\) −13358.3 −0.582695
\(808\) 743.697 0.0323802
\(809\) 10636.0 0.462228 0.231114 0.972927i \(-0.425763\pi\)
0.231114 + 0.972927i \(0.425763\pi\)
\(810\) −18.9312 −0.000821202 0
\(811\) 21207.0 0.918223 0.459112 0.888379i \(-0.348168\pi\)
0.459112 + 0.888379i \(0.348168\pi\)
\(812\) 5478.66 0.236778
\(813\) 7733.93 0.333630
\(814\) −6477.27 −0.278904
\(815\) 68.0933 0.00292663
\(816\) −4523.12 −0.194045
\(817\) −7878.02 −0.337353
\(818\) 8346.83 0.356773
\(819\) −5588.95 −0.238454
\(820\) −62.1906 −0.00264853
\(821\) 24576.3 1.04472 0.522362 0.852724i \(-0.325051\pi\)
0.522362 + 0.852724i \(0.325051\pi\)
\(822\) 6400.81 0.271599
\(823\) −31692.5 −1.34232 −0.671161 0.741312i \(-0.734204\pi\)
−0.671161 + 0.741312i \(0.734204\pi\)
\(824\) −34939.3 −1.47715
\(825\) −4124.20 −0.174044
\(826\) 6887.62 0.290134
\(827\) −28350.2 −1.19206 −0.596029 0.802963i \(-0.703256\pi\)
−0.596029 + 0.802963i \(0.703256\pi\)
\(828\) −3362.62 −0.141134
\(829\) −14688.3 −0.615375 −0.307688 0.951487i \(-0.599555\pi\)
−0.307688 + 0.951487i \(0.599555\pi\)
\(830\) −13.9547 −0.000583586 0
\(831\) 2049.84 0.0855694
\(832\) 14581.0 0.607580
\(833\) 5007.54 0.208285
\(834\) −1519.06 −0.0630706
\(835\) −404.755 −0.0167750
\(836\) −1693.62 −0.0700661
\(837\) 2370.63 0.0978984
\(838\) 5256.91 0.216703
\(839\) 35911.1 1.47770 0.738849 0.673871i \(-0.235369\pi\)
0.738849 + 0.673871i \(0.235369\pi\)
\(840\) 67.4082 0.00276881
\(841\) −5758.78 −0.236122
\(842\) 23253.9 0.951761
\(843\) 25873.4 1.05709
\(844\) −3619.48 −0.147615
\(845\) −880.833 −0.0358598
\(846\) 1660.73 0.0674906
\(847\) −847.000 −0.0343604
\(848\) 2067.40 0.0837204
\(849\) −3758.03 −0.151914
\(850\) −19225.3 −0.775790
\(851\) 25488.8 1.02673
\(852\) −9967.16 −0.400786
\(853\) 37842.1 1.51898 0.759490 0.650519i \(-0.225449\pi\)
0.759490 + 0.650519i \(0.225449\pi\)
\(854\) −3109.59 −0.124599
\(855\) 37.5210 0.00150081
\(856\) −20517.2 −0.819233
\(857\) −41429.0 −1.65133 −0.825663 0.564164i \(-0.809199\pi\)
−0.825663 + 0.564164i \(0.809199\pi\)
\(858\) 4406.78 0.175344
\(859\) 2803.59 0.111359 0.0556795 0.998449i \(-0.482268\pi\)
0.0556795 + 0.998449i \(0.482268\pi\)
\(860\) 261.218 0.0103575
\(861\) −1466.91 −0.0580627
\(862\) −10444.1 −0.412676
\(863\) 30586.2 1.20645 0.603225 0.797571i \(-0.293882\pi\)
0.603225 + 0.797571i \(0.293882\pi\)
\(864\) −5065.14 −0.199444
\(865\) 698.461 0.0274548
\(866\) −4245.36 −0.166586
\(867\) −16592.3 −0.649947
\(868\) −3524.24 −0.137812
\(869\) −4624.99 −0.180543
\(870\) 95.7024 0.00372944
\(871\) −7283.16 −0.283330
\(872\) −12561.3 −0.487821
\(873\) 172.436 0.00668506
\(874\) −2633.56 −0.101924
\(875\) −271.688 −0.0104968
\(876\) −2128.19 −0.0820832
\(877\) 37717.7 1.45226 0.726132 0.687555i \(-0.241316\pi\)
0.726132 + 0.687555i \(0.241316\pi\)
\(878\) 23364.3 0.898072
\(879\) 19028.3 0.730159
\(880\) 25.1974 0.000965231 0
\(881\) 34072.2 1.30298 0.651488 0.758659i \(-0.274145\pi\)
0.651488 + 0.758659i \(0.274145\pi\)
\(882\) 663.829 0.0253427
\(883\) 42756.6 1.62953 0.814765 0.579791i \(-0.196866\pi\)
0.814765 + 0.579791i \(0.196866\pi\)
\(884\) −51985.9 −1.97791
\(885\) −304.473 −0.0115647
\(886\) 18345.2 0.695620
\(887\) −5921.20 −0.224142 −0.112071 0.993700i \(-0.535748\pi\)
−0.112071 + 0.993700i \(0.535748\pi\)
\(888\) 24261.7 0.916858
\(889\) −6620.08 −0.249753
\(890\) 65.5217 0.00246775
\(891\) −891.000 −0.0335013
\(892\) −15846.7 −0.594829
\(893\) −3291.51 −0.123344
\(894\) −14138.2 −0.528918
\(895\) −91.5709 −0.00341998
\(896\) 8773.60 0.327127
\(897\) −17341.2 −0.645491
\(898\) 13635.5 0.506707
\(899\) −11984.2 −0.444600
\(900\) 6449.65 0.238876
\(901\) 14320.7 0.529515
\(902\) 1156.63 0.0426956
\(903\) 6161.40 0.227064
\(904\) 18123.2 0.666778
\(905\) 369.215 0.0135615
\(906\) −15448.8 −0.566505
\(907\) −42922.8 −1.57137 −0.785683 0.618629i \(-0.787688\pi\)
−0.785683 + 0.618629i \(0.787688\pi\)
\(908\) 33274.3 1.21613
\(909\) −323.758 −0.0118134
\(910\) 145.138 0.00528710
\(911\) 35023.9 1.27376 0.636878 0.770964i \(-0.280225\pi\)
0.636878 + 0.770964i \(0.280225\pi\)
\(912\) 1188.41 0.0431493
\(913\) −656.784 −0.0238076
\(914\) −1611.81 −0.0583302
\(915\) 137.462 0.00496651
\(916\) −38657.2 −1.39440
\(917\) 786.775 0.0283333
\(918\) −4153.46 −0.149330
\(919\) −48830.6 −1.75275 −0.876373 0.481633i \(-0.840044\pi\)
−0.876373 + 0.481633i \(0.840044\pi\)
\(920\) 209.152 0.00749514
\(921\) 16524.9 0.591220
\(922\) −15608.0 −0.557509
\(923\) −51401.1 −1.83303
\(924\) 1324.58 0.0471597
\(925\) −48888.6 −1.73778
\(926\) −9536.14 −0.338420
\(927\) 15210.3 0.538913
\(928\) 25605.7 0.905763
\(929\) 16251.5 0.573945 0.286972 0.957939i \(-0.407351\pi\)
0.286972 + 0.957939i \(0.407351\pi\)
\(930\) −61.5621 −0.00217065
\(931\) −1315.69 −0.0463157
\(932\) −30726.9 −1.07993
\(933\) 16091.5 0.564644
\(934\) −19452.1 −0.681469
\(935\) 174.540 0.00610490
\(936\) −16506.3 −0.576417
\(937\) −9350.37 −0.326001 −0.163001 0.986626i \(-0.552117\pi\)
−0.163001 + 0.986626i \(0.552117\pi\)
\(938\) 865.059 0.0301121
\(939\) 17475.2 0.607329
\(940\) 109.139 0.00378695
\(941\) −16381.6 −0.567507 −0.283754 0.958897i \(-0.591580\pi\)
−0.283754 + 0.958897i \(0.591580\pi\)
\(942\) 7648.82 0.264556
\(943\) −4551.46 −0.157175
\(944\) −9643.65 −0.332494
\(945\) −29.3452 −0.00101016
\(946\) −4858.15 −0.166968
\(947\) 11004.5 0.377613 0.188807 0.982014i \(-0.439538\pi\)
0.188807 + 0.982014i \(0.439538\pi\)
\(948\) 7232.80 0.247796
\(949\) −10975.2 −0.375415
\(950\) 5051.27 0.172510
\(951\) 17395.3 0.593146
\(952\) 14789.2 0.503489
\(953\) 45741.3 1.55478 0.777391 0.629018i \(-0.216543\pi\)
0.777391 + 0.629018i \(0.216543\pi\)
\(954\) 1898.44 0.0644280
\(955\) 574.285 0.0194591
\(956\) 29600.3 1.00140
\(957\) 4504.25 0.152144
\(958\) −22099.9 −0.745318
\(959\) 9921.89 0.334092
\(960\) 76.5588 0.00257388
\(961\) −22082.0 −0.741229
\(962\) 52238.3 1.75076
\(963\) 8931.86 0.298884
\(964\) 36725.3 1.22702
\(965\) −807.288 −0.0269301
\(966\) 2059.70 0.0686024
\(967\) 32031.8 1.06522 0.532612 0.846359i \(-0.321210\pi\)
0.532612 + 0.846359i \(0.321210\pi\)
\(968\) −2501.52 −0.0830598
\(969\) 8232.03 0.272911
\(970\) −4.47792 −0.000148224 0
\(971\) 41167.9 1.36060 0.680299 0.732934i \(-0.261850\pi\)
0.680299 + 0.732934i \(0.261850\pi\)
\(972\) 1393.39 0.0459806
\(973\) −2354.70 −0.0775829
\(974\) 572.047 0.0188189
\(975\) 33261.1 1.09252
\(976\) 4353.87 0.142791
\(977\) −34251.8 −1.12161 −0.560805 0.827948i \(-0.689508\pi\)
−0.560805 + 0.827948i \(0.689508\pi\)
\(978\) 1980.47 0.0647530
\(979\) 3083.80 0.100673
\(980\) 43.6253 0.00142200
\(981\) 5468.38 0.177973
\(982\) −7566.25 −0.245874
\(983\) −49982.0 −1.62175 −0.810875 0.585220i \(-0.801008\pi\)
−0.810875 + 0.585220i \(0.801008\pi\)
\(984\) −4332.34 −0.140356
\(985\) −210.565 −0.00681132
\(986\) 20996.9 0.678172
\(987\) 2574.29 0.0830199
\(988\) 13658.8 0.439824
\(989\) 19117.4 0.614658
\(990\) 23.1381 0.000742805 0
\(991\) 1157.08 0.0370895 0.0185448 0.999828i \(-0.494097\pi\)
0.0185448 + 0.999828i \(0.494097\pi\)
\(992\) −16471.3 −0.527181
\(993\) 27391.7 0.875377
\(994\) 6105.18 0.194813
\(995\) −389.229 −0.0124014
\(996\) 1027.11 0.0326760
\(997\) −17659.7 −0.560972 −0.280486 0.959858i \(-0.590496\pi\)
−0.280486 + 0.959858i \(0.590496\pi\)
\(998\) 20811.7 0.660103
\(999\) −10562.0 −0.334501
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.j.1.4 5
3.2 odd 2 693.4.a.q.1.2 5
7.6 odd 2 1617.4.a.o.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.4 5 1.1 even 1 trivial
693.4.a.q.1.2 5 3.2 odd 2
1617.4.a.o.1.4 5 7.6 odd 2