Properties

Label 231.4.a.l
Level 231231
Weight 44
Character orbit 231.a
Self dual yes
Analytic conductor 13.62913.629
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 231=3711 231 = 3 \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.629441211313.6294412113
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x528x311x2+108x64 x^{5} - 28x^{3} - 11x^{2} + 108x - 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2+3q3+(β2β1+4)q4+(β4β1+1)q5+(3β1+3)q67q7+(β4+β3+2β2++12)q8++99q99+O(q100) q + ( - \beta_1 + 1) q^{2} + 3 q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + (\beta_{4} - \beta_1 + 1) q^{5} + ( - 3 \beta_1 + 3) q^{6} - 7 q^{7} + ( - \beta_{4} + \beta_{3} + 2 \beta_{2} + \cdots + 12) q^{8}+ \cdots + 99 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+5q2+15q3+21q4+7q5+15q635q7+60q8+45q9+55q10+55q11+63q12+111q1335q14+21q15+201q16+136q17+45q18+111q19++495q99+O(q100) 5 q + 5 q^{2} + 15 q^{3} + 21 q^{4} + 7 q^{5} + 15 q^{6} - 35 q^{7} + 60 q^{8} + 45 q^{9} + 55 q^{10} + 55 q^{11} + 63 q^{12} + 111 q^{13} - 35 q^{14} + 21 q^{15} + 201 q^{16} + 136 q^{17} + 45 q^{18} + 111 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x528x311x2+108x64 x^{5} - 28x^{3} - 11x^{2} + 108x - 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν11 \nu^{2} - \nu - 11 Copy content Toggle raw display
β3\beta_{3}== (ν426ν217ν+64)/2 ( \nu^{4} - 26\nu^{2} - 17\nu + 64 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4+2ν328ν257ν+74)/2 ( \nu^{4} + 2\nu^{3} - 28\nu^{2} - 57\nu + 74 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+11 \beta_{2} + \beta _1 + 11 Copy content Toggle raw display
ν3\nu^{3}== β4β3+β2+21β1+6 \beta_{4} - \beta_{3} + \beta_{2} + 21\beta _1 + 6 Copy content Toggle raw display
ν4\nu^{4}== 2β3+26β2+43β1+222 2\beta_{3} + 26\beta_{2} + 43\beta _1 + 222 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
5.15106
1.30014
0.767088
−2.85551
−4.36278
−4.15106 3.00000 9.23129 3.26204 −12.4532 −7.00000 −5.11115 9.00000 −13.5409
1.2 −0.300143 3.00000 −7.90991 −20.3930 −0.900430 −7.00000 4.77526 9.00000 6.12084
1.3 0.232912 3.00000 −7.94575 7.75746 0.698736 −7.00000 −3.71396 9.00000 1.80680
1.4 3.85551 3.00000 6.86494 18.0422 11.5665 −7.00000 −4.37623 9.00000 69.5618
1.5 5.36278 3.00000 20.7594 −1.66863 16.0883 −7.00000 68.4261 9.00000 −8.94849
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 231.4.a.l 5
3.b odd 2 1 693.4.a.n 5
7.b odd 2 1 1617.4.a.p 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.l 5 1.a even 1 1 trivial
693.4.a.n 5 3.b odd 2 1
1617.4.a.p 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(231))S_{4}^{\mathrm{new}}(\Gamma_0(231)):

T255T2418T23+85T22+7T26 T_{2}^{5} - 5T_{2}^{4} - 18T_{2}^{3} + 85T_{2}^{2} + 7T_{2} - 6 Copy content Toggle raw display
T557T54383T53+3499T522446T515536 T_{5}^{5} - 7T_{5}^{4} - 383T_{5}^{3} + 3499T_{5}^{2} - 2446T_{5} - 15536 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T55T4+6 T^{5} - 5 T^{4} + \cdots - 6 Copy content Toggle raw display
33 (T3)5 (T - 3)^{5} Copy content Toggle raw display
55 T57T4+15536 T^{5} - 7 T^{4} + \cdots - 15536 Copy content Toggle raw display
77 (T+7)5 (T + 7)^{5} Copy content Toggle raw display
1111 (T11)5 (T - 11)^{5} Copy content Toggle raw display
1313 T5111T4+276332 T^{5} - 111 T^{4} + \cdots - 276332 Copy content Toggle raw display
1717 T5+3184406528 T^{5} + \cdots - 3184406528 Copy content Toggle raw display
1919 T5111T4+2596968 T^{5} - 111 T^{4} + \cdots - 2596968 Copy content Toggle raw display
2323 T5+9848447488 T^{5} + \cdots - 9848447488 Copy content Toggle raw display
2929 T5+1678137108 T^{5} + \cdots - 1678137108 Copy content Toggle raw display
3131 T5+97533466624 T^{5} + \cdots - 97533466624 Copy content Toggle raw display
3737 T5+82159135548 T^{5} + \cdots - 82159135548 Copy content Toggle raw display
4141 T5+2830976555008 T^{5} + \cdots - 2830976555008 Copy content Toggle raw display
4343 T5+1905935989632 T^{5} + \cdots - 1905935989632 Copy content Toggle raw display
4747 T5++417603397024 T^{5} + \cdots + 417603397024 Copy content Toggle raw display
5353 T5++3927875616864 T^{5} + \cdots + 3927875616864 Copy content Toggle raw display
5959 T5+211529924045472 T^{5} + \cdots - 211529924045472 Copy content Toggle raw display
6161 T5++14480622579168 T^{5} + \cdots + 14480622579168 Copy content Toggle raw display
6767 T5+8392173156048 T^{5} + \cdots - 8392173156048 Copy content Toggle raw display
7171 T5++2460667275264 T^{5} + \cdots + 2460667275264 Copy content Toggle raw display
7373 T5+1051447598248 T^{5} + \cdots - 1051447598248 Copy content Toggle raw display
7979 T5++93230064402432 T^{5} + \cdots + 93230064402432 Copy content Toggle raw display
8383 T5++15123167361792 T^{5} + \cdots + 15123167361792 Copy content Toggle raw display
8989 T5+1811669774112 T^{5} + \cdots - 1811669774112 Copy content Toggle raw display
9797 T5++346762905716192 T^{5} + \cdots + 346762905716192 Copy content Toggle raw display
show more
show less