[N,k,chi] = [231,4,Mod(1,231)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(231, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("231.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 28 x 3 − 11 x 2 + 108 x − 64 x^{5} - 28x^{3} - 11x^{2} + 108x - 64 x 5 − 2 8 x 3 − 1 1 x 2 + 1 0 8 x − 6 4
x^5 - 28*x^3 - 11*x^2 + 108*x - 64
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − ν − 11 \nu^{2} - \nu - 11 ν 2 − ν − 1 1
v^2 - v - 11
β 3 \beta_{3} β 3 = = =
( ν 4 − 26 ν 2 − 17 ν + 64 ) / 2 ( \nu^{4} - 26\nu^{2} - 17\nu + 64 ) / 2 ( ν 4 − 2 6 ν 2 − 1 7 ν + 6 4 ) / 2
(v^4 - 26*v^2 - 17*v + 64) / 2
β 4 \beta_{4} β 4 = = =
( ν 4 + 2 ν 3 − 28 ν 2 − 57 ν + 74 ) / 2 ( \nu^{4} + 2\nu^{3} - 28\nu^{2} - 57\nu + 74 ) / 2 ( ν 4 + 2 ν 3 − 2 8 ν 2 − 5 7 ν + 7 4 ) / 2
(v^4 + 2*v^3 - 28*v^2 - 57*v + 74) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + β 1 + 11 \beta_{2} + \beta _1 + 11 β 2 + β 1 + 1 1
b2 + b1 + 11
ν 3 \nu^{3} ν 3 = = =
β 4 − β 3 + β 2 + 21 β 1 + 6 \beta_{4} - \beta_{3} + \beta_{2} + 21\beta _1 + 6 β 4 − β 3 + β 2 + 2 1 β 1 + 6
b4 - b3 + b2 + 21*b1 + 6
ν 4 \nu^{4} ν 4 = = =
2 β 3 + 26 β 2 + 43 β 1 + 222 2\beta_{3} + 26\beta_{2} + 43\beta _1 + 222 2 β 3 + 2 6 β 2 + 4 3 β 1 + 2 2 2
2*b3 + 26*b2 + 43*b1 + 222
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 231 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(231)) S 4 n e w ( Γ 0 ( 2 3 1 ) ) :
T 2 5 − 5 T 2 4 − 18 T 2 3 + 85 T 2 2 + 7 T 2 − 6 T_{2}^{5} - 5T_{2}^{4} - 18T_{2}^{3} + 85T_{2}^{2} + 7T_{2} - 6 T 2 5 − 5 T 2 4 − 1 8 T 2 3 + 8 5 T 2 2 + 7 T 2 − 6
T2^5 - 5*T2^4 - 18*T2^3 + 85*T2^2 + 7*T2 - 6
T 5 5 − 7 T 5 4 − 383 T 5 3 + 3499 T 5 2 − 2446 T 5 − 15536 T_{5}^{5} - 7T_{5}^{4} - 383T_{5}^{3} + 3499T_{5}^{2} - 2446T_{5} - 15536 T 5 5 − 7 T 5 4 − 3 8 3 T 5 3 + 3 4 9 9 T 5 2 − 2 4 4 6 T 5 − 1 5 5 3 6
T5^5 - 7*T5^4 - 383*T5^3 + 3499*T5^2 - 2446*T5 - 15536
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 − 5 T 4 + ⋯ − 6 T^{5} - 5 T^{4} + \cdots - 6 T 5 − 5 T 4 + ⋯ − 6
T^5 - 5*T^4 - 18*T^3 + 85*T^2 + 7*T - 6
3 3 3
( T − 3 ) 5 (T - 3)^{5} ( T − 3 ) 5
(T - 3)^5
5 5 5
T 5 − 7 T 4 + ⋯ − 15536 T^{5} - 7 T^{4} + \cdots - 15536 T 5 − 7 T 4 + ⋯ − 1 5 5 3 6
T^5 - 7*T^4 - 383*T^3 + 3499*T^2 - 2446*T - 15536
7 7 7
( T + 7 ) 5 (T + 7)^{5} ( T + 7 ) 5
(T + 7)^5
11 11 1 1
( T − 11 ) 5 (T - 11)^{5} ( T − 1 1 ) 5
(T - 11)^5
13 13 1 3
T 5 − 111 T 4 + ⋯ − 276332 T^{5} - 111 T^{4} + \cdots - 276332 T 5 − 1 1 1 T 4 + ⋯ − 2 7 6 3 3 2
T^5 - 111*T^4 + 3959*T^3 - 58705*T^2 + 331956*T - 276332
17 17 1 7
T 5 + ⋯ − 3184406528 T^{5} + \cdots - 3184406528 T 5 + ⋯ − 3 1 8 4 4 0 6 5 2 8
T^5 - 136*T^4 - 11360*T^3 + 1626328*T^2 + 10253696*T - 3184406528
19 19 1 9
T 5 − 111 T 4 + ⋯ − 2596968 T^{5} - 111 T^{4} + \cdots - 2596968 T 5 − 1 1 1 T 4 + ⋯ − 2 5 9 6 9 6 8
T^5 - 111*T^4 - 1671*T^3 + 192483*T^2 - 1667862*T - 2596968
23 23 2 3
T 5 + ⋯ − 9848447488 T^{5} + \cdots - 9848447488 T 5 + ⋯ − 9 8 4 8 4 4 7 4 8 8
T^5 + 28*T^4 - 30992*T^3 + 642392*T^2 + 213872000*T - 9848447488
29 29 2 9
T 5 + ⋯ − 1678137108 T^{5} + \cdots - 1678137108 T 5 + ⋯ − 1 6 7 8 1 3 7 1 0 8
T^5 - 61*T^4 - 65625*T^3 - 68523*T^2 + 174737820*T - 1678137108
31 31 3 1
T 5 + ⋯ − 97533466624 T^{5} + \cdots - 97533466624 T 5 + ⋯ − 9 7 5 3 3 4 6 6 6 2 4
T^5 + 280*T^4 - 63128*T^3 - 28652344*T^2 - 3049622272*T - 97533466624
37 37 3 7
T 5 + ⋯ − 82159135548 T^{5} + \cdots - 82159135548 T 5 + ⋯ − 8 2 1 5 9 1 3 5 5 4 8
T^5 + 41*T^4 - 107265*T^3 - 748953*T^2 + 2118934188*T - 82159135548
41 41 4 1
T 5 + ⋯ − 2830976555008 T^{5} + \cdots - 2830976555008 T 5 + ⋯ − 2 8 3 0 9 7 6 5 5 5 0 0 8
T^5 - 426*T^4 - 189472*T^3 + 70818112*T^2 + 9161526912*T - 2830976555008
43 43 4 3
T 5 + ⋯ − 1905935989632 T^{5} + \cdots - 1905935989632 T 5 + ⋯ − 1 9 0 5 9 3 5 9 8 9 6 3 2
T^5 - 424*T^4 - 153984*T^3 + 69107304*T^2 + 3218298432*T - 1905935989632
47 47 4 7
T 5 + ⋯ + 417603397024 T^{5} + \cdots + 417603397024 T 5 + ⋯ + 4 1 7 6 0 3 3 9 7 0 2 4
T^5 - 75*T^4 - 240283*T^3 + 83509775*T^2 - 10178730330*T + 417603397024
53 53 5 3
T 5 + ⋯ + 3927875616864 T^{5} + \cdots + 3927875616864 T 5 + ⋯ + 3 9 2 7 8 7 5 6 1 6 8 6 4
T^5 - 1500*T^4 + 607428*T^3 + 12546264*T^2 - 38555035680*T + 3927875616864
59 59 5 9
T 5 + ⋯ − 211529924045472 T^{5} + \cdots - 211529924045472 T 5 + ⋯ − 2 1 1 5 2 9 9 2 4 0 4 5 4 7 2
T^5 - 757*T^4 - 1124289*T^3 + 870297809*T^2 + 263376131620*T - 211529924045472
61 61 6 1
T 5 + ⋯ + 14480622579168 T^{5} + \cdots + 14480622579168 T 5 + ⋯ + 1 4 4 8 0 6 2 2 5 7 9 1 6 8
T^5 - 658*T^4 - 566568*T^3 + 587990736*T^2 - 163292470128*T + 14480622579168
67 67 6 7
T 5 + ⋯ − 8392173156048 T^{5} + \cdots - 8392173156048 T 5 + ⋯ − 8 3 9 2 1 7 3 1 5 6 0 4 8
T^5 + 583*T^4 - 552477*T^3 - 520385003*T^2 - 128974851920*T - 8392173156048
71 71 7 1
T 5 + ⋯ + 2460667275264 T^{5} + \cdots + 2460667275264 T 5 + ⋯ + 2 4 6 0 6 6 7 2 7 5 2 6 4
T^5 + 764*T^4 - 153696*T^3 - 153518784*T^2 - 1679842560*T + 2460667275264
73 73 7 3
T 5 + ⋯ − 1051447598248 T^{5} + \cdots - 1051447598248 T 5 + ⋯ − 1 0 5 1 4 4 7 5 9 8 2 4 8
T^5 - 875*T^4 - 190103*T^3 + 124110383*T^2 + 12030825650*T - 1051447598248
79 79 7 9
T 5 + ⋯ + 93230064402432 T^{5} + \cdots + 93230064402432 T 5 + ⋯ + 9 3 2 3 0 0 6 4 4 0 2 4 3 2
T^5 + 244*T^4 - 1245552*T^3 - 326356736*T^2 + 368303365120*T + 93230064402432
83 83 8 3
T 5 + ⋯ + 15123167361792 T^{5} + \cdots + 15123167361792 T 5 + ⋯ + 1 5 1 2 3 1 6 7 3 6 1 7 9 2
T^5 - 924*T^4 - 1359000*T^3 + 952621368*T^2 + 334483050912*T + 15123167361792
89 89 8 9
T 5 + ⋯ − 1811669774112 T^{5} + \cdots - 1811669774112 T 5 + ⋯ − 1 8 1 1 6 6 9 7 7 4 1 1 2
T^5 + 1110*T^4 - 656088*T^3 - 513989520*T^2 + 222872471376*T - 1811669774112
97 97 9 7
T 5 + ⋯ + 346762905716192 T^{5} + \cdots + 346762905716192 T 5 + ⋯ + 3 4 6 7 6 2 9 0 5 7 1 6 1 9 2
T^5 + 852*T^4 - 1377556*T^3 - 1215907400*T^2 + 370119189312*T + 346762905716192
show more
show less