Properties

Label 2312.2.a.f.1.1
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(1,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{3} -3.85410 q^{5} -1.38197 q^{7} -0.381966 q^{9} -0.236068 q^{11} +4.09017 q^{13} +6.23607 q^{15} +3.61803 q^{19} +2.23607 q^{21} +8.32624 q^{23} +9.85410 q^{25} +5.47214 q^{27} +8.85410 q^{29} -9.47214 q^{31} +0.381966 q^{33} +5.32624 q^{35} -9.23607 q^{37} -6.61803 q^{39} -2.00000 q^{41} -1.47214 q^{43} +1.47214 q^{45} -10.2361 q^{47} -5.09017 q^{49} -3.14590 q^{53} +0.909830 q^{55} -5.85410 q^{57} -0.472136 q^{59} -7.76393 q^{61} +0.527864 q^{63} -15.7639 q^{65} +3.70820 q^{67} -13.4721 q^{69} +10.9443 q^{71} -3.76393 q^{73} -15.9443 q^{75} +0.326238 q^{77} +10.0000 q^{79} -7.70820 q^{81} +15.3262 q^{83} -14.3262 q^{87} -4.47214 q^{89} -5.65248 q^{91} +15.3262 q^{93} -13.9443 q^{95} -3.85410 q^{97} +0.0901699 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{5} - 5 q^{7} - 3 q^{9} + 4 q^{11} - 3 q^{13} + 8 q^{15} + 5 q^{19} + q^{23} + 13 q^{25} + 2 q^{27} + 11 q^{29} - 10 q^{31} + 3 q^{33} - 5 q^{35} - 14 q^{37} - 11 q^{39} - 4 q^{41} + 6 q^{43}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61803 −0.934172 −0.467086 0.884212i \(-0.654696\pi\)
−0.467086 + 0.884212i \(0.654696\pi\)
\(4\) 0 0
\(5\) −3.85410 −1.72361 −0.861803 0.507242i \(-0.830665\pi\)
−0.861803 + 0.507242i \(0.830665\pi\)
\(6\) 0 0
\(7\) −1.38197 −0.522334 −0.261167 0.965294i \(-0.584107\pi\)
−0.261167 + 0.965294i \(0.584107\pi\)
\(8\) 0 0
\(9\) −0.381966 −0.127322
\(10\) 0 0
\(11\) −0.236068 −0.0711772 −0.0355886 0.999367i \(-0.511331\pi\)
−0.0355886 + 0.999367i \(0.511331\pi\)
\(12\) 0 0
\(13\) 4.09017 1.13441 0.567205 0.823577i \(-0.308025\pi\)
0.567205 + 0.823577i \(0.308025\pi\)
\(14\) 0 0
\(15\) 6.23607 1.61015
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.61803 0.830034 0.415017 0.909814i \(-0.363776\pi\)
0.415017 + 0.909814i \(0.363776\pi\)
\(20\) 0 0
\(21\) 2.23607 0.487950
\(22\) 0 0
\(23\) 8.32624 1.73614 0.868070 0.496441i \(-0.165360\pi\)
0.868070 + 0.496441i \(0.165360\pi\)
\(24\) 0 0
\(25\) 9.85410 1.97082
\(26\) 0 0
\(27\) 5.47214 1.05311
\(28\) 0 0
\(29\) 8.85410 1.64417 0.822083 0.569368i \(-0.192812\pi\)
0.822083 + 0.569368i \(0.192812\pi\)
\(30\) 0 0
\(31\) −9.47214 −1.70125 −0.850623 0.525776i \(-0.823775\pi\)
−0.850623 + 0.525776i \(0.823775\pi\)
\(32\) 0 0
\(33\) 0.381966 0.0664917
\(34\) 0 0
\(35\) 5.32624 0.900299
\(36\) 0 0
\(37\) −9.23607 −1.51840 −0.759200 0.650857i \(-0.774410\pi\)
−0.759200 + 0.650857i \(0.774410\pi\)
\(38\) 0 0
\(39\) −6.61803 −1.05973
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −1.47214 −0.224499 −0.112249 0.993680i \(-0.535806\pi\)
−0.112249 + 0.993680i \(0.535806\pi\)
\(44\) 0 0
\(45\) 1.47214 0.219453
\(46\) 0 0
\(47\) −10.2361 −1.49308 −0.746542 0.665338i \(-0.768287\pi\)
−0.746542 + 0.665338i \(0.768287\pi\)
\(48\) 0 0
\(49\) −5.09017 −0.727167
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.14590 −0.432122 −0.216061 0.976380i \(-0.569321\pi\)
−0.216061 + 0.976380i \(0.569321\pi\)
\(54\) 0 0
\(55\) 0.909830 0.122681
\(56\) 0 0
\(57\) −5.85410 −0.775395
\(58\) 0 0
\(59\) −0.472136 −0.0614669 −0.0307334 0.999528i \(-0.509784\pi\)
−0.0307334 + 0.999528i \(0.509784\pi\)
\(60\) 0 0
\(61\) −7.76393 −0.994070 −0.497035 0.867731i \(-0.665578\pi\)
−0.497035 + 0.867731i \(0.665578\pi\)
\(62\) 0 0
\(63\) 0.527864 0.0665046
\(64\) 0 0
\(65\) −15.7639 −1.95528
\(66\) 0 0
\(67\) 3.70820 0.453029 0.226515 0.974008i \(-0.427267\pi\)
0.226515 + 0.974008i \(0.427267\pi\)
\(68\) 0 0
\(69\) −13.4721 −1.62185
\(70\) 0 0
\(71\) 10.9443 1.29885 0.649423 0.760427i \(-0.275010\pi\)
0.649423 + 0.760427i \(0.275010\pi\)
\(72\) 0 0
\(73\) −3.76393 −0.440535 −0.220267 0.975440i \(-0.570693\pi\)
−0.220267 + 0.975440i \(0.570693\pi\)
\(74\) 0 0
\(75\) −15.9443 −1.84109
\(76\) 0 0
\(77\) 0.326238 0.0371783
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) 15.3262 1.68227 0.841137 0.540823i \(-0.181887\pi\)
0.841137 + 0.540823i \(0.181887\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −14.3262 −1.53593
\(88\) 0 0
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) −5.65248 −0.592540
\(92\) 0 0
\(93\) 15.3262 1.58926
\(94\) 0 0
\(95\) −13.9443 −1.43065
\(96\) 0 0
\(97\) −3.85410 −0.391325 −0.195662 0.980671i \(-0.562686\pi\)
−0.195662 + 0.980671i \(0.562686\pi\)
\(98\) 0 0
\(99\) 0.0901699 0.00906242
\(100\) 0 0
\(101\) 6.70820 0.667491 0.333746 0.942663i \(-0.391687\pi\)
0.333746 + 0.942663i \(0.391687\pi\)
\(102\) 0 0
\(103\) −9.41641 −0.927826 −0.463913 0.885881i \(-0.653555\pi\)
−0.463913 + 0.885881i \(0.653555\pi\)
\(104\) 0 0
\(105\) −8.61803 −0.841034
\(106\) 0 0
\(107\) 6.70820 0.648507 0.324253 0.945970i \(-0.394887\pi\)
0.324253 + 0.945970i \(0.394887\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) 14.9443 1.41845
\(112\) 0 0
\(113\) −2.61803 −0.246284 −0.123142 0.992389i \(-0.539297\pi\)
−0.123142 + 0.992389i \(0.539297\pi\)
\(114\) 0 0
\(115\) −32.0902 −2.99242
\(116\) 0 0
\(117\) −1.56231 −0.144435
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9443 −0.994934
\(122\) 0 0
\(123\) 3.23607 0.291786
\(124\) 0 0
\(125\) −18.7082 −1.67331
\(126\) 0 0
\(127\) −3.47214 −0.308102 −0.154051 0.988063i \(-0.549232\pi\)
−0.154051 + 0.988063i \(0.549232\pi\)
\(128\) 0 0
\(129\) 2.38197 0.209720
\(130\) 0 0
\(131\) 19.7082 1.72191 0.860957 0.508678i \(-0.169866\pi\)
0.860957 + 0.508678i \(0.169866\pi\)
\(132\) 0 0
\(133\) −5.00000 −0.433555
\(134\) 0 0
\(135\) −21.0902 −1.81515
\(136\) 0 0
\(137\) −6.76393 −0.577882 −0.288941 0.957347i \(-0.593303\pi\)
−0.288941 + 0.957347i \(0.593303\pi\)
\(138\) 0 0
\(139\) −8.61803 −0.730972 −0.365486 0.930817i \(-0.619097\pi\)
−0.365486 + 0.930817i \(0.619097\pi\)
\(140\) 0 0
\(141\) 16.5623 1.39480
\(142\) 0 0
\(143\) −0.965558 −0.0807440
\(144\) 0 0
\(145\) −34.1246 −2.83389
\(146\) 0 0
\(147\) 8.23607 0.679299
\(148\) 0 0
\(149\) −9.70820 −0.795327 −0.397664 0.917531i \(-0.630179\pi\)
−0.397664 + 0.917531i \(0.630179\pi\)
\(150\) 0 0
\(151\) −11.6525 −0.948265 −0.474133 0.880453i \(-0.657238\pi\)
−0.474133 + 0.880453i \(0.657238\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 36.5066 2.93228
\(156\) 0 0
\(157\) 14.6180 1.16665 0.583323 0.812240i \(-0.301752\pi\)
0.583323 + 0.812240i \(0.301752\pi\)
\(158\) 0 0
\(159\) 5.09017 0.403677
\(160\) 0 0
\(161\) −11.5066 −0.906845
\(162\) 0 0
\(163\) −5.47214 −0.428611 −0.214305 0.976767i \(-0.568749\pi\)
−0.214305 + 0.976767i \(0.568749\pi\)
\(164\) 0 0
\(165\) −1.47214 −0.114606
\(166\) 0 0
\(167\) 1.43769 0.111252 0.0556261 0.998452i \(-0.482285\pi\)
0.0556261 + 0.998452i \(0.482285\pi\)
\(168\) 0 0
\(169\) 3.72949 0.286884
\(170\) 0 0
\(171\) −1.38197 −0.105682
\(172\) 0 0
\(173\) −1.29180 −0.0982134 −0.0491067 0.998794i \(-0.515637\pi\)
−0.0491067 + 0.998794i \(0.515637\pi\)
\(174\) 0 0
\(175\) −13.6180 −1.02943
\(176\) 0 0
\(177\) 0.763932 0.0574206
\(178\) 0 0
\(179\) 7.38197 0.551754 0.275877 0.961193i \(-0.411032\pi\)
0.275877 + 0.961193i \(0.411032\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 12.5623 0.928632
\(184\) 0 0
\(185\) 35.5967 2.61712
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −7.56231 −0.550077
\(190\) 0 0
\(191\) 13.5066 0.977302 0.488651 0.872479i \(-0.337489\pi\)
0.488651 + 0.872479i \(0.337489\pi\)
\(192\) 0 0
\(193\) 19.3607 1.39361 0.696806 0.717260i \(-0.254604\pi\)
0.696806 + 0.717260i \(0.254604\pi\)
\(194\) 0 0
\(195\) 25.5066 1.82656
\(196\) 0 0
\(197\) −22.3262 −1.59068 −0.795339 0.606165i \(-0.792707\pi\)
−0.795339 + 0.606165i \(0.792707\pi\)
\(198\) 0 0
\(199\) −0.527864 −0.0374193 −0.0187096 0.999825i \(-0.505956\pi\)
−0.0187096 + 0.999825i \(0.505956\pi\)
\(200\) 0 0
\(201\) −6.00000 −0.423207
\(202\) 0 0
\(203\) −12.2361 −0.858804
\(204\) 0 0
\(205\) 7.70820 0.538364
\(206\) 0 0
\(207\) −3.18034 −0.221049
\(208\) 0 0
\(209\) −0.854102 −0.0590795
\(210\) 0 0
\(211\) −7.38197 −0.508195 −0.254098 0.967179i \(-0.581778\pi\)
−0.254098 + 0.967179i \(0.581778\pi\)
\(212\) 0 0
\(213\) −17.7082 −1.21335
\(214\) 0 0
\(215\) 5.67376 0.386947
\(216\) 0 0
\(217\) 13.0902 0.888619
\(218\) 0 0
\(219\) 6.09017 0.411536
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.0902 −1.01051 −0.505256 0.862969i \(-0.668602\pi\)
−0.505256 + 0.862969i \(0.668602\pi\)
\(224\) 0 0
\(225\) −3.76393 −0.250929
\(226\) 0 0
\(227\) 3.47214 0.230454 0.115227 0.993339i \(-0.463240\pi\)
0.115227 + 0.993339i \(0.463240\pi\)
\(228\) 0 0
\(229\) −4.94427 −0.326727 −0.163363 0.986566i \(-0.552234\pi\)
−0.163363 + 0.986566i \(0.552234\pi\)
\(230\) 0 0
\(231\) −0.527864 −0.0347309
\(232\) 0 0
\(233\) −8.18034 −0.535912 −0.267956 0.963431i \(-0.586348\pi\)
−0.267956 + 0.963431i \(0.586348\pi\)
\(234\) 0 0
\(235\) 39.4508 2.57349
\(236\) 0 0
\(237\) −16.1803 −1.05103
\(238\) 0 0
\(239\) 8.23607 0.532747 0.266373 0.963870i \(-0.414175\pi\)
0.266373 + 0.963870i \(0.414175\pi\)
\(240\) 0 0
\(241\) −24.0344 −1.54819 −0.774097 0.633067i \(-0.781796\pi\)
−0.774097 + 0.633067i \(0.781796\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) 19.6180 1.25335
\(246\) 0 0
\(247\) 14.7984 0.941598
\(248\) 0 0
\(249\) −24.7984 −1.57153
\(250\) 0 0
\(251\) 13.7984 0.870946 0.435473 0.900202i \(-0.356581\pi\)
0.435473 + 0.900202i \(0.356581\pi\)
\(252\) 0 0
\(253\) −1.96556 −0.123574
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.20163 −0.0749554 −0.0374777 0.999297i \(-0.511932\pi\)
−0.0374777 + 0.999297i \(0.511932\pi\)
\(258\) 0 0
\(259\) 12.7639 0.793112
\(260\) 0 0
\(261\) −3.38197 −0.209338
\(262\) 0 0
\(263\) −28.5623 −1.76123 −0.880614 0.473835i \(-0.842869\pi\)
−0.880614 + 0.473835i \(0.842869\pi\)
\(264\) 0 0
\(265\) 12.1246 0.744809
\(266\) 0 0
\(267\) 7.23607 0.442840
\(268\) 0 0
\(269\) −19.6180 −1.19613 −0.598066 0.801447i \(-0.704064\pi\)
−0.598066 + 0.801447i \(0.704064\pi\)
\(270\) 0 0
\(271\) −10.7984 −0.655954 −0.327977 0.944686i \(-0.606367\pi\)
−0.327977 + 0.944686i \(0.606367\pi\)
\(272\) 0 0
\(273\) 9.14590 0.553535
\(274\) 0 0
\(275\) −2.32624 −0.140277
\(276\) 0 0
\(277\) −26.8328 −1.61223 −0.806114 0.591761i \(-0.798433\pi\)
−0.806114 + 0.591761i \(0.798433\pi\)
\(278\) 0 0
\(279\) 3.61803 0.216606
\(280\) 0 0
\(281\) 3.09017 0.184344 0.0921720 0.995743i \(-0.470619\pi\)
0.0921720 + 0.995743i \(0.470619\pi\)
\(282\) 0 0
\(283\) 13.8885 0.825588 0.412794 0.910824i \(-0.364553\pi\)
0.412794 + 0.910824i \(0.364553\pi\)
\(284\) 0 0
\(285\) 22.5623 1.33648
\(286\) 0 0
\(287\) 2.76393 0.163150
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 6.23607 0.365565
\(292\) 0 0
\(293\) −19.7082 −1.15137 −0.575683 0.817673i \(-0.695264\pi\)
−0.575683 + 0.817673i \(0.695264\pi\)
\(294\) 0 0
\(295\) 1.81966 0.105945
\(296\) 0 0
\(297\) −1.29180 −0.0749576
\(298\) 0 0
\(299\) 34.0557 1.96949
\(300\) 0 0
\(301\) 2.03444 0.117263
\(302\) 0 0
\(303\) −10.8541 −0.623552
\(304\) 0 0
\(305\) 29.9230 1.71339
\(306\) 0 0
\(307\) −20.6180 −1.17673 −0.588367 0.808594i \(-0.700229\pi\)
−0.588367 + 0.808594i \(0.700229\pi\)
\(308\) 0 0
\(309\) 15.2361 0.866750
\(310\) 0 0
\(311\) −23.0344 −1.30616 −0.653082 0.757287i \(-0.726524\pi\)
−0.653082 + 0.757287i \(0.726524\pi\)
\(312\) 0 0
\(313\) 1.23607 0.0698667 0.0349333 0.999390i \(-0.488878\pi\)
0.0349333 + 0.999390i \(0.488878\pi\)
\(314\) 0 0
\(315\) −2.03444 −0.114628
\(316\) 0 0
\(317\) −25.1803 −1.41427 −0.707134 0.707079i \(-0.750012\pi\)
−0.707134 + 0.707079i \(0.750012\pi\)
\(318\) 0 0
\(319\) −2.09017 −0.117027
\(320\) 0 0
\(321\) −10.8541 −0.605817
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 40.3050 2.23572
\(326\) 0 0
\(327\) 1.61803 0.0894775
\(328\) 0 0
\(329\) 14.1459 0.779889
\(330\) 0 0
\(331\) 4.79837 0.263742 0.131871 0.991267i \(-0.457901\pi\)
0.131871 + 0.991267i \(0.457901\pi\)
\(332\) 0 0
\(333\) 3.52786 0.193326
\(334\) 0 0
\(335\) −14.2918 −0.780844
\(336\) 0 0
\(337\) 4.20163 0.228877 0.114439 0.993430i \(-0.463493\pi\)
0.114439 + 0.993430i \(0.463493\pi\)
\(338\) 0 0
\(339\) 4.23607 0.230072
\(340\) 0 0
\(341\) 2.23607 0.121090
\(342\) 0 0
\(343\) 16.7082 0.902158
\(344\) 0 0
\(345\) 51.9230 2.79544
\(346\) 0 0
\(347\) 23.9098 1.28355 0.641773 0.766894i \(-0.278199\pi\)
0.641773 + 0.766894i \(0.278199\pi\)
\(348\) 0 0
\(349\) 26.1246 1.39842 0.699209 0.714917i \(-0.253536\pi\)
0.699209 + 0.714917i \(0.253536\pi\)
\(350\) 0 0
\(351\) 22.3820 1.19466
\(352\) 0 0
\(353\) −14.8885 −0.792437 −0.396219 0.918156i \(-0.629678\pi\)
−0.396219 + 0.918156i \(0.629678\pi\)
\(354\) 0 0
\(355\) −42.1803 −2.23870
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.5066 −1.08230 −0.541148 0.840927i \(-0.682010\pi\)
−0.541148 + 0.840927i \(0.682010\pi\)
\(360\) 0 0
\(361\) −5.90983 −0.311044
\(362\) 0 0
\(363\) 17.7082 0.929440
\(364\) 0 0
\(365\) 14.5066 0.759309
\(366\) 0 0
\(367\) −5.81966 −0.303784 −0.151892 0.988397i \(-0.548537\pi\)
−0.151892 + 0.988397i \(0.548537\pi\)
\(368\) 0 0
\(369\) 0.763932 0.0397687
\(370\) 0 0
\(371\) 4.34752 0.225712
\(372\) 0 0
\(373\) 31.9443 1.65401 0.827006 0.562193i \(-0.190042\pi\)
0.827006 + 0.562193i \(0.190042\pi\)
\(374\) 0 0
\(375\) 30.2705 1.56316
\(376\) 0 0
\(377\) 36.2148 1.86516
\(378\) 0 0
\(379\) 22.8885 1.17571 0.587853 0.808968i \(-0.299973\pi\)
0.587853 + 0.808968i \(0.299973\pi\)
\(380\) 0 0
\(381\) 5.61803 0.287821
\(382\) 0 0
\(383\) −4.27051 −0.218213 −0.109106 0.994030i \(-0.534799\pi\)
−0.109106 + 0.994030i \(0.534799\pi\)
\(384\) 0 0
\(385\) −1.25735 −0.0640807
\(386\) 0 0
\(387\) 0.562306 0.0285836
\(388\) 0 0
\(389\) −29.8328 −1.51258 −0.756292 0.654234i \(-0.772991\pi\)
−0.756292 + 0.654234i \(0.772991\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −31.8885 −1.60856
\(394\) 0 0
\(395\) −38.5410 −1.93921
\(396\) 0 0
\(397\) −6.23607 −0.312979 −0.156490 0.987680i \(-0.550018\pi\)
−0.156490 + 0.987680i \(0.550018\pi\)
\(398\) 0 0
\(399\) 8.09017 0.405015
\(400\) 0 0
\(401\) −4.32624 −0.216042 −0.108021 0.994149i \(-0.534451\pi\)
−0.108021 + 0.994149i \(0.534451\pi\)
\(402\) 0 0
\(403\) −38.7426 −1.92991
\(404\) 0 0
\(405\) 29.7082 1.47621
\(406\) 0 0
\(407\) 2.18034 0.108075
\(408\) 0 0
\(409\) 6.70820 0.331699 0.165850 0.986151i \(-0.446963\pi\)
0.165850 + 0.986151i \(0.446963\pi\)
\(410\) 0 0
\(411\) 10.9443 0.539841
\(412\) 0 0
\(413\) 0.652476 0.0321062
\(414\) 0 0
\(415\) −59.0689 −2.89958
\(416\) 0 0
\(417\) 13.9443 0.682854
\(418\) 0 0
\(419\) −6.23607 −0.304652 −0.152326 0.988330i \(-0.548676\pi\)
−0.152326 + 0.988330i \(0.548676\pi\)
\(420\) 0 0
\(421\) 28.6180 1.39476 0.697379 0.716703i \(-0.254350\pi\)
0.697379 + 0.716703i \(0.254350\pi\)
\(422\) 0 0
\(423\) 3.90983 0.190102
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.7295 0.519236
\(428\) 0 0
\(429\) 1.56231 0.0754288
\(430\) 0 0
\(431\) −29.0902 −1.40122 −0.700612 0.713542i \(-0.747090\pi\)
−0.700612 + 0.713542i \(0.747090\pi\)
\(432\) 0 0
\(433\) −32.9443 −1.58320 −0.791600 0.611039i \(-0.790752\pi\)
−0.791600 + 0.611039i \(0.790752\pi\)
\(434\) 0 0
\(435\) 55.2148 2.64735
\(436\) 0 0
\(437\) 30.1246 1.44106
\(438\) 0 0
\(439\) −6.65248 −0.317505 −0.158753 0.987318i \(-0.550747\pi\)
−0.158753 + 0.987318i \(0.550747\pi\)
\(440\) 0 0
\(441\) 1.94427 0.0925844
\(442\) 0 0
\(443\) 9.58359 0.455330 0.227665 0.973739i \(-0.426891\pi\)
0.227665 + 0.973739i \(0.426891\pi\)
\(444\) 0 0
\(445\) 17.2361 0.817068
\(446\) 0 0
\(447\) 15.7082 0.742973
\(448\) 0 0
\(449\) 14.3820 0.678727 0.339363 0.940655i \(-0.389788\pi\)
0.339363 + 0.940655i \(0.389788\pi\)
\(450\) 0 0
\(451\) 0.472136 0.0222320
\(452\) 0 0
\(453\) 18.8541 0.885843
\(454\) 0 0
\(455\) 21.7852 1.02131
\(456\) 0 0
\(457\) −25.8541 −1.20940 −0.604702 0.796452i \(-0.706708\pi\)
−0.604702 + 0.796452i \(0.706708\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.8885 −0.740003 −0.370002 0.929031i \(-0.620643\pi\)
−0.370002 + 0.929031i \(0.620643\pi\)
\(462\) 0 0
\(463\) −37.1246 −1.72533 −0.862664 0.505778i \(-0.831205\pi\)
−0.862664 + 0.505778i \(0.831205\pi\)
\(464\) 0 0
\(465\) −59.0689 −2.73925
\(466\) 0 0
\(467\) −28.5066 −1.31913 −0.659564 0.751649i \(-0.729259\pi\)
−0.659564 + 0.751649i \(0.729259\pi\)
\(468\) 0 0
\(469\) −5.12461 −0.236633
\(470\) 0 0
\(471\) −23.6525 −1.08985
\(472\) 0 0
\(473\) 0.347524 0.0159792
\(474\) 0 0
\(475\) 35.6525 1.63585
\(476\) 0 0
\(477\) 1.20163 0.0550187
\(478\) 0 0
\(479\) −0.708204 −0.0323587 −0.0161793 0.999869i \(-0.505150\pi\)
−0.0161793 + 0.999869i \(0.505150\pi\)
\(480\) 0 0
\(481\) −37.7771 −1.72249
\(482\) 0 0
\(483\) 18.6180 0.847150
\(484\) 0 0
\(485\) 14.8541 0.674490
\(486\) 0 0
\(487\) 7.32624 0.331984 0.165992 0.986127i \(-0.446917\pi\)
0.165992 + 0.986127i \(0.446917\pi\)
\(488\) 0 0
\(489\) 8.85410 0.400396
\(490\) 0 0
\(491\) −9.38197 −0.423402 −0.211701 0.977334i \(-0.567900\pi\)
−0.211701 + 0.977334i \(0.567900\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.347524 −0.0156200
\(496\) 0 0
\(497\) −15.1246 −0.678432
\(498\) 0 0
\(499\) 22.7984 1.02060 0.510298 0.859998i \(-0.329535\pi\)
0.510298 + 0.859998i \(0.329535\pi\)
\(500\) 0 0
\(501\) −2.32624 −0.103929
\(502\) 0 0
\(503\) 2.12461 0.0947318 0.0473659 0.998878i \(-0.484917\pi\)
0.0473659 + 0.998878i \(0.484917\pi\)
\(504\) 0 0
\(505\) −25.8541 −1.15049
\(506\) 0 0
\(507\) −6.03444 −0.267999
\(508\) 0 0
\(509\) 9.29180 0.411852 0.205926 0.978568i \(-0.433979\pi\)
0.205926 + 0.978568i \(0.433979\pi\)
\(510\) 0 0
\(511\) 5.20163 0.230106
\(512\) 0 0
\(513\) 19.7984 0.874120
\(514\) 0 0
\(515\) 36.2918 1.59921
\(516\) 0 0
\(517\) 2.41641 0.106273
\(518\) 0 0
\(519\) 2.09017 0.0917483
\(520\) 0 0
\(521\) 20.9443 0.917585 0.458793 0.888543i \(-0.348282\pi\)
0.458793 + 0.888543i \(0.348282\pi\)
\(522\) 0 0
\(523\) −36.0132 −1.57475 −0.787373 0.616477i \(-0.788559\pi\)
−0.787373 + 0.616477i \(0.788559\pi\)
\(524\) 0 0
\(525\) 22.0344 0.961662
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 46.3262 2.01418
\(530\) 0 0
\(531\) 0.180340 0.00782608
\(532\) 0 0
\(533\) −8.18034 −0.354330
\(534\) 0 0
\(535\) −25.8541 −1.11777
\(536\) 0 0
\(537\) −11.9443 −0.515433
\(538\) 0 0
\(539\) 1.20163 0.0517577
\(540\) 0 0
\(541\) 30.2705 1.30143 0.650715 0.759322i \(-0.274469\pi\)
0.650715 + 0.759322i \(0.274469\pi\)
\(542\) 0 0
\(543\) 11.3262 0.486055
\(544\) 0 0
\(545\) 3.85410 0.165092
\(546\) 0 0
\(547\) 11.0000 0.470326 0.235163 0.971956i \(-0.424438\pi\)
0.235163 + 0.971956i \(0.424438\pi\)
\(548\) 0 0
\(549\) 2.96556 0.126567
\(550\) 0 0
\(551\) 32.0344 1.36471
\(552\) 0 0
\(553\) −13.8197 −0.587672
\(554\) 0 0
\(555\) −57.5967 −2.44485
\(556\) 0 0
\(557\) 15.4164 0.653214 0.326607 0.945160i \(-0.394095\pi\)
0.326607 + 0.945160i \(0.394095\pi\)
\(558\) 0 0
\(559\) −6.02129 −0.254673
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.1803 −0.429050 −0.214525 0.976718i \(-0.568820\pi\)
−0.214525 + 0.976718i \(0.568820\pi\)
\(564\) 0 0
\(565\) 10.0902 0.424497
\(566\) 0 0
\(567\) 10.6525 0.447362
\(568\) 0 0
\(569\) 36.5967 1.53422 0.767108 0.641518i \(-0.221695\pi\)
0.767108 + 0.641518i \(0.221695\pi\)
\(570\) 0 0
\(571\) −11.7984 −0.493747 −0.246873 0.969048i \(-0.579403\pi\)
−0.246873 + 0.969048i \(0.579403\pi\)
\(572\) 0 0
\(573\) −21.8541 −0.912968
\(574\) 0 0
\(575\) 82.0476 3.42162
\(576\) 0 0
\(577\) −21.1803 −0.881749 −0.440875 0.897569i \(-0.645332\pi\)
−0.440875 + 0.897569i \(0.645332\pi\)
\(578\) 0 0
\(579\) −31.3262 −1.30187
\(580\) 0 0
\(581\) −21.1803 −0.878709
\(582\) 0 0
\(583\) 0.742646 0.0307572
\(584\) 0 0
\(585\) 6.02129 0.248950
\(586\) 0 0
\(587\) −0.965558 −0.0398528 −0.0199264 0.999801i \(-0.506343\pi\)
−0.0199264 + 0.999801i \(0.506343\pi\)
\(588\) 0 0
\(589\) −34.2705 −1.41209
\(590\) 0 0
\(591\) 36.1246 1.48597
\(592\) 0 0
\(593\) −13.3607 −0.548657 −0.274329 0.961636i \(-0.588456\pi\)
−0.274329 + 0.961636i \(0.588456\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.854102 0.0349561
\(598\) 0 0
\(599\) −1.87539 −0.0766263 −0.0383131 0.999266i \(-0.512198\pi\)
−0.0383131 + 0.999266i \(0.512198\pi\)
\(600\) 0 0
\(601\) 46.7426 1.90667 0.953336 0.301911i \(-0.0976245\pi\)
0.953336 + 0.301911i \(0.0976245\pi\)
\(602\) 0 0
\(603\) −1.41641 −0.0576806
\(604\) 0 0
\(605\) 42.1803 1.71487
\(606\) 0 0
\(607\) −7.29180 −0.295965 −0.147982 0.988990i \(-0.547278\pi\)
−0.147982 + 0.988990i \(0.547278\pi\)
\(608\) 0 0
\(609\) 19.7984 0.802271
\(610\) 0 0
\(611\) −41.8673 −1.69377
\(612\) 0 0
\(613\) 3.70820 0.149773 0.0748865 0.997192i \(-0.476141\pi\)
0.0748865 + 0.997192i \(0.476141\pi\)
\(614\) 0 0
\(615\) −12.4721 −0.502925
\(616\) 0 0
\(617\) 17.0000 0.684394 0.342197 0.939628i \(-0.388829\pi\)
0.342197 + 0.939628i \(0.388829\pi\)
\(618\) 0 0
\(619\) 33.0689 1.32915 0.664575 0.747221i \(-0.268612\pi\)
0.664575 + 0.747221i \(0.268612\pi\)
\(620\) 0 0
\(621\) 45.5623 1.82835
\(622\) 0 0
\(623\) 6.18034 0.247610
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) 0 0
\(627\) 1.38197 0.0551904
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 5.21478 0.207597 0.103799 0.994598i \(-0.466900\pi\)
0.103799 + 0.994598i \(0.466900\pi\)
\(632\) 0 0
\(633\) 11.9443 0.474742
\(634\) 0 0
\(635\) 13.3820 0.531047
\(636\) 0 0
\(637\) −20.8197 −0.824905
\(638\) 0 0
\(639\) −4.18034 −0.165372
\(640\) 0 0
\(641\) 6.74265 0.266318 0.133159 0.991095i \(-0.457488\pi\)
0.133159 + 0.991095i \(0.457488\pi\)
\(642\) 0 0
\(643\) −42.5410 −1.67765 −0.838827 0.544398i \(-0.816758\pi\)
−0.838827 + 0.544398i \(0.816758\pi\)
\(644\) 0 0
\(645\) −9.18034 −0.361476
\(646\) 0 0
\(647\) 32.7082 1.28589 0.642946 0.765911i \(-0.277712\pi\)
0.642946 + 0.765911i \(0.277712\pi\)
\(648\) 0 0
\(649\) 0.111456 0.00437504
\(650\) 0 0
\(651\) −21.1803 −0.830123
\(652\) 0 0
\(653\) −26.1246 −1.02234 −0.511168 0.859481i \(-0.670787\pi\)
−0.511168 + 0.859481i \(0.670787\pi\)
\(654\) 0 0
\(655\) −75.9574 −2.96790
\(656\) 0 0
\(657\) 1.43769 0.0560898
\(658\) 0 0
\(659\) 15.8328 0.616759 0.308379 0.951263i \(-0.400213\pi\)
0.308379 + 0.951263i \(0.400213\pi\)
\(660\) 0 0
\(661\) −29.3820 −1.14283 −0.571413 0.820663i \(-0.693605\pi\)
−0.571413 + 0.820663i \(0.693605\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.2705 0.747278
\(666\) 0 0
\(667\) 73.7214 2.85450
\(668\) 0 0
\(669\) 24.4164 0.943993
\(670\) 0 0
\(671\) 1.83282 0.0707551
\(672\) 0 0
\(673\) 2.47214 0.0952938 0.0476469 0.998864i \(-0.484828\pi\)
0.0476469 + 0.998864i \(0.484828\pi\)
\(674\) 0 0
\(675\) 53.9230 2.07550
\(676\) 0 0
\(677\) −13.6180 −0.523384 −0.261692 0.965151i \(-0.584280\pi\)
−0.261692 + 0.965151i \(0.584280\pi\)
\(678\) 0 0
\(679\) 5.32624 0.204402
\(680\) 0 0
\(681\) −5.61803 −0.215284
\(682\) 0 0
\(683\) −16.7426 −0.640640 −0.320320 0.947309i \(-0.603790\pi\)
−0.320320 + 0.947309i \(0.603790\pi\)
\(684\) 0 0
\(685\) 26.0689 0.996041
\(686\) 0 0
\(687\) 8.00000 0.305219
\(688\) 0 0
\(689\) −12.8673 −0.490203
\(690\) 0 0
\(691\) −48.9443 −1.86193 −0.930964 0.365111i \(-0.881031\pi\)
−0.930964 + 0.365111i \(0.881031\pi\)
\(692\) 0 0
\(693\) −0.124612 −0.00473361
\(694\) 0 0
\(695\) 33.2148 1.25991
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 13.2361 0.500634
\(700\) 0 0
\(701\) 18.8885 0.713410 0.356705 0.934217i \(-0.383900\pi\)
0.356705 + 0.934217i \(0.383900\pi\)
\(702\) 0 0
\(703\) −33.4164 −1.26032
\(704\) 0 0
\(705\) −63.8328 −2.40408
\(706\) 0 0
\(707\) −9.27051 −0.348653
\(708\) 0 0
\(709\) −5.61803 −0.210990 −0.105495 0.994420i \(-0.533643\pi\)
−0.105495 + 0.994420i \(0.533643\pi\)
\(710\) 0 0
\(711\) −3.81966 −0.143248
\(712\) 0 0
\(713\) −78.8673 −2.95360
\(714\) 0 0
\(715\) 3.72136 0.139171
\(716\) 0 0
\(717\) −13.3262 −0.497677
\(718\) 0 0
\(719\) −3.94427 −0.147097 −0.0735483 0.997292i \(-0.523432\pi\)
−0.0735483 + 0.997292i \(0.523432\pi\)
\(720\) 0 0
\(721\) 13.0132 0.484635
\(722\) 0 0
\(723\) 38.8885 1.44628
\(724\) 0 0
\(725\) 87.2492 3.24035
\(726\) 0 0
\(727\) 35.8885 1.33103 0.665516 0.746383i \(-0.268211\pi\)
0.665516 + 0.746383i \(0.268211\pi\)
\(728\) 0 0
\(729\) 29.5066 1.09284
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −31.7984 −1.17450 −0.587250 0.809406i \(-0.699789\pi\)
−0.587250 + 0.809406i \(0.699789\pi\)
\(734\) 0 0
\(735\) −31.7426 −1.17085
\(736\) 0 0
\(737\) −0.875388 −0.0322453
\(738\) 0 0
\(739\) −15.5410 −0.571686 −0.285843 0.958277i \(-0.592274\pi\)
−0.285843 + 0.958277i \(0.592274\pi\)
\(740\) 0 0
\(741\) −23.9443 −0.879615
\(742\) 0 0
\(743\) −35.9443 −1.31867 −0.659334 0.751850i \(-0.729162\pi\)
−0.659334 + 0.751850i \(0.729162\pi\)
\(744\) 0 0
\(745\) 37.4164 1.37083
\(746\) 0 0
\(747\) −5.85410 −0.214190
\(748\) 0 0
\(749\) −9.27051 −0.338737
\(750\) 0 0
\(751\) 40.1246 1.46417 0.732084 0.681214i \(-0.238548\pi\)
0.732084 + 0.681214i \(0.238548\pi\)
\(752\) 0 0
\(753\) −22.3262 −0.813613
\(754\) 0 0
\(755\) 44.9098 1.63444
\(756\) 0 0
\(757\) −38.7771 −1.40938 −0.704689 0.709517i \(-0.748913\pi\)
−0.704689 + 0.709517i \(0.748913\pi\)
\(758\) 0 0
\(759\) 3.18034 0.115439
\(760\) 0 0
\(761\) −4.52786 −0.164135 −0.0820675 0.996627i \(-0.526152\pi\)
−0.0820675 + 0.996627i \(0.526152\pi\)
\(762\) 0 0
\(763\) 1.38197 0.0500305
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.93112 −0.0697286
\(768\) 0 0
\(769\) 20.6738 0.745515 0.372757 0.927929i \(-0.378412\pi\)
0.372757 + 0.927929i \(0.378412\pi\)
\(770\) 0 0
\(771\) 1.94427 0.0700212
\(772\) 0 0
\(773\) −20.3050 −0.730318 −0.365159 0.930945i \(-0.618985\pi\)
−0.365159 + 0.930945i \(0.618985\pi\)
\(774\) 0 0
\(775\) −93.3394 −3.35285
\(776\) 0 0
\(777\) −20.6525 −0.740903
\(778\) 0 0
\(779\) −7.23607 −0.259259
\(780\) 0 0
\(781\) −2.58359 −0.0924482
\(782\) 0 0
\(783\) 48.4508 1.73149
\(784\) 0 0
\(785\) −56.3394 −2.01084
\(786\) 0 0
\(787\) −18.6525 −0.664889 −0.332444 0.943123i \(-0.607873\pi\)
−0.332444 + 0.943123i \(0.607873\pi\)
\(788\) 0 0
\(789\) 46.2148 1.64529
\(790\) 0 0
\(791\) 3.61803 0.128642
\(792\) 0 0
\(793\) −31.7558 −1.12768
\(794\) 0 0
\(795\) −19.6180 −0.695780
\(796\) 0 0
\(797\) 2.52786 0.0895415 0.0447708 0.998997i \(-0.485744\pi\)
0.0447708 + 0.998997i \(0.485744\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.70820 0.0603564
\(802\) 0 0
\(803\) 0.888544 0.0313560
\(804\) 0 0
\(805\) 44.3475 1.56304
\(806\) 0 0
\(807\) 31.7426 1.11739
\(808\) 0 0
\(809\) 39.0132 1.37163 0.685815 0.727776i \(-0.259446\pi\)
0.685815 + 0.727776i \(0.259446\pi\)
\(810\) 0 0
\(811\) 23.7082 0.832508 0.416254 0.909248i \(-0.363343\pi\)
0.416254 + 0.909248i \(0.363343\pi\)
\(812\) 0 0
\(813\) 17.4721 0.612775
\(814\) 0 0
\(815\) 21.0902 0.738756
\(816\) 0 0
\(817\) −5.32624 −0.186341
\(818\) 0 0
\(819\) 2.15905 0.0754434
\(820\) 0 0
\(821\) −7.29180 −0.254485 −0.127243 0.991872i \(-0.540613\pi\)
−0.127243 + 0.991872i \(0.540613\pi\)
\(822\) 0 0
\(823\) −53.9443 −1.88038 −0.940190 0.340652i \(-0.889352\pi\)
−0.940190 + 0.340652i \(0.889352\pi\)
\(824\) 0 0
\(825\) 3.76393 0.131043
\(826\) 0 0
\(827\) −2.52786 −0.0879024 −0.0439512 0.999034i \(-0.513995\pi\)
−0.0439512 + 0.999034i \(0.513995\pi\)
\(828\) 0 0
\(829\) −50.6525 −1.75923 −0.879617 0.475683i \(-0.842201\pi\)
−0.879617 + 0.475683i \(0.842201\pi\)
\(830\) 0 0
\(831\) 43.4164 1.50610
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.54102 −0.191755
\(836\) 0 0
\(837\) −51.8328 −1.79160
\(838\) 0 0
\(839\) −30.6525 −1.05824 −0.529120 0.848547i \(-0.677478\pi\)
−0.529120 + 0.848547i \(0.677478\pi\)
\(840\) 0 0
\(841\) 49.3951 1.70328
\(842\) 0 0
\(843\) −5.00000 −0.172209
\(844\) 0 0
\(845\) −14.3738 −0.494475
\(846\) 0 0
\(847\) 15.1246 0.519688
\(848\) 0 0
\(849\) −22.4721 −0.771242
\(850\) 0 0
\(851\) −76.9017 −2.63616
\(852\) 0 0
\(853\) 32.5279 1.11373 0.556866 0.830602i \(-0.312004\pi\)
0.556866 + 0.830602i \(0.312004\pi\)
\(854\) 0 0
\(855\) 5.32624 0.182153
\(856\) 0 0
\(857\) −39.1803 −1.33837 −0.669187 0.743094i \(-0.733358\pi\)
−0.669187 + 0.743094i \(0.733358\pi\)
\(858\) 0 0
\(859\) 22.5410 0.769090 0.384545 0.923106i \(-0.374358\pi\)
0.384545 + 0.923106i \(0.374358\pi\)
\(860\) 0 0
\(861\) −4.47214 −0.152410
\(862\) 0 0
\(863\) 49.5623 1.68712 0.843560 0.537035i \(-0.180456\pi\)
0.843560 + 0.537035i \(0.180456\pi\)
\(864\) 0 0
\(865\) 4.97871 0.169281
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.36068 −0.0800806
\(870\) 0 0
\(871\) 15.1672 0.513920
\(872\) 0 0
\(873\) 1.47214 0.0498243
\(874\) 0 0
\(875\) 25.8541 0.874028
\(876\) 0 0
\(877\) 33.7426 1.13941 0.569704 0.821850i \(-0.307058\pi\)
0.569704 + 0.821850i \(0.307058\pi\)
\(878\) 0 0
\(879\) 31.8885 1.07557
\(880\) 0 0
\(881\) −11.9098 −0.401252 −0.200626 0.979668i \(-0.564298\pi\)
−0.200626 + 0.979668i \(0.564298\pi\)
\(882\) 0 0
\(883\) 34.3820 1.15705 0.578523 0.815666i \(-0.303629\pi\)
0.578523 + 0.815666i \(0.303629\pi\)
\(884\) 0 0
\(885\) −2.94427 −0.0989706
\(886\) 0 0
\(887\) −17.5623 −0.589685 −0.294842 0.955546i \(-0.595267\pi\)
−0.294842 + 0.955546i \(0.595267\pi\)
\(888\) 0 0
\(889\) 4.79837 0.160932
\(890\) 0 0
\(891\) 1.81966 0.0609609
\(892\) 0 0
\(893\) −37.0344 −1.23931
\(894\) 0 0
\(895\) −28.4508 −0.951007
\(896\) 0 0
\(897\) −55.1033 −1.83985
\(898\) 0 0
\(899\) −83.8673 −2.79713
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −3.29180 −0.109544
\(904\) 0 0
\(905\) 26.9787 0.896803
\(906\) 0 0
\(907\) −12.2705 −0.407436 −0.203718 0.979030i \(-0.565303\pi\)
−0.203718 + 0.979030i \(0.565303\pi\)
\(908\) 0 0
\(909\) −2.56231 −0.0849863
\(910\) 0 0
\(911\) −16.1459 −0.534937 −0.267469 0.963567i \(-0.586187\pi\)
−0.267469 + 0.963567i \(0.586187\pi\)
\(912\) 0 0
\(913\) −3.61803 −0.119739
\(914\) 0 0
\(915\) −48.4164 −1.60060
\(916\) 0 0
\(917\) −27.2361 −0.899414
\(918\) 0 0
\(919\) −42.9230 −1.41590 −0.707949 0.706263i \(-0.750380\pi\)
−0.707949 + 0.706263i \(0.750380\pi\)
\(920\) 0 0
\(921\) 33.3607 1.09927
\(922\) 0 0
\(923\) 44.7639 1.47342
\(924\) 0 0
\(925\) −91.0132 −2.99249
\(926\) 0 0
\(927\) 3.59675 0.118133
\(928\) 0 0
\(929\) 33.8673 1.11115 0.555574 0.831467i \(-0.312498\pi\)
0.555574 + 0.831467i \(0.312498\pi\)
\(930\) 0 0
\(931\) −18.4164 −0.603573
\(932\) 0 0
\(933\) 37.2705 1.22018
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −18.3951 −0.600942 −0.300471 0.953791i \(-0.597144\pi\)
−0.300471 + 0.953791i \(0.597144\pi\)
\(938\) 0 0
\(939\) −2.00000 −0.0652675
\(940\) 0 0
\(941\) −39.6738 −1.29333 −0.646664 0.762775i \(-0.723836\pi\)
−0.646664 + 0.762775i \(0.723836\pi\)
\(942\) 0 0
\(943\) −16.6525 −0.542279
\(944\) 0 0
\(945\) 29.1459 0.948116
\(946\) 0 0
\(947\) −16.2361 −0.527601 −0.263801 0.964577i \(-0.584976\pi\)
−0.263801 + 0.964577i \(0.584976\pi\)
\(948\) 0 0
\(949\) −15.3951 −0.499747
\(950\) 0 0
\(951\) 40.7426 1.32117
\(952\) 0 0
\(953\) 0.798374 0.0258619 0.0129309 0.999916i \(-0.495884\pi\)
0.0129309 + 0.999916i \(0.495884\pi\)
\(954\) 0 0
\(955\) −52.0557 −1.68448
\(956\) 0 0
\(957\) 3.38197 0.109323
\(958\) 0 0
\(959\) 9.34752 0.301847
\(960\) 0 0
\(961\) 58.7214 1.89424
\(962\) 0 0
\(963\) −2.56231 −0.0825692
\(964\) 0 0
\(965\) −74.6180 −2.40204
\(966\) 0 0
\(967\) 9.20163 0.295904 0.147952 0.988995i \(-0.452732\pi\)
0.147952 + 0.988995i \(0.452732\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.909830 0.0291978 0.0145989 0.999893i \(-0.495353\pi\)
0.0145989 + 0.999893i \(0.495353\pi\)
\(972\) 0 0
\(973\) 11.9098 0.381812
\(974\) 0 0
\(975\) −65.2148 −2.08854
\(976\) 0 0
\(977\) 32.8541 1.05110 0.525548 0.850764i \(-0.323860\pi\)
0.525548 + 0.850764i \(0.323860\pi\)
\(978\) 0 0
\(979\) 1.05573 0.0337412
\(980\) 0 0
\(981\) 0.381966 0.0121952
\(982\) 0 0
\(983\) −33.0557 −1.05431 −0.527157 0.849768i \(-0.676742\pi\)
−0.527157 + 0.849768i \(0.676742\pi\)
\(984\) 0 0
\(985\) 86.0476 2.74170
\(986\) 0 0
\(987\) −22.8885 −0.728550
\(988\) 0 0
\(989\) −12.2574 −0.389761
\(990\) 0 0
\(991\) 3.21478 0.102121 0.0510605 0.998696i \(-0.483740\pi\)
0.0510605 + 0.998696i \(0.483740\pi\)
\(992\) 0 0
\(993\) −7.76393 −0.246381
\(994\) 0 0
\(995\) 2.03444 0.0644961
\(996\) 0 0
\(997\) 18.4508 0.584344 0.292172 0.956366i \(-0.405622\pi\)
0.292172 + 0.956366i \(0.405622\pi\)
\(998\) 0 0
\(999\) −50.5410 −1.59905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.f.1.1 2
4.3 odd 2 4624.2.a.w.1.2 2
17.4 even 4 2312.2.b.k.577.4 4
17.13 even 4 2312.2.b.k.577.1 4
17.16 even 2 2312.2.a.l.1.2 yes 2
68.67 odd 2 4624.2.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.f.1.1 2 1.1 even 1 trivial
2312.2.a.l.1.2 yes 2 17.16 even 2
2312.2.b.k.577.1 4 17.13 even 4
2312.2.b.k.577.4 4 17.4 even 4
4624.2.a.i.1.1 2 68.67 odd 2
4624.2.a.w.1.2 2 4.3 odd 2