Properties

Label 2312.2.a.h.1.2
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(1,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{3} -4.24264 q^{5} -4.24264 q^{7} -1.00000 q^{9} -1.41421 q^{11} -2.00000 q^{13} -6.00000 q^{15} +6.00000 q^{19} -6.00000 q^{21} -1.41421 q^{23} +13.0000 q^{25} -5.65685 q^{27} +1.41421 q^{29} +1.41421 q^{31} -2.00000 q^{33} +18.0000 q^{35} +4.24264 q^{37} -2.82843 q^{39} +1.41421 q^{41} +2.00000 q^{43} +4.24264 q^{45} +11.0000 q^{49} -4.00000 q^{53} +6.00000 q^{55} +8.48528 q^{57} -6.00000 q^{59} +1.41421 q^{61} +4.24264 q^{63} +8.48528 q^{65} -4.00000 q^{67} -2.00000 q^{69} +7.07107 q^{71} +1.41421 q^{73} +18.3848 q^{75} +6.00000 q^{77} -12.7279 q^{79} -5.00000 q^{81} +14.0000 q^{83} +2.00000 q^{87} -6.00000 q^{89} +8.48528 q^{91} +2.00000 q^{93} -25.4558 q^{95} +18.3848 q^{97} +1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 4 q^{13} - 12 q^{15} + 12 q^{19} - 12 q^{21} + 26 q^{25} - 4 q^{33} + 36 q^{35} + 4 q^{43} + 22 q^{49} - 8 q^{53} + 12 q^{55} - 12 q^{59} - 8 q^{67} - 4 q^{69} + 12 q^{77} - 10 q^{81} + 28 q^{83}+ \cdots + 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 0.816497 0.408248 0.912871i \(-0.366140\pi\)
0.408248 + 0.912871i \(0.366140\pi\)
\(4\) 0 0
\(5\) −4.24264 −1.89737 −0.948683 0.316228i \(-0.897584\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) 0 0
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −6.00000 −1.54919
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −6.00000 −1.30931
\(22\) 0 0
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) 0 0
\(25\) 13.0000 2.60000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 1.41421 0.262613 0.131306 0.991342i \(-0.458083\pi\)
0.131306 + 0.991342i \(0.458083\pi\)
\(30\) 0 0
\(31\) 1.41421 0.254000 0.127000 0.991903i \(-0.459465\pi\)
0.127000 + 0.991903i \(0.459465\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 18.0000 3.04256
\(36\) 0 0
\(37\) 4.24264 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(38\) 0 0
\(39\) −2.82843 −0.452911
\(40\) 0 0
\(41\) 1.41421 0.220863 0.110432 0.993884i \(-0.464777\pi\)
0.110432 + 0.993884i \(0.464777\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 4.24264 0.632456
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 8.48528 1.12390
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 1.41421 0.181071 0.0905357 0.995893i \(-0.471142\pi\)
0.0905357 + 0.995893i \(0.471142\pi\)
\(62\) 0 0
\(63\) 4.24264 0.534522
\(64\) 0 0
\(65\) 8.48528 1.05247
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 7.07107 0.839181 0.419591 0.907713i \(-0.362174\pi\)
0.419591 + 0.907713i \(0.362174\pi\)
\(72\) 0 0
\(73\) 1.41421 0.165521 0.0827606 0.996569i \(-0.473626\pi\)
0.0827606 + 0.996569i \(0.473626\pi\)
\(74\) 0 0
\(75\) 18.3848 2.12289
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) −12.7279 −1.43200 −0.716002 0.698099i \(-0.754030\pi\)
−0.716002 + 0.698099i \(0.754030\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 8.48528 0.889499
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) −25.4558 −2.61171
\(96\) 0 0
\(97\) 18.3848 1.86669 0.933346 0.358979i \(-0.116875\pi\)
0.933346 + 0.358979i \(0.116875\pi\)
\(98\) 0 0
\(99\) 1.41421 0.142134
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 25.4558 2.48424
\(106\) 0 0
\(107\) 9.89949 0.957020 0.478510 0.878082i \(-0.341177\pi\)
0.478510 + 0.878082i \(0.341177\pi\)
\(108\) 0 0
\(109\) 12.7279 1.21911 0.609557 0.792742i \(-0.291347\pi\)
0.609557 + 0.792742i \(0.291347\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −7.07107 −0.665190 −0.332595 0.943070i \(-0.607924\pi\)
−0.332595 + 0.943070i \(0.607924\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) −33.9411 −3.03579
\(126\) 0 0
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) 0 0
\(129\) 2.82843 0.249029
\(130\) 0 0
\(131\) −12.7279 −1.11204 −0.556022 0.831168i \(-0.687673\pi\)
−0.556022 + 0.831168i \(0.687673\pi\)
\(132\) 0 0
\(133\) −25.4558 −2.20730
\(134\) 0 0
\(135\) 24.0000 2.06559
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −15.5563 −1.31947 −0.659736 0.751497i \(-0.729332\pi\)
−0.659736 + 0.751497i \(0.729332\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.82843 0.236525
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 15.5563 1.28307
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) −5.65685 −0.448618
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 1.41421 0.110770 0.0553849 0.998465i \(-0.482361\pi\)
0.0553849 + 0.998465i \(0.482361\pi\)
\(164\) 0 0
\(165\) 8.48528 0.660578
\(166\) 0 0
\(167\) 18.3848 1.42266 0.711328 0.702860i \(-0.248094\pi\)
0.711328 + 0.702860i \(0.248094\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 9.89949 0.752645 0.376322 0.926489i \(-0.377189\pi\)
0.376322 + 0.926489i \(0.377189\pi\)
\(174\) 0 0
\(175\) −55.1543 −4.16928
\(176\) 0 0
\(177\) −8.48528 −0.637793
\(178\) 0 0
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) −12.7279 −0.946059 −0.473029 0.881047i \(-0.656840\pi\)
−0.473029 + 0.881047i \(0.656840\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) −18.0000 −1.32339
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 24.0000 1.74574
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −12.7279 −0.916176 −0.458088 0.888907i \(-0.651466\pi\)
−0.458088 + 0.888907i \(0.651466\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) −15.5563 −1.10834 −0.554172 0.832402i \(-0.686965\pi\)
−0.554172 + 0.832402i \(0.686965\pi\)
\(198\) 0 0
\(199\) 9.89949 0.701757 0.350878 0.936421i \(-0.385883\pi\)
0.350878 + 0.936421i \(0.385883\pi\)
\(200\) 0 0
\(201\) −5.65685 −0.399004
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 1.41421 0.0982946
\(208\) 0 0
\(209\) −8.48528 −0.586939
\(210\) 0 0
\(211\) 7.07107 0.486792 0.243396 0.969927i \(-0.421738\pi\)
0.243396 + 0.969927i \(0.421738\pi\)
\(212\) 0 0
\(213\) 10.0000 0.685189
\(214\) 0 0
\(215\) −8.48528 −0.578691
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 0 0
\(225\) −13.0000 −0.866667
\(226\) 0 0
\(227\) 21.2132 1.40797 0.703985 0.710215i \(-0.251402\pi\)
0.703985 + 0.710215i \(0.251402\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 0 0
\(231\) 8.48528 0.558291
\(232\) 0 0
\(233\) −26.8701 −1.76032 −0.880158 0.474681i \(-0.842563\pi\)
−0.880158 + 0.474681i \(0.842563\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.0000 −1.16923
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −12.7279 −0.819878 −0.409939 0.912113i \(-0.634450\pi\)
−0.409939 + 0.912113i \(0.634450\pi\)
\(242\) 0 0
\(243\) 9.89949 0.635053
\(244\) 0 0
\(245\) −46.6690 −2.98158
\(246\) 0 0
\(247\) −12.0000 −0.763542
\(248\) 0 0
\(249\) 19.7990 1.25471
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.0000 −1.24757 −0.623783 0.781598i \(-0.714405\pi\)
−0.623783 + 0.781598i \(0.714405\pi\)
\(258\) 0 0
\(259\) −18.0000 −1.11847
\(260\) 0 0
\(261\) −1.41421 −0.0875376
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 16.9706 1.04249
\(266\) 0 0
\(267\) −8.48528 −0.519291
\(268\) 0 0
\(269\) −18.3848 −1.12094 −0.560470 0.828175i \(-0.689379\pi\)
−0.560470 + 0.828175i \(0.689379\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 12.0000 0.726273
\(274\) 0 0
\(275\) −18.3848 −1.10864
\(276\) 0 0
\(277\) 12.7279 0.764747 0.382373 0.924008i \(-0.375107\pi\)
0.382373 + 0.924008i \(0.375107\pi\)
\(278\) 0 0
\(279\) −1.41421 −0.0846668
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) 21.2132 1.26099 0.630497 0.776192i \(-0.282851\pi\)
0.630497 + 0.776192i \(0.282851\pi\)
\(284\) 0 0
\(285\) −36.0000 −2.13246
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 26.0000 1.52415
\(292\) 0 0
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 0 0
\(295\) 25.4558 1.48210
\(296\) 0 0
\(297\) 8.00000 0.464207
\(298\) 0 0
\(299\) 2.82843 0.163572
\(300\) 0 0
\(301\) −8.48528 −0.489083
\(302\) 0 0
\(303\) −8.48528 −0.487467
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.8701 1.52366 0.761831 0.647776i \(-0.224301\pi\)
0.761831 + 0.647776i \(0.224301\pi\)
\(312\) 0 0
\(313\) 12.7279 0.719425 0.359712 0.933063i \(-0.382875\pi\)
0.359712 + 0.933063i \(0.382875\pi\)
\(314\) 0 0
\(315\) −18.0000 −1.01419
\(316\) 0 0
\(317\) −7.07107 −0.397151 −0.198575 0.980086i \(-0.563631\pi\)
−0.198575 + 0.980086i \(0.563631\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −26.0000 −1.44222
\(326\) 0 0
\(327\) 18.0000 0.995402
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 0 0
\(333\) −4.24264 −0.232495
\(334\) 0 0
\(335\) 16.9706 0.927201
\(336\) 0 0
\(337\) 21.2132 1.15556 0.577778 0.816194i \(-0.303920\pi\)
0.577778 + 0.816194i \(0.303920\pi\)
\(338\) 0 0
\(339\) −10.0000 −0.543125
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 8.48528 0.456832
\(346\) 0 0
\(347\) 24.0416 1.29062 0.645311 0.763920i \(-0.276728\pi\)
0.645311 + 0.763920i \(0.276728\pi\)
\(348\) 0 0
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) 11.3137 0.603881
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −30.0000 −1.59223
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −12.7279 −0.668043
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 29.6985 1.55025 0.775124 0.631809i \(-0.217687\pi\)
0.775124 + 0.631809i \(0.217687\pi\)
\(368\) 0 0
\(369\) −1.41421 −0.0736210
\(370\) 0 0
\(371\) 16.9706 0.881068
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) −48.0000 −2.47871
\(376\) 0 0
\(377\) −2.82843 −0.145671
\(378\) 0 0
\(379\) 21.2132 1.08965 0.544825 0.838550i \(-0.316596\pi\)
0.544825 + 0.838550i \(0.316596\pi\)
\(380\) 0 0
\(381\) 19.7990 1.01433
\(382\) 0 0
\(383\) −26.0000 −1.32854 −0.664269 0.747494i \(-0.731257\pi\)
−0.664269 + 0.747494i \(0.731257\pi\)
\(384\) 0 0
\(385\) −25.4558 −1.29735
\(386\) 0 0
\(387\) −2.00000 −0.101666
\(388\) 0 0
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −18.0000 −0.907980
\(394\) 0 0
\(395\) 54.0000 2.71703
\(396\) 0 0
\(397\) 32.5269 1.63248 0.816239 0.577714i \(-0.196055\pi\)
0.816239 + 0.577714i \(0.196055\pi\)
\(398\) 0 0
\(399\) −36.0000 −1.80225
\(400\) 0 0
\(401\) 12.7279 0.635602 0.317801 0.948157i \(-0.397056\pi\)
0.317801 + 0.948157i \(0.397056\pi\)
\(402\) 0 0
\(403\) −2.82843 −0.140894
\(404\) 0 0
\(405\) 21.2132 1.05409
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 8.48528 0.418548
\(412\) 0 0
\(413\) 25.4558 1.25260
\(414\) 0 0
\(415\) −59.3970 −2.91568
\(416\) 0 0
\(417\) −22.0000 −1.07734
\(418\) 0 0
\(419\) −7.07107 −0.345444 −0.172722 0.984971i \(-0.555256\pi\)
−0.172722 + 0.984971i \(0.555256\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.00000 −0.290360
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 9.89949 0.476842 0.238421 0.971162i \(-0.423370\pi\)
0.238421 + 0.971162i \(0.423370\pi\)
\(432\) 0 0
\(433\) −12.0000 −0.576683 −0.288342 0.957528i \(-0.593104\pi\)
−0.288342 + 0.957528i \(0.593104\pi\)
\(434\) 0 0
\(435\) −8.48528 −0.406838
\(436\) 0 0
\(437\) −8.48528 −0.405906
\(438\) 0 0
\(439\) −4.24264 −0.202490 −0.101245 0.994862i \(-0.532283\pi\)
−0.101245 + 0.994862i \(0.532283\pi\)
\(440\) 0 0
\(441\) −11.0000 −0.523810
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 25.4558 1.20672
\(446\) 0 0
\(447\) 14.1421 0.668900
\(448\) 0 0
\(449\) −4.24264 −0.200223 −0.100111 0.994976i \(-0.531920\pi\)
−0.100111 + 0.994976i \(0.531920\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 2.82843 0.132891
\(454\) 0 0
\(455\) −36.0000 −1.68771
\(456\) 0 0
\(457\) 20.0000 0.935561 0.467780 0.883845i \(-0.345054\pi\)
0.467780 + 0.883845i \(0.345054\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) −8.48528 −0.393496
\(466\) 0 0
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 0 0
\(471\) 14.1421 0.651635
\(472\) 0 0
\(473\) −2.82843 −0.130051
\(474\) 0 0
\(475\) 78.0000 3.57889
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) 0 0
\(479\) 12.7279 0.581554 0.290777 0.956791i \(-0.406086\pi\)
0.290777 + 0.956791i \(0.406086\pi\)
\(480\) 0 0
\(481\) −8.48528 −0.386896
\(482\) 0 0
\(483\) 8.48528 0.386094
\(484\) 0 0
\(485\) −78.0000 −3.54180
\(486\) 0 0
\(487\) −18.3848 −0.833094 −0.416547 0.909114i \(-0.636760\pi\)
−0.416547 + 0.909114i \(0.636760\pi\)
\(488\) 0 0
\(489\) 2.00000 0.0904431
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) −30.0000 −1.34568
\(498\) 0 0
\(499\) −18.3848 −0.823016 −0.411508 0.911406i \(-0.634998\pi\)
−0.411508 + 0.911406i \(0.634998\pi\)
\(500\) 0 0
\(501\) 26.0000 1.16159
\(502\) 0 0
\(503\) −26.8701 −1.19808 −0.599038 0.800720i \(-0.704450\pi\)
−0.599038 + 0.800720i \(0.704450\pi\)
\(504\) 0 0
\(505\) 25.4558 1.13277
\(506\) 0 0
\(507\) −12.7279 −0.565267
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) 0 0
\(513\) −33.9411 −1.49854
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 32.5269 1.42503 0.712515 0.701657i \(-0.247556\pi\)
0.712515 + 0.701657i \(0.247556\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) −78.0000 −3.40420
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) −2.82843 −0.122513
\(534\) 0 0
\(535\) −42.0000 −1.81582
\(536\) 0 0
\(537\) 25.4558 1.09850
\(538\) 0 0
\(539\) −15.5563 −0.670059
\(540\) 0 0
\(541\) 26.8701 1.15523 0.577617 0.816308i \(-0.303983\pi\)
0.577617 + 0.816308i \(0.303983\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) −54.0000 −2.31311
\(546\) 0 0
\(547\) −21.2132 −0.907011 −0.453506 0.891253i \(-0.649827\pi\)
−0.453506 + 0.891253i \(0.649827\pi\)
\(548\) 0 0
\(549\) −1.41421 −0.0603572
\(550\) 0 0
\(551\) 8.48528 0.361485
\(552\) 0 0
\(553\) 54.0000 2.29631
\(554\) 0 0
\(555\) −25.4558 −1.08054
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.0000 0.927189 0.463595 0.886047i \(-0.346559\pi\)
0.463595 + 0.886047i \(0.346559\pi\)
\(564\) 0 0
\(565\) 30.0000 1.26211
\(566\) 0 0
\(567\) 21.2132 0.890871
\(568\) 0 0
\(569\) −16.0000 −0.670755 −0.335377 0.942084i \(-0.608864\pi\)
−0.335377 + 0.942084i \(0.608864\pi\)
\(570\) 0 0
\(571\) 18.3848 0.769379 0.384689 0.923046i \(-0.374309\pi\)
0.384689 + 0.923046i \(0.374309\pi\)
\(572\) 0 0
\(573\) −33.9411 −1.41791
\(574\) 0 0
\(575\) −18.3848 −0.766698
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) −18.0000 −0.748054
\(580\) 0 0
\(581\) −59.3970 −2.46420
\(582\) 0 0
\(583\) 5.65685 0.234283
\(584\) 0 0
\(585\) −8.48528 −0.350823
\(586\) 0 0
\(587\) −38.0000 −1.56843 −0.784214 0.620491i \(-0.786934\pi\)
−0.784214 + 0.620491i \(0.786934\pi\)
\(588\) 0 0
\(589\) 8.48528 0.349630
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.0000 0.572982
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) −1.41421 −0.0576870 −0.0288435 0.999584i \(-0.509182\pi\)
−0.0288435 + 0.999584i \(0.509182\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 38.1838 1.55239
\(606\) 0 0
\(607\) −12.7279 −0.516610 −0.258305 0.966063i \(-0.583164\pi\)
−0.258305 + 0.966063i \(0.583164\pi\)
\(608\) 0 0
\(609\) −8.48528 −0.343841
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 0 0
\(615\) −8.48528 −0.342160
\(616\) 0 0
\(617\) 7.07107 0.284670 0.142335 0.989819i \(-0.454539\pi\)
0.142335 + 0.989819i \(0.454539\pi\)
\(618\) 0 0
\(619\) −21.2132 −0.852631 −0.426315 0.904575i \(-0.640189\pi\)
−0.426315 + 0.904575i \(0.640189\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 25.4558 1.01987
\(624\) 0 0
\(625\) 79.0000 3.16000
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) 10.0000 0.397464
\(634\) 0 0
\(635\) −59.3970 −2.35710
\(636\) 0 0
\(637\) −22.0000 −0.871672
\(638\) 0 0
\(639\) −7.07107 −0.279727
\(640\) 0 0
\(641\) −15.5563 −0.614439 −0.307219 0.951639i \(-0.599399\pi\)
−0.307219 + 0.951639i \(0.599399\pi\)
\(642\) 0 0
\(643\) −43.8406 −1.72891 −0.864453 0.502714i \(-0.832335\pi\)
−0.864453 + 0.502714i \(0.832335\pi\)
\(644\) 0 0
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) 0 0
\(649\) 8.48528 0.333076
\(650\) 0 0
\(651\) −8.48528 −0.332564
\(652\) 0 0
\(653\) −15.5563 −0.608767 −0.304383 0.952550i \(-0.598450\pi\)
−0.304383 + 0.952550i \(0.598450\pi\)
\(654\) 0 0
\(655\) 54.0000 2.10995
\(656\) 0 0
\(657\) −1.41421 −0.0551737
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 36.0000 1.40024 0.700119 0.714026i \(-0.253130\pi\)
0.700119 + 0.714026i \(0.253130\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 108.000 4.18806
\(666\) 0 0
\(667\) −2.00000 −0.0774403
\(668\) 0 0
\(669\) 36.7696 1.42159
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) −15.5563 −0.599653 −0.299827 0.953994i \(-0.596929\pi\)
−0.299827 + 0.953994i \(0.596929\pi\)
\(674\) 0 0
\(675\) −73.5391 −2.83052
\(676\) 0 0
\(677\) −1.41421 −0.0543526 −0.0271763 0.999631i \(-0.508652\pi\)
−0.0271763 + 0.999631i \(0.508652\pi\)
\(678\) 0 0
\(679\) −78.0000 −2.99337
\(680\) 0 0
\(681\) 30.0000 1.14960
\(682\) 0 0
\(683\) 1.41421 0.0541134 0.0270567 0.999634i \(-0.491387\pi\)
0.0270567 + 0.999634i \(0.491387\pi\)
\(684\) 0 0
\(685\) −25.4558 −0.972618
\(686\) 0 0
\(687\) −22.6274 −0.863290
\(688\) 0 0
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) 43.8406 1.66778 0.833888 0.551934i \(-0.186110\pi\)
0.833888 + 0.551934i \(0.186110\pi\)
\(692\) 0 0
\(693\) −6.00000 −0.227921
\(694\) 0 0
\(695\) 66.0000 2.50352
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −38.0000 −1.43729
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 25.4558 0.960085
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25.4558 0.957366
\(708\) 0 0
\(709\) 46.6690 1.75269 0.876346 0.481681i \(-0.159974\pi\)
0.876346 + 0.481681i \(0.159974\pi\)
\(710\) 0 0
\(711\) 12.7279 0.477334
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) 11.3137 0.422518
\(718\) 0 0
\(719\) −18.3848 −0.685636 −0.342818 0.939402i \(-0.611381\pi\)
−0.342818 + 0.939402i \(0.611381\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18.0000 −0.669427
\(724\) 0 0
\(725\) 18.3848 0.682793
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 28.0000 1.03420 0.517102 0.855924i \(-0.327011\pi\)
0.517102 + 0.855924i \(0.327011\pi\)
\(734\) 0 0
\(735\) −66.0000 −2.43445
\(736\) 0 0
\(737\) 5.65685 0.208373
\(738\) 0 0
\(739\) −14.0000 −0.514998 −0.257499 0.966279i \(-0.582898\pi\)
−0.257499 + 0.966279i \(0.582898\pi\)
\(740\) 0 0
\(741\) −16.9706 −0.623429
\(742\) 0 0
\(743\) 21.2132 0.778237 0.389118 0.921188i \(-0.372780\pi\)
0.389118 + 0.921188i \(0.372780\pi\)
\(744\) 0 0
\(745\) −42.4264 −1.55438
\(746\) 0 0
\(747\) −14.0000 −0.512233
\(748\) 0 0
\(749\) −42.0000 −1.53465
\(750\) 0 0
\(751\) −26.8701 −0.980502 −0.490251 0.871581i \(-0.663095\pi\)
−0.490251 + 0.871581i \(0.663095\pi\)
\(752\) 0 0
\(753\) 28.2843 1.03074
\(754\) 0 0
\(755\) −8.48528 −0.308811
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 2.82843 0.102665
\(760\) 0 0
\(761\) −38.0000 −1.37750 −0.688749 0.724999i \(-0.741840\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 0 0
\(763\) −54.0000 −1.95493
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −28.2843 −1.01863
\(772\) 0 0
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 18.3848 0.660401
\(776\) 0 0
\(777\) −25.4558 −0.913223
\(778\) 0 0
\(779\) 8.48528 0.304017
\(780\) 0 0
\(781\) −10.0000 −0.357828
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) −42.4264 −1.51426
\(786\) 0 0
\(787\) −7.07107 −0.252056 −0.126028 0.992027i \(-0.540223\pi\)
−0.126028 + 0.992027i \(0.540223\pi\)
\(788\) 0 0
\(789\) −25.4558 −0.906252
\(790\) 0 0
\(791\) 30.0000 1.06668
\(792\) 0 0
\(793\) −2.82843 −0.100440
\(794\) 0 0
\(795\) 24.0000 0.851192
\(796\) 0 0
\(797\) −20.0000 −0.708436 −0.354218 0.935163i \(-0.615253\pi\)
−0.354218 + 0.935163i \(0.615253\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) −2.00000 −0.0705785
\(804\) 0 0
\(805\) −25.4558 −0.897201
\(806\) 0 0
\(807\) −26.0000 −0.915243
\(808\) 0 0
\(809\) −4.24264 −0.149163 −0.0745817 0.997215i \(-0.523762\pi\)
−0.0745817 + 0.997215i \(0.523762\pi\)
\(810\) 0 0
\(811\) 4.24264 0.148979 0.0744896 0.997222i \(-0.476267\pi\)
0.0744896 + 0.997222i \(0.476267\pi\)
\(812\) 0 0
\(813\) 11.3137 0.396789
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) −8.48528 −0.296500
\(820\) 0 0
\(821\) 1.41421 0.0493564 0.0246782 0.999695i \(-0.492144\pi\)
0.0246782 + 0.999695i \(0.492144\pi\)
\(822\) 0 0
\(823\) 35.3553 1.23241 0.616205 0.787586i \(-0.288669\pi\)
0.616205 + 0.787586i \(0.288669\pi\)
\(824\) 0 0
\(825\) −26.0000 −0.905204
\(826\) 0 0
\(827\) −7.07107 −0.245885 −0.122943 0.992414i \(-0.539233\pi\)
−0.122943 + 0.992414i \(0.539233\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −78.0000 −2.69930
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 38.1838 1.31825 0.659125 0.752033i \(-0.270927\pi\)
0.659125 + 0.752033i \(0.270927\pi\)
\(840\) 0 0
\(841\) −27.0000 −0.931034
\(842\) 0 0
\(843\) 11.3137 0.389665
\(844\) 0 0
\(845\) 38.1838 1.31356
\(846\) 0 0
\(847\) 38.1838 1.31201
\(848\) 0 0
\(849\) 30.0000 1.02960
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −7.07107 −0.242109 −0.121054 0.992646i \(-0.538628\pi\)
−0.121054 + 0.992646i \(0.538628\pi\)
\(854\) 0 0
\(855\) 25.4558 0.870572
\(856\) 0 0
\(857\) 46.6690 1.59418 0.797092 0.603858i \(-0.206370\pi\)
0.797092 + 0.603858i \(0.206370\pi\)
\(858\) 0 0
\(859\) 42.0000 1.43302 0.716511 0.697576i \(-0.245738\pi\)
0.716511 + 0.697576i \(0.245738\pi\)
\(860\) 0 0
\(861\) −8.48528 −0.289178
\(862\) 0 0
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) −42.0000 −1.42804
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.0000 0.610608
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) −18.3848 −0.622230
\(874\) 0 0
\(875\) 144.000 4.86809
\(876\) 0 0
\(877\) −32.5269 −1.09836 −0.549178 0.835705i \(-0.685059\pi\)
−0.549178 + 0.835705i \(0.685059\pi\)
\(878\) 0 0
\(879\) 2.82843 0.0954005
\(880\) 0 0
\(881\) −24.0416 −0.809983 −0.404992 0.914320i \(-0.632726\pi\)
−0.404992 + 0.914320i \(0.632726\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) 36.0000 1.21013
\(886\) 0 0
\(887\) 57.9828 1.94687 0.973435 0.228963i \(-0.0735334\pi\)
0.973435 + 0.228963i \(0.0735334\pi\)
\(888\) 0 0
\(889\) −59.3970 −1.99211
\(890\) 0 0
\(891\) 7.07107 0.236890
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −76.3675 −2.55269
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) 2.00000 0.0667037
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) 54.0000 1.79502
\(906\) 0 0
\(907\) −46.6690 −1.54962 −0.774810 0.632194i \(-0.782155\pi\)
−0.774810 + 0.632194i \(0.782155\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 29.6985 0.983955 0.491977 0.870608i \(-0.336274\pi\)
0.491977 + 0.870608i \(0.336274\pi\)
\(912\) 0 0
\(913\) −19.7990 −0.655251
\(914\) 0 0
\(915\) −8.48528 −0.280515
\(916\) 0 0
\(917\) 54.0000 1.78324
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 39.5980 1.30480
\(922\) 0 0
\(923\) −14.1421 −0.465494
\(924\) 0 0
\(925\) 55.1543 1.81346
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.89949 0.324792 0.162396 0.986726i \(-0.448078\pi\)
0.162396 + 0.986726i \(0.448078\pi\)
\(930\) 0 0
\(931\) 66.0000 2.16306
\(932\) 0 0
\(933\) 38.0000 1.24406
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −32.0000 −1.04539 −0.522697 0.852518i \(-0.675074\pi\)
−0.522697 + 0.852518i \(0.675074\pi\)
\(938\) 0 0
\(939\) 18.0000 0.587408
\(940\) 0 0
\(941\) 38.1838 1.24476 0.622378 0.782717i \(-0.286167\pi\)
0.622378 + 0.782717i \(0.286167\pi\)
\(942\) 0 0
\(943\) −2.00000 −0.0651290
\(944\) 0 0
\(945\) −101.823 −3.31231
\(946\) 0 0
\(947\) 38.1838 1.24081 0.620403 0.784283i \(-0.286969\pi\)
0.620403 + 0.784283i \(0.286969\pi\)
\(948\) 0 0
\(949\) −2.82843 −0.0918146
\(950\) 0 0
\(951\) −10.0000 −0.324272
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 101.823 3.29493
\(956\) 0 0
\(957\) −2.82843 −0.0914301
\(958\) 0 0
\(959\) −25.4558 −0.822012
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 0 0
\(963\) −9.89949 −0.319007
\(964\) 0 0
\(965\) 54.0000 1.73832
\(966\) 0 0
\(967\) 58.0000 1.86515 0.932577 0.360971i \(-0.117555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.0000 0.449281 0.224641 0.974442i \(-0.427879\pi\)
0.224641 + 0.974442i \(0.427879\pi\)
\(972\) 0 0
\(973\) 66.0000 2.11586
\(974\) 0 0
\(975\) −36.7696 −1.17757
\(976\) 0 0
\(977\) −8.00000 −0.255943 −0.127971 0.991778i \(-0.540847\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) 8.48528 0.271191
\(980\) 0 0
\(981\) −12.7279 −0.406371
\(982\) 0 0
\(983\) −4.24264 −0.135319 −0.0676596 0.997708i \(-0.521553\pi\)
−0.0676596 + 0.997708i \(0.521553\pi\)
\(984\) 0 0
\(985\) 66.0000 2.10293
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.82843 −0.0899388
\(990\) 0 0
\(991\) 15.5563 0.494164 0.247082 0.968995i \(-0.420528\pi\)
0.247082 + 0.968995i \(0.420528\pi\)
\(992\) 0 0
\(993\) 2.82843 0.0897574
\(994\) 0 0
\(995\) −42.0000 −1.33149
\(996\) 0 0
\(997\) 4.24264 0.134366 0.0671829 0.997741i \(-0.478599\pi\)
0.0671829 + 0.997741i \(0.478599\pi\)
\(998\) 0 0
\(999\) −24.0000 −0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.h.1.2 2
4.3 odd 2 4624.2.a.q.1.1 2
17.4 even 4 2312.2.b.f.577.1 2
17.8 even 8 136.2.k.a.81.1 2
17.13 even 4 2312.2.b.f.577.2 2
17.15 even 8 136.2.k.a.89.1 yes 2
17.16 even 2 inner 2312.2.a.h.1.1 2
51.8 odd 8 1224.2.w.f.217.1 2
51.32 odd 8 1224.2.w.f.361.1 2
68.15 odd 8 272.2.o.d.225.1 2
68.59 odd 8 272.2.o.d.81.1 2
68.67 odd 2 4624.2.a.q.1.2 2
136.59 odd 8 1088.2.o.g.897.1 2
136.83 odd 8 1088.2.o.g.769.1 2
136.93 even 8 1088.2.o.p.897.1 2
136.117 even 8 1088.2.o.p.769.1 2
204.59 even 8 2448.2.be.n.1441.1 2
204.83 even 8 2448.2.be.n.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.k.a.81.1 2 17.8 even 8
136.2.k.a.89.1 yes 2 17.15 even 8
272.2.o.d.81.1 2 68.59 odd 8
272.2.o.d.225.1 2 68.15 odd 8
1088.2.o.g.769.1 2 136.83 odd 8
1088.2.o.g.897.1 2 136.59 odd 8
1088.2.o.p.769.1 2 136.117 even 8
1088.2.o.p.897.1 2 136.93 even 8
1224.2.w.f.217.1 2 51.8 odd 8
1224.2.w.f.361.1 2 51.32 odd 8
2312.2.a.h.1.1 2 17.16 even 2 inner
2312.2.a.h.1.2 2 1.1 even 1 trivial
2312.2.b.f.577.1 2 17.4 even 4
2312.2.b.f.577.2 2 17.13 even 4
2448.2.be.n.1441.1 2 204.59 even 8
2448.2.be.n.1585.1 2 204.83 even 8
4624.2.a.q.1.1 2 4.3 odd 2
4624.2.a.q.1.2 2 68.67 odd 2