Properties

Label 2312.2.a.n.1.2
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(1,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30278 q^{3} -2.30278 q^{5} -2.30278 q^{7} +7.90833 q^{9} +5.60555 q^{11} +0.697224 q^{13} -7.60555 q^{15} -1.30278 q^{19} -7.60555 q^{21} +4.30278 q^{23} +0.302776 q^{25} +16.2111 q^{27} -0.697224 q^{29} -4.21110 q^{31} +18.5139 q^{33} +5.30278 q^{35} +8.60555 q^{37} +2.30278 q^{39} +6.00000 q^{41} -4.21110 q^{43} -18.2111 q^{45} +11.6056 q^{47} -1.69722 q^{49} +3.30278 q^{53} -12.9083 q^{55} -4.30278 q^{57} +3.21110 q^{59} -1.60555 q^{61} -18.2111 q^{63} -1.60555 q^{65} +0.605551 q^{67} +14.2111 q^{69} -12.4222 q^{71} +2.39445 q^{73} +1.00000 q^{75} -12.9083 q^{77} +10.0000 q^{79} +29.8167 q^{81} -8.69722 q^{83} -2.30278 q^{87} +7.21110 q^{89} -1.60555 q^{91} -13.9083 q^{93} +3.00000 q^{95} +16.1194 q^{97} +44.3305 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - q^{5} - q^{7} + 5 q^{9} + 4 q^{11} + 5 q^{13} - 8 q^{15} + q^{19} - 8 q^{21} + 5 q^{23} - 3 q^{25} + 18 q^{27} - 5 q^{29} + 6 q^{31} + 19 q^{33} + 7 q^{35} + 10 q^{37} + q^{39} + 12 q^{41}+ \cdots + 49 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.30278 1.90686 0.953429 0.301617i \(-0.0975264\pi\)
0.953429 + 0.301617i \(0.0975264\pi\)
\(4\) 0 0
\(5\) −2.30278 −1.02983 −0.514916 0.857240i \(-0.672177\pi\)
−0.514916 + 0.857240i \(0.672177\pi\)
\(6\) 0 0
\(7\) −2.30278 −0.870367 −0.435184 0.900342i \(-0.643317\pi\)
−0.435184 + 0.900342i \(0.643317\pi\)
\(8\) 0 0
\(9\) 7.90833 2.63611
\(10\) 0 0
\(11\) 5.60555 1.69014 0.845069 0.534658i \(-0.179559\pi\)
0.845069 + 0.534658i \(0.179559\pi\)
\(12\) 0 0
\(13\) 0.697224 0.193375 0.0966876 0.995315i \(-0.469175\pi\)
0.0966876 + 0.995315i \(0.469175\pi\)
\(14\) 0 0
\(15\) −7.60555 −1.96374
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −1.30278 −0.298877 −0.149439 0.988771i \(-0.547747\pi\)
−0.149439 + 0.988771i \(0.547747\pi\)
\(20\) 0 0
\(21\) −7.60555 −1.65967
\(22\) 0 0
\(23\) 4.30278 0.897191 0.448595 0.893735i \(-0.351924\pi\)
0.448595 + 0.893735i \(0.351924\pi\)
\(24\) 0 0
\(25\) 0.302776 0.0605551
\(26\) 0 0
\(27\) 16.2111 3.11983
\(28\) 0 0
\(29\) −0.697224 −0.129471 −0.0647357 0.997902i \(-0.520620\pi\)
−0.0647357 + 0.997902i \(0.520620\pi\)
\(30\) 0 0
\(31\) −4.21110 −0.756336 −0.378168 0.925737i \(-0.623446\pi\)
−0.378168 + 0.925737i \(0.623446\pi\)
\(32\) 0 0
\(33\) 18.5139 3.22285
\(34\) 0 0
\(35\) 5.30278 0.896333
\(36\) 0 0
\(37\) 8.60555 1.41474 0.707372 0.706842i \(-0.249881\pi\)
0.707372 + 0.706842i \(0.249881\pi\)
\(38\) 0 0
\(39\) 2.30278 0.368739
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.21110 −0.642187 −0.321094 0.947047i \(-0.604050\pi\)
−0.321094 + 0.947047i \(0.604050\pi\)
\(44\) 0 0
\(45\) −18.2111 −2.71475
\(46\) 0 0
\(47\) 11.6056 1.69284 0.846422 0.532513i \(-0.178752\pi\)
0.846422 + 0.532513i \(0.178752\pi\)
\(48\) 0 0
\(49\) −1.69722 −0.242461
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.30278 0.453671 0.226836 0.973933i \(-0.427162\pi\)
0.226836 + 0.973933i \(0.427162\pi\)
\(54\) 0 0
\(55\) −12.9083 −1.74056
\(56\) 0 0
\(57\) −4.30278 −0.569917
\(58\) 0 0
\(59\) 3.21110 0.418050 0.209025 0.977910i \(-0.432971\pi\)
0.209025 + 0.977910i \(0.432971\pi\)
\(60\) 0 0
\(61\) −1.60555 −0.205570 −0.102785 0.994704i \(-0.532775\pi\)
−0.102785 + 0.994704i \(0.532775\pi\)
\(62\) 0 0
\(63\) −18.2111 −2.29438
\(64\) 0 0
\(65\) −1.60555 −0.199144
\(66\) 0 0
\(67\) 0.605551 0.0739799 0.0369899 0.999316i \(-0.488223\pi\)
0.0369899 + 0.999316i \(0.488223\pi\)
\(68\) 0 0
\(69\) 14.2111 1.71082
\(70\) 0 0
\(71\) −12.4222 −1.47424 −0.737122 0.675759i \(-0.763816\pi\)
−0.737122 + 0.675759i \(0.763816\pi\)
\(72\) 0 0
\(73\) 2.39445 0.280249 0.140125 0.990134i \(-0.455250\pi\)
0.140125 + 0.990134i \(0.455250\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −12.9083 −1.47104
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 29.8167 3.31296
\(82\) 0 0
\(83\) −8.69722 −0.954644 −0.477322 0.878728i \(-0.658393\pi\)
−0.477322 + 0.878728i \(0.658393\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.30278 −0.246883
\(88\) 0 0
\(89\) 7.21110 0.764375 0.382188 0.924085i \(-0.375171\pi\)
0.382188 + 0.924085i \(0.375171\pi\)
\(90\) 0 0
\(91\) −1.60555 −0.168308
\(92\) 0 0
\(93\) −13.9083 −1.44223
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 16.1194 1.63668 0.818340 0.574734i \(-0.194895\pi\)
0.818340 + 0.574734i \(0.194895\pi\)
\(98\) 0 0
\(99\) 44.3305 4.45539
\(100\) 0 0
\(101\) −6.81665 −0.678282 −0.339141 0.940735i \(-0.610136\pi\)
−0.339141 + 0.940735i \(0.610136\pi\)
\(102\) 0 0
\(103\) −3.21110 −0.316399 −0.158200 0.987407i \(-0.550569\pi\)
−0.158200 + 0.987407i \(0.550569\pi\)
\(104\) 0 0
\(105\) 17.5139 1.70918
\(106\) 0 0
\(107\) −10.8167 −1.04569 −0.522843 0.852429i \(-0.675128\pi\)
−0.522843 + 0.852429i \(0.675128\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 0 0
\(111\) 28.4222 2.69772
\(112\) 0 0
\(113\) −0.486122 −0.0457305 −0.0228652 0.999739i \(-0.507279\pi\)
−0.0228652 + 0.999739i \(0.507279\pi\)
\(114\) 0 0
\(115\) −9.90833 −0.923956
\(116\) 0 0
\(117\) 5.51388 0.509758
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 20.4222 1.85656
\(122\) 0 0
\(123\) 19.8167 1.78681
\(124\) 0 0
\(125\) 10.8167 0.967471
\(126\) 0 0
\(127\) −22.2111 −1.97092 −0.985458 0.169917i \(-0.945650\pi\)
−0.985458 + 0.169917i \(0.945650\pi\)
\(128\) 0 0
\(129\) −13.9083 −1.22456
\(130\) 0 0
\(131\) 0.605551 0.0529073 0.0264536 0.999650i \(-0.491579\pi\)
0.0264536 + 0.999650i \(0.491579\pi\)
\(132\) 0 0
\(133\) 3.00000 0.260133
\(134\) 0 0
\(135\) −37.3305 −3.21290
\(136\) 0 0
\(137\) −8.60555 −0.735222 −0.367611 0.929980i \(-0.619824\pi\)
−0.367611 + 0.929980i \(0.619824\pi\)
\(138\) 0 0
\(139\) 8.30278 0.704232 0.352116 0.935956i \(-0.385462\pi\)
0.352116 + 0.935956i \(0.385462\pi\)
\(140\) 0 0
\(141\) 38.3305 3.22801
\(142\) 0 0
\(143\) 3.90833 0.326831
\(144\) 0 0
\(145\) 1.60555 0.133334
\(146\) 0 0
\(147\) −5.60555 −0.462338
\(148\) 0 0
\(149\) −17.0278 −1.39497 −0.697484 0.716600i \(-0.745697\pi\)
−0.697484 + 0.716600i \(0.745697\pi\)
\(150\) 0 0
\(151\) 0.394449 0.0320998 0.0160499 0.999871i \(-0.494891\pi\)
0.0160499 + 0.999871i \(0.494891\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.69722 0.778900
\(156\) 0 0
\(157\) −1.09167 −0.0871250 −0.0435625 0.999051i \(-0.513871\pi\)
−0.0435625 + 0.999051i \(0.513871\pi\)
\(158\) 0 0
\(159\) 10.9083 0.865087
\(160\) 0 0
\(161\) −9.90833 −0.780886
\(162\) 0 0
\(163\) 7.78890 0.610074 0.305037 0.952341i \(-0.401331\pi\)
0.305037 + 0.952341i \(0.401331\pi\)
\(164\) 0 0
\(165\) −42.6333 −3.31900
\(166\) 0 0
\(167\) 19.3028 1.49369 0.746847 0.664996i \(-0.231567\pi\)
0.746847 + 0.664996i \(0.231567\pi\)
\(168\) 0 0
\(169\) −12.5139 −0.962606
\(170\) 0 0
\(171\) −10.3028 −0.787873
\(172\) 0 0
\(173\) −22.8167 −1.73472 −0.867359 0.497683i \(-0.834184\pi\)
−0.867359 + 0.497683i \(0.834184\pi\)
\(174\) 0 0
\(175\) −0.697224 −0.0527052
\(176\) 0 0
\(177\) 10.6056 0.797162
\(178\) 0 0
\(179\) −10.1194 −0.756362 −0.378181 0.925732i \(-0.623450\pi\)
−0.378181 + 0.925732i \(0.623450\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −5.30278 −0.391992
\(184\) 0 0
\(185\) −19.8167 −1.45695
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −37.3305 −2.71540
\(190\) 0 0
\(191\) −1.30278 −0.0942655 −0.0471328 0.998889i \(-0.515008\pi\)
−0.0471328 + 0.998889i \(0.515008\pi\)
\(192\) 0 0
\(193\) −26.2111 −1.88672 −0.943358 0.331776i \(-0.892352\pi\)
−0.943358 + 0.331776i \(0.892352\pi\)
\(194\) 0 0
\(195\) −5.30278 −0.379740
\(196\) 0 0
\(197\) −1.09167 −0.0777785 −0.0388892 0.999244i \(-0.512382\pi\)
−0.0388892 + 0.999244i \(0.512382\pi\)
\(198\) 0 0
\(199\) 10.2111 0.723846 0.361923 0.932208i \(-0.382120\pi\)
0.361923 + 0.932208i \(0.382120\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 1.60555 0.112688
\(204\) 0 0
\(205\) −13.8167 −0.964997
\(206\) 0 0
\(207\) 34.0278 2.36509
\(208\) 0 0
\(209\) −7.30278 −0.505144
\(210\) 0 0
\(211\) 7.69722 0.529899 0.264949 0.964262i \(-0.414645\pi\)
0.264949 + 0.964262i \(0.414645\pi\)
\(212\) 0 0
\(213\) −41.0278 −2.81118
\(214\) 0 0
\(215\) 9.69722 0.661345
\(216\) 0 0
\(217\) 9.69722 0.658290
\(218\) 0 0
\(219\) 7.90833 0.534395
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −12.9083 −0.864406 −0.432203 0.901776i \(-0.642264\pi\)
−0.432203 + 0.901776i \(0.642264\pi\)
\(224\) 0 0
\(225\) 2.39445 0.159630
\(226\) 0 0
\(227\) −14.6333 −0.971247 −0.485623 0.874168i \(-0.661407\pi\)
−0.485623 + 0.874168i \(0.661407\pi\)
\(228\) 0 0
\(229\) −18.4222 −1.21737 −0.608687 0.793411i \(-0.708303\pi\)
−0.608687 + 0.793411i \(0.708303\pi\)
\(230\) 0 0
\(231\) −42.6333 −2.80507
\(232\) 0 0
\(233\) −11.8167 −0.774135 −0.387067 0.922051i \(-0.626512\pi\)
−0.387067 + 0.922051i \(0.626512\pi\)
\(234\) 0 0
\(235\) −26.7250 −1.74335
\(236\) 0 0
\(237\) 33.0278 2.14538
\(238\) 0 0
\(239\) 10.3944 0.672361 0.336180 0.941798i \(-0.390865\pi\)
0.336180 + 0.941798i \(0.390865\pi\)
\(240\) 0 0
\(241\) −26.1194 −1.68250 −0.841250 0.540646i \(-0.818180\pi\)
−0.841250 + 0.540646i \(0.818180\pi\)
\(242\) 0 0
\(243\) 49.8444 3.19752
\(244\) 0 0
\(245\) 3.90833 0.249694
\(246\) 0 0
\(247\) −0.908327 −0.0577955
\(248\) 0 0
\(249\) −28.7250 −1.82037
\(250\) 0 0
\(251\) −3.48612 −0.220042 −0.110021 0.993929i \(-0.535092\pi\)
−0.110021 + 0.993929i \(0.535092\pi\)
\(252\) 0 0
\(253\) 24.1194 1.51638
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.1194 −1.13026 −0.565129 0.825002i \(-0.691174\pi\)
−0.565129 + 0.825002i \(0.691174\pi\)
\(258\) 0 0
\(259\) −19.8167 −1.23135
\(260\) 0 0
\(261\) −5.51388 −0.341300
\(262\) 0 0
\(263\) −10.6972 −0.659619 −0.329810 0.944047i \(-0.606985\pi\)
−0.329810 + 0.944047i \(0.606985\pi\)
\(264\) 0 0
\(265\) −7.60555 −0.467205
\(266\) 0 0
\(267\) 23.8167 1.45756
\(268\) 0 0
\(269\) −1.48612 −0.0906104 −0.0453052 0.998973i \(-0.514426\pi\)
−0.0453052 + 0.998973i \(0.514426\pi\)
\(270\) 0 0
\(271\) 15.3305 0.931263 0.465632 0.884979i \(-0.345827\pi\)
0.465632 + 0.884979i \(0.345827\pi\)
\(272\) 0 0
\(273\) −5.30278 −0.320939
\(274\) 0 0
\(275\) 1.69722 0.102346
\(276\) 0 0
\(277\) −14.4222 −0.866546 −0.433273 0.901263i \(-0.642641\pi\)
−0.433273 + 0.901263i \(0.642641\pi\)
\(278\) 0 0
\(279\) −33.3028 −1.99379
\(280\) 0 0
\(281\) 10.1194 0.603675 0.301837 0.953359i \(-0.402400\pi\)
0.301837 + 0.953359i \(0.402400\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 9.90833 0.586919
\(286\) 0 0
\(287\) −13.8167 −0.815571
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 53.2389 3.12092
\(292\) 0 0
\(293\) −19.0278 −1.11161 −0.555807 0.831312i \(-0.687591\pi\)
−0.555807 + 0.831312i \(0.687591\pi\)
\(294\) 0 0
\(295\) −7.39445 −0.430521
\(296\) 0 0
\(297\) 90.8722 5.27294
\(298\) 0 0
\(299\) 3.00000 0.173494
\(300\) 0 0
\(301\) 9.69722 0.558939
\(302\) 0 0
\(303\) −22.5139 −1.29339
\(304\) 0 0
\(305\) 3.69722 0.211702
\(306\) 0 0
\(307\) 14.7250 0.840399 0.420200 0.907432i \(-0.361960\pi\)
0.420200 + 0.907432i \(0.361960\pi\)
\(308\) 0 0
\(309\) −10.6056 −0.603329
\(310\) 0 0
\(311\) −27.9083 −1.58254 −0.791268 0.611469i \(-0.790579\pi\)
−0.791268 + 0.611469i \(0.790579\pi\)
\(312\) 0 0
\(313\) 15.3944 0.870146 0.435073 0.900395i \(-0.356723\pi\)
0.435073 + 0.900395i \(0.356723\pi\)
\(314\) 0 0
\(315\) 41.9361 2.36283
\(316\) 0 0
\(317\) 24.0278 1.34953 0.674767 0.738031i \(-0.264244\pi\)
0.674767 + 0.738031i \(0.264244\pi\)
\(318\) 0 0
\(319\) −3.90833 −0.218824
\(320\) 0 0
\(321\) −35.7250 −1.99397
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.211103 0.0117099
\(326\) 0 0
\(327\) 49.5416 2.73966
\(328\) 0 0
\(329\) −26.7250 −1.47340
\(330\) 0 0
\(331\) 13.0917 0.719583 0.359792 0.933033i \(-0.382848\pi\)
0.359792 + 0.933033i \(0.382848\pi\)
\(332\) 0 0
\(333\) 68.0555 3.72942
\(334\) 0 0
\(335\) −1.39445 −0.0761869
\(336\) 0 0
\(337\) 23.5416 1.28239 0.641197 0.767376i \(-0.278438\pi\)
0.641197 + 0.767376i \(0.278438\pi\)
\(338\) 0 0
\(339\) −1.60555 −0.0872016
\(340\) 0 0
\(341\) −23.6056 −1.27831
\(342\) 0 0
\(343\) 20.0278 1.08140
\(344\) 0 0
\(345\) −32.7250 −1.76185
\(346\) 0 0
\(347\) −9.90833 −0.531907 −0.265953 0.963986i \(-0.585687\pi\)
−0.265953 + 0.963986i \(0.585687\pi\)
\(348\) 0 0
\(349\) −9.60555 −0.514173 −0.257087 0.966388i \(-0.582763\pi\)
−0.257087 + 0.966388i \(0.582763\pi\)
\(350\) 0 0
\(351\) 11.3028 0.603298
\(352\) 0 0
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) 28.6056 1.51823
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.72498 0.460487 0.230243 0.973133i \(-0.426048\pi\)
0.230243 + 0.973133i \(0.426048\pi\)
\(360\) 0 0
\(361\) −17.3028 −0.910672
\(362\) 0 0
\(363\) 67.4500 3.54020
\(364\) 0 0
\(365\) −5.51388 −0.288610
\(366\) 0 0
\(367\) 24.2389 1.26526 0.632629 0.774455i \(-0.281976\pi\)
0.632629 + 0.774455i \(0.281976\pi\)
\(368\) 0 0
\(369\) 47.4500 2.47015
\(370\) 0 0
\(371\) −7.60555 −0.394861
\(372\) 0 0
\(373\) −23.4222 −1.21276 −0.606378 0.795177i \(-0.707378\pi\)
−0.606378 + 0.795177i \(0.707378\pi\)
\(374\) 0 0
\(375\) 35.7250 1.84483
\(376\) 0 0
\(377\) −0.486122 −0.0250365
\(378\) 0 0
\(379\) −25.4222 −1.30585 −0.652925 0.757422i \(-0.726459\pi\)
−0.652925 + 0.757422i \(0.726459\pi\)
\(380\) 0 0
\(381\) −73.3583 −3.75826
\(382\) 0 0
\(383\) 0.697224 0.0356265 0.0178133 0.999841i \(-0.494330\pi\)
0.0178133 + 0.999841i \(0.494330\pi\)
\(384\) 0 0
\(385\) 29.7250 1.51493
\(386\) 0 0
\(387\) −33.3028 −1.69288
\(388\) 0 0
\(389\) −9.42221 −0.477725 −0.238862 0.971053i \(-0.576774\pi\)
−0.238862 + 0.971053i \(0.576774\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.00000 0.100887
\(394\) 0 0
\(395\) −23.0278 −1.15865
\(396\) 0 0
\(397\) 32.4500 1.62862 0.814308 0.580432i \(-0.197116\pi\)
0.814308 + 0.580432i \(0.197116\pi\)
\(398\) 0 0
\(399\) 9.90833 0.496037
\(400\) 0 0
\(401\) −25.5139 −1.27410 −0.637051 0.770822i \(-0.719846\pi\)
−0.637051 + 0.770822i \(0.719846\pi\)
\(402\) 0 0
\(403\) −2.93608 −0.146257
\(404\) 0 0
\(405\) −68.6611 −3.41180
\(406\) 0 0
\(407\) 48.2389 2.39111
\(408\) 0 0
\(409\) 22.0278 1.08920 0.544601 0.838695i \(-0.316681\pi\)
0.544601 + 0.838695i \(0.316681\pi\)
\(410\) 0 0
\(411\) −28.4222 −1.40196
\(412\) 0 0
\(413\) −7.39445 −0.363857
\(414\) 0 0
\(415\) 20.0278 0.983124
\(416\) 0 0
\(417\) 27.4222 1.34287
\(418\) 0 0
\(419\) −0.394449 −0.0192701 −0.00963504 0.999954i \(-0.503067\pi\)
−0.00963504 + 0.999954i \(0.503067\pi\)
\(420\) 0 0
\(421\) 23.3305 1.13706 0.568530 0.822662i \(-0.307512\pi\)
0.568530 + 0.822662i \(0.307512\pi\)
\(422\) 0 0
\(423\) 91.7805 4.46252
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.69722 0.178921
\(428\) 0 0
\(429\) 12.9083 0.623220
\(430\) 0 0
\(431\) 7.51388 0.361931 0.180965 0.983489i \(-0.442078\pi\)
0.180965 + 0.983489i \(0.442078\pi\)
\(432\) 0 0
\(433\) −14.4222 −0.693087 −0.346543 0.938034i \(-0.612645\pi\)
−0.346543 + 0.938034i \(0.612645\pi\)
\(434\) 0 0
\(435\) 5.30278 0.254249
\(436\) 0 0
\(437\) −5.60555 −0.268150
\(438\) 0 0
\(439\) −12.1833 −0.581479 −0.290740 0.956802i \(-0.593901\pi\)
−0.290740 + 0.956802i \(0.593901\pi\)
\(440\) 0 0
\(441\) −13.4222 −0.639153
\(442\) 0 0
\(443\) −9.78890 −0.465085 −0.232542 0.972586i \(-0.574704\pi\)
−0.232542 + 0.972586i \(0.574704\pi\)
\(444\) 0 0
\(445\) −16.6056 −0.787179
\(446\) 0 0
\(447\) −56.2389 −2.66001
\(448\) 0 0
\(449\) −23.4861 −1.10838 −0.554189 0.832391i \(-0.686972\pi\)
−0.554189 + 0.832391i \(0.686972\pi\)
\(450\) 0 0
\(451\) 33.6333 1.58373
\(452\) 0 0
\(453\) 1.30278 0.0612097
\(454\) 0 0
\(455\) 3.69722 0.173329
\(456\) 0 0
\(457\) −2.72498 −0.127469 −0.0637346 0.997967i \(-0.520301\pi\)
−0.0637346 + 0.997967i \(0.520301\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) −27.8167 −1.29275 −0.646375 0.763020i \(-0.723716\pi\)
−0.646375 + 0.763020i \(0.723716\pi\)
\(464\) 0 0
\(465\) 32.0278 1.48525
\(466\) 0 0
\(467\) −4.11943 −0.190624 −0.0953122 0.995447i \(-0.530385\pi\)
−0.0953122 + 0.995447i \(0.530385\pi\)
\(468\) 0 0
\(469\) −1.39445 −0.0643897
\(470\) 0 0
\(471\) −3.60555 −0.166135
\(472\) 0 0
\(473\) −23.6056 −1.08538
\(474\) 0 0
\(475\) −0.394449 −0.0180985
\(476\) 0 0
\(477\) 26.1194 1.19593
\(478\) 0 0
\(479\) 24.8167 1.13390 0.566951 0.823752i \(-0.308123\pi\)
0.566951 + 0.823752i \(0.308123\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) −32.7250 −1.48904
\(484\) 0 0
\(485\) −37.1194 −1.68551
\(486\) 0 0
\(487\) 4.88057 0.221160 0.110580 0.993867i \(-0.464729\pi\)
0.110580 + 0.993867i \(0.464729\pi\)
\(488\) 0 0
\(489\) 25.7250 1.16332
\(490\) 0 0
\(491\) −26.3028 −1.18703 −0.593514 0.804824i \(-0.702260\pi\)
−0.593514 + 0.804824i \(0.702260\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −102.083 −4.58830
\(496\) 0 0
\(497\) 28.6056 1.28313
\(498\) 0 0
\(499\) −16.9083 −0.756921 −0.378460 0.925618i \(-0.623546\pi\)
−0.378460 + 0.925618i \(0.623546\pi\)
\(500\) 0 0
\(501\) 63.7527 2.84826
\(502\) 0 0
\(503\) 23.2389 1.03617 0.518085 0.855329i \(-0.326645\pi\)
0.518085 + 0.855329i \(0.326645\pi\)
\(504\) 0 0
\(505\) 15.6972 0.698517
\(506\) 0 0
\(507\) −41.3305 −1.83555
\(508\) 0 0
\(509\) 6.81665 0.302143 0.151071 0.988523i \(-0.451728\pi\)
0.151071 + 0.988523i \(0.451728\pi\)
\(510\) 0 0
\(511\) −5.51388 −0.243920
\(512\) 0 0
\(513\) −21.1194 −0.932446
\(514\) 0 0
\(515\) 7.39445 0.325838
\(516\) 0 0
\(517\) 65.0555 2.86114
\(518\) 0 0
\(519\) −75.3583 −3.30786
\(520\) 0 0
\(521\) −2.42221 −0.106119 −0.0530594 0.998591i \(-0.516897\pi\)
−0.0530594 + 0.998591i \(0.516897\pi\)
\(522\) 0 0
\(523\) −26.3944 −1.15415 −0.577074 0.816692i \(-0.695806\pi\)
−0.577074 + 0.816692i \(0.695806\pi\)
\(524\) 0 0
\(525\) −2.30278 −0.100501
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −4.48612 −0.195049
\(530\) 0 0
\(531\) 25.3944 1.10203
\(532\) 0 0
\(533\) 4.18335 0.181201
\(534\) 0 0
\(535\) 24.9083 1.07688
\(536\) 0 0
\(537\) −33.4222 −1.44227
\(538\) 0 0
\(539\) −9.51388 −0.409792
\(540\) 0 0
\(541\) −19.9083 −0.855926 −0.427963 0.903796i \(-0.640769\pi\)
−0.427963 + 0.903796i \(0.640769\pi\)
\(542\) 0 0
\(543\) −23.1194 −0.992150
\(544\) 0 0
\(545\) −34.5416 −1.47960
\(546\) 0 0
\(547\) −43.4222 −1.85660 −0.928300 0.371833i \(-0.878729\pi\)
−0.928300 + 0.371833i \(0.878729\pi\)
\(548\) 0 0
\(549\) −12.6972 −0.541904
\(550\) 0 0
\(551\) 0.908327 0.0386960
\(552\) 0 0
\(553\) −23.0278 −0.979240
\(554\) 0 0
\(555\) −65.4500 −2.77820
\(556\) 0 0
\(557\) −22.7889 −0.965597 −0.482798 0.875732i \(-0.660380\pi\)
−0.482798 + 0.875732i \(0.660380\pi\)
\(558\) 0 0
\(559\) −2.93608 −0.124183
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 44.6056 1.87990 0.939950 0.341312i \(-0.110871\pi\)
0.939950 + 0.341312i \(0.110871\pi\)
\(564\) 0 0
\(565\) 1.11943 0.0470948
\(566\) 0 0
\(567\) −68.6611 −2.88349
\(568\) 0 0
\(569\) −2.81665 −0.118080 −0.0590401 0.998256i \(-0.518804\pi\)
−0.0590401 + 0.998256i \(0.518804\pi\)
\(570\) 0 0
\(571\) −4.93608 −0.206569 −0.103284 0.994652i \(-0.532935\pi\)
−0.103284 + 0.994652i \(0.532935\pi\)
\(572\) 0 0
\(573\) −4.30278 −0.179751
\(574\) 0 0
\(575\) 1.30278 0.0543295
\(576\) 0 0
\(577\) 4.02776 0.167678 0.0838388 0.996479i \(-0.473282\pi\)
0.0838388 + 0.996479i \(0.473282\pi\)
\(578\) 0 0
\(579\) −86.5694 −3.59770
\(580\) 0 0
\(581\) 20.0278 0.830891
\(582\) 0 0
\(583\) 18.5139 0.766766
\(584\) 0 0
\(585\) −12.6972 −0.524966
\(586\) 0 0
\(587\) 3.90833 0.161314 0.0806570 0.996742i \(-0.474298\pi\)
0.0806570 + 0.996742i \(0.474298\pi\)
\(588\) 0 0
\(589\) 5.48612 0.226052
\(590\) 0 0
\(591\) −3.60555 −0.148313
\(592\) 0 0
\(593\) 16.2111 0.665710 0.332855 0.942978i \(-0.391988\pi\)
0.332855 + 0.942978i \(0.391988\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 33.7250 1.38027
\(598\) 0 0
\(599\) −9.60555 −0.392472 −0.196236 0.980557i \(-0.562872\pi\)
−0.196236 + 0.980557i \(0.562872\pi\)
\(600\) 0 0
\(601\) −41.5416 −1.69452 −0.847259 0.531180i \(-0.821749\pi\)
−0.847259 + 0.531180i \(0.821749\pi\)
\(602\) 0 0
\(603\) 4.78890 0.195019
\(604\) 0 0
\(605\) −47.0278 −1.91195
\(606\) 0 0
\(607\) 44.0278 1.78703 0.893516 0.449032i \(-0.148231\pi\)
0.893516 + 0.449032i \(0.148231\pi\)
\(608\) 0 0
\(609\) 5.30278 0.214879
\(610\) 0 0
\(611\) 8.09167 0.327354
\(612\) 0 0
\(613\) 19.0278 0.768524 0.384262 0.923224i \(-0.374456\pi\)
0.384262 + 0.923224i \(0.374456\pi\)
\(614\) 0 0
\(615\) −45.6333 −1.84011
\(616\) 0 0
\(617\) 29.8444 1.20149 0.600745 0.799440i \(-0.294871\pi\)
0.600745 + 0.799440i \(0.294871\pi\)
\(618\) 0 0
\(619\) 38.8167 1.56017 0.780087 0.625672i \(-0.215175\pi\)
0.780087 + 0.625672i \(0.215175\pi\)
\(620\) 0 0
\(621\) 69.7527 2.79908
\(622\) 0 0
\(623\) −16.6056 −0.665287
\(624\) 0 0
\(625\) −26.4222 −1.05689
\(626\) 0 0
\(627\) −24.1194 −0.963237
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 24.1472 0.961284 0.480642 0.876917i \(-0.340404\pi\)
0.480642 + 0.876917i \(0.340404\pi\)
\(632\) 0 0
\(633\) 25.4222 1.01044
\(634\) 0 0
\(635\) 51.1472 2.02971
\(636\) 0 0
\(637\) −1.18335 −0.0468859
\(638\) 0 0
\(639\) −98.2389 −3.88627
\(640\) 0 0
\(641\) 45.7250 1.80603 0.903014 0.429611i \(-0.141349\pi\)
0.903014 + 0.429611i \(0.141349\pi\)
\(642\) 0 0
\(643\) −6.18335 −0.243847 −0.121924 0.992539i \(-0.538906\pi\)
−0.121924 + 0.992539i \(0.538906\pi\)
\(644\) 0 0
\(645\) 32.0278 1.26109
\(646\) 0 0
\(647\) 20.0278 0.787372 0.393686 0.919245i \(-0.371200\pi\)
0.393686 + 0.919245i \(0.371200\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 32.0278 1.25527
\(652\) 0 0
\(653\) −6.39445 −0.250234 −0.125117 0.992142i \(-0.539931\pi\)
−0.125117 + 0.992142i \(0.539931\pi\)
\(654\) 0 0
\(655\) −1.39445 −0.0544856
\(656\) 0 0
\(657\) 18.9361 0.738767
\(658\) 0 0
\(659\) 13.0000 0.506408 0.253204 0.967413i \(-0.418516\pi\)
0.253204 + 0.967413i \(0.418516\pi\)
\(660\) 0 0
\(661\) 34.9083 1.35778 0.678888 0.734242i \(-0.262462\pi\)
0.678888 + 0.734242i \(0.262462\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.90833 −0.267893
\(666\) 0 0
\(667\) −3.00000 −0.116160
\(668\) 0 0
\(669\) −42.6333 −1.64830
\(670\) 0 0
\(671\) −9.00000 −0.347441
\(672\) 0 0
\(673\) 30.7889 1.18682 0.593412 0.804899i \(-0.297780\pi\)
0.593412 + 0.804899i \(0.297780\pi\)
\(674\) 0 0
\(675\) 4.90833 0.188922
\(676\) 0 0
\(677\) 38.9361 1.49644 0.748218 0.663453i \(-0.230910\pi\)
0.748218 + 0.663453i \(0.230910\pi\)
\(678\) 0 0
\(679\) −37.1194 −1.42451
\(680\) 0 0
\(681\) −48.3305 −1.85203
\(682\) 0 0
\(683\) 2.33053 0.0891753 0.0445877 0.999005i \(-0.485803\pi\)
0.0445877 + 0.999005i \(0.485803\pi\)
\(684\) 0 0
\(685\) 19.8167 0.757155
\(686\) 0 0
\(687\) −60.8444 −2.32136
\(688\) 0 0
\(689\) 2.30278 0.0877288
\(690\) 0 0
\(691\) 51.2666 1.95027 0.975137 0.221603i \(-0.0711289\pi\)
0.975137 + 0.221603i \(0.0711289\pi\)
\(692\) 0 0
\(693\) −102.083 −3.87782
\(694\) 0 0
\(695\) −19.1194 −0.725241
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −39.0278 −1.47617
\(700\) 0 0
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 0 0
\(703\) −11.2111 −0.422835
\(704\) 0 0
\(705\) −88.2666 −3.32431
\(706\) 0 0
\(707\) 15.6972 0.590355
\(708\) 0 0
\(709\) −32.3305 −1.21420 −0.607099 0.794626i \(-0.707667\pi\)
−0.607099 + 0.794626i \(0.707667\pi\)
\(710\) 0 0
\(711\) 79.0833 2.96585
\(712\) 0 0
\(713\) −18.1194 −0.678578
\(714\) 0 0
\(715\) −9.00000 −0.336581
\(716\) 0 0
\(717\) 34.3305 1.28210
\(718\) 0 0
\(719\) 9.84441 0.367135 0.183567 0.983007i \(-0.441235\pi\)
0.183567 + 0.983007i \(0.441235\pi\)
\(720\) 0 0
\(721\) 7.39445 0.275384
\(722\) 0 0
\(723\) −86.2666 −3.20829
\(724\) 0 0
\(725\) −0.211103 −0.00784015
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 75.1749 2.78426
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −38.1472 −1.40900 −0.704499 0.709705i \(-0.748828\pi\)
−0.704499 + 0.709705i \(0.748828\pi\)
\(734\) 0 0
\(735\) 12.9083 0.476131
\(736\) 0 0
\(737\) 3.39445 0.125036
\(738\) 0 0
\(739\) 43.2389 1.59057 0.795284 0.606238i \(-0.207322\pi\)
0.795284 + 0.606238i \(0.207322\pi\)
\(740\) 0 0
\(741\) −3.00000 −0.110208
\(742\) 0 0
\(743\) −43.0000 −1.57752 −0.788759 0.614703i \(-0.789276\pi\)
−0.788759 + 0.614703i \(0.789276\pi\)
\(744\) 0 0
\(745\) 39.2111 1.43658
\(746\) 0 0
\(747\) −68.7805 −2.51655
\(748\) 0 0
\(749\) 24.9083 0.910130
\(750\) 0 0
\(751\) 0.394449 0.0143936 0.00719682 0.999974i \(-0.497709\pi\)
0.00719682 + 0.999974i \(0.497709\pi\)
\(752\) 0 0
\(753\) −11.5139 −0.419589
\(754\) 0 0
\(755\) −0.908327 −0.0330574
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 79.6611 2.89151
\(760\) 0 0
\(761\) −32.2111 −1.16765 −0.583826 0.811879i \(-0.698445\pi\)
−0.583826 + 0.811879i \(0.698445\pi\)
\(762\) 0 0
\(763\) −34.5416 −1.25049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.23886 0.0808405
\(768\) 0 0
\(769\) 1.90833 0.0688160 0.0344080 0.999408i \(-0.489045\pi\)
0.0344080 + 0.999408i \(0.489045\pi\)
\(770\) 0 0
\(771\) −59.8444 −2.15524
\(772\) 0 0
\(773\) −25.0555 −0.901184 −0.450592 0.892730i \(-0.648787\pi\)
−0.450592 + 0.892730i \(0.648787\pi\)
\(774\) 0 0
\(775\) −1.27502 −0.0458000
\(776\) 0 0
\(777\) −65.4500 −2.34800
\(778\) 0 0
\(779\) −7.81665 −0.280061
\(780\) 0 0
\(781\) −69.6333 −2.49168
\(782\) 0 0
\(783\) −11.3028 −0.403928
\(784\) 0 0
\(785\) 2.51388 0.0897242
\(786\) 0 0
\(787\) 39.8167 1.41931 0.709655 0.704549i \(-0.248851\pi\)
0.709655 + 0.704549i \(0.248851\pi\)
\(788\) 0 0
\(789\) −35.3305 −1.25780
\(790\) 0 0
\(791\) 1.11943 0.0398023
\(792\) 0 0
\(793\) −1.11943 −0.0397521
\(794\) 0 0
\(795\) −25.1194 −0.890894
\(796\) 0 0
\(797\) 35.0555 1.24173 0.620865 0.783918i \(-0.286782\pi\)
0.620865 + 0.783918i \(0.286782\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 57.0278 2.01498
\(802\) 0 0
\(803\) 13.4222 0.473659
\(804\) 0 0
\(805\) 22.8167 0.804181
\(806\) 0 0
\(807\) −4.90833 −0.172781
\(808\) 0 0
\(809\) −38.6056 −1.35730 −0.678649 0.734462i \(-0.737434\pi\)
−0.678649 + 0.734462i \(0.737434\pi\)
\(810\) 0 0
\(811\) 36.6056 1.28539 0.642697 0.766120i \(-0.277815\pi\)
0.642697 + 0.766120i \(0.277815\pi\)
\(812\) 0 0
\(813\) 50.6333 1.77579
\(814\) 0 0
\(815\) −17.9361 −0.628274
\(816\) 0 0
\(817\) 5.48612 0.191935
\(818\) 0 0
\(819\) −12.6972 −0.443677
\(820\) 0 0
\(821\) −49.6611 −1.73318 −0.866592 0.499018i \(-0.833694\pi\)
−0.866592 + 0.499018i \(0.833694\pi\)
\(822\) 0 0
\(823\) −25.8444 −0.900880 −0.450440 0.892807i \(-0.648733\pi\)
−0.450440 + 0.892807i \(0.648733\pi\)
\(824\) 0 0
\(825\) 5.60555 0.195160
\(826\) 0 0
\(827\) −31.7889 −1.10541 −0.552704 0.833378i \(-0.686404\pi\)
−0.552704 + 0.833378i \(0.686404\pi\)
\(828\) 0 0
\(829\) 13.3944 0.465208 0.232604 0.972571i \(-0.425275\pi\)
0.232604 + 0.972571i \(0.425275\pi\)
\(830\) 0 0
\(831\) −47.6333 −1.65238
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −44.4500 −1.53825
\(836\) 0 0
\(837\) −68.2666 −2.35964
\(838\) 0 0
\(839\) −4.18335 −0.144425 −0.0722126 0.997389i \(-0.523006\pi\)
−0.0722126 + 0.997389i \(0.523006\pi\)
\(840\) 0 0
\(841\) −28.5139 −0.983237
\(842\) 0 0
\(843\) 33.4222 1.15112
\(844\) 0 0
\(845\) 28.8167 0.991323
\(846\) 0 0
\(847\) −47.0278 −1.61589
\(848\) 0 0
\(849\) 13.2111 0.453404
\(850\) 0 0
\(851\) 37.0278 1.26930
\(852\) 0 0
\(853\) 7.36669 0.252231 0.126115 0.992016i \(-0.459749\pi\)
0.126115 + 0.992016i \(0.459749\pi\)
\(854\) 0 0
\(855\) 23.7250 0.811377
\(856\) 0 0
\(857\) −26.8167 −0.916039 −0.458020 0.888942i \(-0.651441\pi\)
−0.458020 + 0.888942i \(0.651441\pi\)
\(858\) 0 0
\(859\) 23.0278 0.785697 0.392848 0.919603i \(-0.371490\pi\)
0.392848 + 0.919603i \(0.371490\pi\)
\(860\) 0 0
\(861\) −45.6333 −1.55518
\(862\) 0 0
\(863\) 9.27502 0.315725 0.157863 0.987461i \(-0.449540\pi\)
0.157863 + 0.987461i \(0.449540\pi\)
\(864\) 0 0
\(865\) 52.5416 1.78647
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 56.0555 1.90155
\(870\) 0 0
\(871\) 0.422205 0.0143059
\(872\) 0 0
\(873\) 127.478 4.31447
\(874\) 0 0
\(875\) −24.9083 −0.842055
\(876\) 0 0
\(877\) −14.5416 −0.491036 −0.245518 0.969392i \(-0.578958\pi\)
−0.245518 + 0.969392i \(0.578958\pi\)
\(878\) 0 0
\(879\) −62.8444 −2.11969
\(880\) 0 0
\(881\) −41.7250 −1.40575 −0.702875 0.711313i \(-0.748101\pi\)
−0.702875 + 0.711313i \(0.748101\pi\)
\(882\) 0 0
\(883\) 44.1472 1.48567 0.742836 0.669474i \(-0.233480\pi\)
0.742836 + 0.669474i \(0.233480\pi\)
\(884\) 0 0
\(885\) −24.4222 −0.820943
\(886\) 0 0
\(887\) −16.5416 −0.555414 −0.277707 0.960666i \(-0.589574\pi\)
−0.277707 + 0.960666i \(0.589574\pi\)
\(888\) 0 0
\(889\) 51.1472 1.71542
\(890\) 0 0
\(891\) 167.139 5.59936
\(892\) 0 0
\(893\) −15.1194 −0.505952
\(894\) 0 0
\(895\) 23.3028 0.778926
\(896\) 0 0
\(897\) 9.90833 0.330829
\(898\) 0 0
\(899\) 2.93608 0.0979239
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 32.0278 1.06582
\(904\) 0 0
\(905\) 16.1194 0.535828
\(906\) 0 0
\(907\) −23.3028 −0.773756 −0.386878 0.922131i \(-0.626447\pi\)
−0.386878 + 0.922131i \(0.626447\pi\)
\(908\) 0 0
\(909\) −53.9083 −1.78803
\(910\) 0 0
\(911\) −21.3305 −0.706712 −0.353356 0.935489i \(-0.614960\pi\)
−0.353356 + 0.935489i \(0.614960\pi\)
\(912\) 0 0
\(913\) −48.7527 −1.61348
\(914\) 0 0
\(915\) 12.2111 0.403687
\(916\) 0 0
\(917\) −1.39445 −0.0460488
\(918\) 0 0
\(919\) 26.0917 0.860685 0.430342 0.902666i \(-0.358393\pi\)
0.430342 + 0.902666i \(0.358393\pi\)
\(920\) 0 0
\(921\) 48.6333 1.60252
\(922\) 0 0
\(923\) −8.66106 −0.285082
\(924\) 0 0
\(925\) 2.60555 0.0856700
\(926\) 0 0
\(927\) −25.3944 −0.834063
\(928\) 0 0
\(929\) −44.5694 −1.46227 −0.731137 0.682231i \(-0.761010\pi\)
−0.731137 + 0.682231i \(0.761010\pi\)
\(930\) 0 0
\(931\) 2.21110 0.0724660
\(932\) 0 0
\(933\) −92.1749 −3.01767
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17.3305 −0.566164 −0.283082 0.959096i \(-0.591357\pi\)
−0.283082 + 0.959096i \(0.591357\pi\)
\(938\) 0 0
\(939\) 50.8444 1.65924
\(940\) 0 0
\(941\) −4.90833 −0.160007 −0.0800034 0.996795i \(-0.525493\pi\)
−0.0800034 + 0.996795i \(0.525493\pi\)
\(942\) 0 0
\(943\) 25.8167 0.840706
\(944\) 0 0
\(945\) 85.9638 2.79640
\(946\) 0 0
\(947\) 42.4500 1.37944 0.689719 0.724077i \(-0.257734\pi\)
0.689719 + 0.724077i \(0.257734\pi\)
\(948\) 0 0
\(949\) 1.66947 0.0541932
\(950\) 0 0
\(951\) 79.3583 2.57337
\(952\) 0 0
\(953\) 31.1472 1.00896 0.504478 0.863424i \(-0.331685\pi\)
0.504478 + 0.863424i \(0.331685\pi\)
\(954\) 0 0
\(955\) 3.00000 0.0970777
\(956\) 0 0
\(957\) −12.9083 −0.417267
\(958\) 0 0
\(959\) 19.8167 0.639913
\(960\) 0 0
\(961\) −13.2666 −0.427955
\(962\) 0 0
\(963\) −85.5416 −2.75654
\(964\) 0 0
\(965\) 60.3583 1.94300
\(966\) 0 0
\(967\) 16.9083 0.543735 0.271868 0.962335i \(-0.412359\pi\)
0.271868 + 0.962335i \(0.412359\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −52.1749 −1.67437 −0.837187 0.546917i \(-0.815801\pi\)
−0.837187 + 0.546917i \(0.815801\pi\)
\(972\) 0 0
\(973\) −19.1194 −0.612941
\(974\) 0 0
\(975\) 0.697224 0.0223290
\(976\) 0 0
\(977\) 28.1472 0.900508 0.450254 0.892900i \(-0.351333\pi\)
0.450254 + 0.892900i \(0.351333\pi\)
\(978\) 0 0
\(979\) 40.4222 1.29190
\(980\) 0 0
\(981\) 118.625 3.78740
\(982\) 0 0
\(983\) 23.5778 0.752015 0.376007 0.926617i \(-0.377297\pi\)
0.376007 + 0.926617i \(0.377297\pi\)
\(984\) 0 0
\(985\) 2.51388 0.0800988
\(986\) 0 0
\(987\) −88.2666 −2.80956
\(988\) 0 0
\(989\) −18.1194 −0.576164
\(990\) 0 0
\(991\) −35.5416 −1.12902 −0.564509 0.825427i \(-0.690934\pi\)
−0.564509 + 0.825427i \(0.690934\pi\)
\(992\) 0 0
\(993\) 43.2389 1.37214
\(994\) 0 0
\(995\) −23.5139 −0.745440
\(996\) 0 0
\(997\) −0.936083 −0.0296461 −0.0148230 0.999890i \(-0.504718\pi\)
−0.0148230 + 0.999890i \(0.504718\pi\)
\(998\) 0 0
\(999\) 139.505 4.41376
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.n.1.2 yes 2
4.3 odd 2 4624.2.a.g.1.1 2
17.4 even 4 2312.2.b.h.577.1 4
17.13 even 4 2312.2.b.h.577.4 4
17.16 even 2 2312.2.a.e.1.1 2
68.67 odd 2 4624.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.e.1.1 2 17.16 even 2
2312.2.a.n.1.2 yes 2 1.1 even 1 trivial
2312.2.b.h.577.1 4 17.4 even 4
2312.2.b.h.577.4 4 17.13 even 4
4624.2.a.g.1.1 2 4.3 odd 2
4624.2.a.y.1.2 2 68.67 odd 2