Properties

Label 2312.2.a.r.1.2
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(1,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18479 q^{3} +1.65270 q^{5} +3.87939 q^{7} +1.77332 q^{9} -1.06418 q^{11} +6.10607 q^{13} +3.61081 q^{15} +1.41147 q^{19} +8.47565 q^{21} +6.92127 q^{23} -2.26857 q^{25} -2.68004 q^{27} -7.90167 q^{29} -9.00774 q^{31} -2.32501 q^{33} +6.41147 q^{35} +3.47565 q^{37} +13.3405 q^{39} -10.3473 q^{41} -8.86484 q^{43} +2.93077 q^{45} +3.22668 q^{47} +8.04963 q^{49} -1.06418 q^{53} -1.75877 q^{55} +3.08378 q^{57} -9.46110 q^{59} +11.3327 q^{61} +6.87939 q^{63} +10.0915 q^{65} +2.04963 q^{67} +15.1215 q^{69} +0.448311 q^{71} -1.83750 q^{73} -4.95636 q^{75} -4.12836 q^{77} +2.75877 q^{79} -11.1753 q^{81} +0.389185 q^{83} -17.2635 q^{87} +13.9290 q^{89} +23.6878 q^{91} -19.6800 q^{93} +2.33275 q^{95} +13.7588 q^{97} -1.88713 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 6 q^{5} + 6 q^{7} + 12 q^{9} + 6 q^{11} + 6 q^{13} + 15 q^{15} - 6 q^{19} + 6 q^{21} + 12 q^{23} + 3 q^{25} + 12 q^{27} - 12 q^{29} - 3 q^{31} - 12 q^{33} + 9 q^{35} - 9 q^{37} - 3 q^{39}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.18479 1.26139 0.630695 0.776031i \(-0.282770\pi\)
0.630695 + 0.776031i \(0.282770\pi\)
\(4\) 0 0
\(5\) 1.65270 0.739112 0.369556 0.929209i \(-0.379510\pi\)
0.369556 + 0.929209i \(0.379510\pi\)
\(6\) 0 0
\(7\) 3.87939 1.46627 0.733135 0.680083i \(-0.238056\pi\)
0.733135 + 0.680083i \(0.238056\pi\)
\(8\) 0 0
\(9\) 1.77332 0.591106
\(10\) 0 0
\(11\) −1.06418 −0.320862 −0.160431 0.987047i \(-0.551288\pi\)
−0.160431 + 0.987047i \(0.551288\pi\)
\(12\) 0 0
\(13\) 6.10607 1.69352 0.846759 0.531976i \(-0.178551\pi\)
0.846759 + 0.531976i \(0.178551\pi\)
\(14\) 0 0
\(15\) 3.61081 0.932308
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 1.41147 0.323814 0.161907 0.986806i \(-0.448235\pi\)
0.161907 + 0.986806i \(0.448235\pi\)
\(20\) 0 0
\(21\) 8.47565 1.84954
\(22\) 0 0
\(23\) 6.92127 1.44319 0.721593 0.692318i \(-0.243410\pi\)
0.721593 + 0.692318i \(0.243410\pi\)
\(24\) 0 0
\(25\) −2.26857 −0.453714
\(26\) 0 0
\(27\) −2.68004 −0.515775
\(28\) 0 0
\(29\) −7.90167 −1.46730 −0.733652 0.679525i \(-0.762186\pi\)
−0.733652 + 0.679525i \(0.762186\pi\)
\(30\) 0 0
\(31\) −9.00774 −1.61784 −0.808919 0.587920i \(-0.799947\pi\)
−0.808919 + 0.587920i \(0.799947\pi\)
\(32\) 0 0
\(33\) −2.32501 −0.404732
\(34\) 0 0
\(35\) 6.41147 1.08374
\(36\) 0 0
\(37\) 3.47565 0.571394 0.285697 0.958320i \(-0.407775\pi\)
0.285697 + 0.958320i \(0.407775\pi\)
\(38\) 0 0
\(39\) 13.3405 2.13619
\(40\) 0 0
\(41\) −10.3473 −1.61598 −0.807988 0.589199i \(-0.799443\pi\)
−0.807988 + 0.589199i \(0.799443\pi\)
\(42\) 0 0
\(43\) −8.86484 −1.35188 −0.675938 0.736959i \(-0.736261\pi\)
−0.675938 + 0.736959i \(0.736261\pi\)
\(44\) 0 0
\(45\) 2.93077 0.436893
\(46\) 0 0
\(47\) 3.22668 0.470660 0.235330 0.971916i \(-0.424383\pi\)
0.235330 + 0.971916i \(0.424383\pi\)
\(48\) 0 0
\(49\) 8.04963 1.14995
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.06418 −0.146176 −0.0730880 0.997325i \(-0.523285\pi\)
−0.0730880 + 0.997325i \(0.523285\pi\)
\(54\) 0 0
\(55\) −1.75877 −0.237153
\(56\) 0 0
\(57\) 3.08378 0.408456
\(58\) 0 0
\(59\) −9.46110 −1.23173 −0.615865 0.787851i \(-0.711193\pi\)
−0.615865 + 0.787851i \(0.711193\pi\)
\(60\) 0 0
\(61\) 11.3327 1.45101 0.725505 0.688217i \(-0.241606\pi\)
0.725505 + 0.688217i \(0.241606\pi\)
\(62\) 0 0
\(63\) 6.87939 0.866721
\(64\) 0 0
\(65\) 10.0915 1.25170
\(66\) 0 0
\(67\) 2.04963 0.250402 0.125201 0.992131i \(-0.460042\pi\)
0.125201 + 0.992131i \(0.460042\pi\)
\(68\) 0 0
\(69\) 15.1215 1.82042
\(70\) 0 0
\(71\) 0.448311 0.0532047 0.0266023 0.999646i \(-0.491531\pi\)
0.0266023 + 0.999646i \(0.491531\pi\)
\(72\) 0 0
\(73\) −1.83750 −0.215063 −0.107531 0.994202i \(-0.534295\pi\)
−0.107531 + 0.994202i \(0.534295\pi\)
\(74\) 0 0
\(75\) −4.95636 −0.572311
\(76\) 0 0
\(77\) −4.12836 −0.470470
\(78\) 0 0
\(79\) 2.75877 0.310386 0.155193 0.987884i \(-0.450400\pi\)
0.155193 + 0.987884i \(0.450400\pi\)
\(80\) 0 0
\(81\) −11.1753 −1.24170
\(82\) 0 0
\(83\) 0.389185 0.0427186 0.0213593 0.999772i \(-0.493201\pi\)
0.0213593 + 0.999772i \(0.493201\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −17.2635 −1.85084
\(88\) 0 0
\(89\) 13.9290 1.47647 0.738236 0.674542i \(-0.235659\pi\)
0.738236 + 0.674542i \(0.235659\pi\)
\(90\) 0 0
\(91\) 23.6878 2.48315
\(92\) 0 0
\(93\) −19.6800 −2.04073
\(94\) 0 0
\(95\) 2.33275 0.239335
\(96\) 0 0
\(97\) 13.7588 1.39699 0.698496 0.715614i \(-0.253853\pi\)
0.698496 + 0.715614i \(0.253853\pi\)
\(98\) 0 0
\(99\) −1.88713 −0.189663
\(100\) 0 0
\(101\) −14.5672 −1.44949 −0.724744 0.689018i \(-0.758042\pi\)
−0.724744 + 0.689018i \(0.758042\pi\)
\(102\) 0 0
\(103\) −14.1506 −1.39430 −0.697152 0.716923i \(-0.745550\pi\)
−0.697152 + 0.716923i \(0.745550\pi\)
\(104\) 0 0
\(105\) 14.0077 1.36702
\(106\) 0 0
\(107\) 1.38413 0.133809 0.0669046 0.997759i \(-0.478688\pi\)
0.0669046 + 0.997759i \(0.478688\pi\)
\(108\) 0 0
\(109\) −8.25671 −0.790849 −0.395425 0.918498i \(-0.629403\pi\)
−0.395425 + 0.918498i \(0.629403\pi\)
\(110\) 0 0
\(111\) 7.59358 0.720751
\(112\) 0 0
\(113\) −9.98545 −0.939352 −0.469676 0.882839i \(-0.655629\pi\)
−0.469676 + 0.882839i \(0.655629\pi\)
\(114\) 0 0
\(115\) 11.4388 1.06668
\(116\) 0 0
\(117\) 10.8280 1.00105
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.86753 −0.897048
\(122\) 0 0
\(123\) −22.6067 −2.03838
\(124\) 0 0
\(125\) −12.0128 −1.07446
\(126\) 0 0
\(127\) 9.04189 0.802338 0.401169 0.916004i \(-0.368604\pi\)
0.401169 + 0.916004i \(0.368604\pi\)
\(128\) 0 0
\(129\) −19.3678 −1.70524
\(130\) 0 0
\(131\) 15.6159 1.36436 0.682182 0.731182i \(-0.261031\pi\)
0.682182 + 0.731182i \(0.261031\pi\)
\(132\) 0 0
\(133\) 5.47565 0.474799
\(134\) 0 0
\(135\) −4.42932 −0.381215
\(136\) 0 0
\(137\) −17.5226 −1.49706 −0.748528 0.663103i \(-0.769239\pi\)
−0.748528 + 0.663103i \(0.769239\pi\)
\(138\) 0 0
\(139\) 4.40373 0.373520 0.186760 0.982406i \(-0.440201\pi\)
0.186760 + 0.982406i \(0.440201\pi\)
\(140\) 0 0
\(141\) 7.04963 0.593686
\(142\) 0 0
\(143\) −6.49794 −0.543385
\(144\) 0 0
\(145\) −13.0591 −1.08450
\(146\) 0 0
\(147\) 17.5868 1.45053
\(148\) 0 0
\(149\) 0.467911 0.0383328 0.0191664 0.999816i \(-0.493899\pi\)
0.0191664 + 0.999816i \(0.493899\pi\)
\(150\) 0 0
\(151\) 12.9881 1.05696 0.528480 0.848946i \(-0.322762\pi\)
0.528480 + 0.848946i \(0.322762\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.8871 −1.19576
\(156\) 0 0
\(157\) 9.96316 0.795147 0.397574 0.917570i \(-0.369852\pi\)
0.397574 + 0.917570i \(0.369852\pi\)
\(158\) 0 0
\(159\) −2.32501 −0.184385
\(160\) 0 0
\(161\) 26.8503 2.11610
\(162\) 0 0
\(163\) 8.41147 0.658838 0.329419 0.944184i \(-0.393147\pi\)
0.329419 + 0.944184i \(0.393147\pi\)
\(164\) 0 0
\(165\) −3.84255 −0.299142
\(166\) 0 0
\(167\) 1.80066 0.139339 0.0696696 0.997570i \(-0.477805\pi\)
0.0696696 + 0.997570i \(0.477805\pi\)
\(168\) 0 0
\(169\) 24.2841 1.86800
\(170\) 0 0
\(171\) 2.50299 0.191409
\(172\) 0 0
\(173\) 14.3824 1.09347 0.546736 0.837305i \(-0.315870\pi\)
0.546736 + 0.837305i \(0.315870\pi\)
\(174\) 0 0
\(175\) −8.80066 −0.665267
\(176\) 0 0
\(177\) −20.6705 −1.55369
\(178\) 0 0
\(179\) 2.83750 0.212084 0.106042 0.994362i \(-0.466182\pi\)
0.106042 + 0.994362i \(0.466182\pi\)
\(180\) 0 0
\(181\) 9.01548 0.670115 0.335058 0.942198i \(-0.391244\pi\)
0.335058 + 0.942198i \(0.391244\pi\)
\(182\) 0 0
\(183\) 24.7597 1.83029
\(184\) 0 0
\(185\) 5.74422 0.422324
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.3969 −0.756265
\(190\) 0 0
\(191\) 8.25402 0.597240 0.298620 0.954372i \(-0.403474\pi\)
0.298620 + 0.954372i \(0.403474\pi\)
\(192\) 0 0
\(193\) 4.46791 0.321607 0.160804 0.986986i \(-0.448591\pi\)
0.160804 + 0.986986i \(0.448591\pi\)
\(194\) 0 0
\(195\) 22.0479 1.57888
\(196\) 0 0
\(197\) −19.3628 −1.37954 −0.689770 0.724028i \(-0.742289\pi\)
−0.689770 + 0.724028i \(0.742289\pi\)
\(198\) 0 0
\(199\) 0.376392 0.0266817 0.0133409 0.999911i \(-0.495753\pi\)
0.0133409 + 0.999911i \(0.495753\pi\)
\(200\) 0 0
\(201\) 4.47802 0.315855
\(202\) 0 0
\(203\) −30.6536 −2.15146
\(204\) 0 0
\(205\) −17.1010 −1.19439
\(206\) 0 0
\(207\) 12.2736 0.853076
\(208\) 0 0
\(209\) −1.50206 −0.103900
\(210\) 0 0
\(211\) 19.6732 1.35436 0.677181 0.735817i \(-0.263202\pi\)
0.677181 + 0.735817i \(0.263202\pi\)
\(212\) 0 0
\(213\) 0.979466 0.0671119
\(214\) 0 0
\(215\) −14.6509 −0.999186
\(216\) 0 0
\(217\) −34.9445 −2.37219
\(218\) 0 0
\(219\) −4.01455 −0.271278
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.11287 0.208453 0.104227 0.994554i \(-0.466763\pi\)
0.104227 + 0.994554i \(0.466763\pi\)
\(224\) 0 0
\(225\) −4.02290 −0.268193
\(226\) 0 0
\(227\) 16.8033 1.11528 0.557639 0.830084i \(-0.311707\pi\)
0.557639 + 0.830084i \(0.311707\pi\)
\(228\) 0 0
\(229\) −22.9145 −1.51423 −0.757115 0.653281i \(-0.773392\pi\)
−0.757115 + 0.653281i \(0.773392\pi\)
\(230\) 0 0
\(231\) −9.01960 −0.593446
\(232\) 0 0
\(233\) −8.00505 −0.524428 −0.262214 0.965010i \(-0.584453\pi\)
−0.262214 + 0.965010i \(0.584453\pi\)
\(234\) 0 0
\(235\) 5.33275 0.347870
\(236\) 0 0
\(237\) 6.02734 0.391518
\(238\) 0 0
\(239\) −3.48070 −0.225148 −0.112574 0.993643i \(-0.535910\pi\)
−0.112574 + 0.993643i \(0.535910\pi\)
\(240\) 0 0
\(241\) −4.15570 −0.267692 −0.133846 0.991002i \(-0.542733\pi\)
−0.133846 + 0.991002i \(0.542733\pi\)
\(242\) 0 0
\(243\) −16.3756 −1.05049
\(244\) 0 0
\(245\) 13.3037 0.849939
\(246\) 0 0
\(247\) 8.61856 0.548386
\(248\) 0 0
\(249\) 0.850289 0.0538849
\(250\) 0 0
\(251\) −15.7493 −0.994085 −0.497043 0.867726i \(-0.665581\pi\)
−0.497043 + 0.867726i \(0.665581\pi\)
\(252\) 0 0
\(253\) −7.36547 −0.463063
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.54488 −0.283502 −0.141751 0.989902i \(-0.545273\pi\)
−0.141751 + 0.989902i \(0.545273\pi\)
\(258\) 0 0
\(259\) 13.4834 0.837817
\(260\) 0 0
\(261\) −14.0122 −0.867332
\(262\) 0 0
\(263\) −13.4611 −0.830047 −0.415024 0.909811i \(-0.636227\pi\)
−0.415024 + 0.909811i \(0.636227\pi\)
\(264\) 0 0
\(265\) −1.75877 −0.108040
\(266\) 0 0
\(267\) 30.4320 1.86241
\(268\) 0 0
\(269\) −5.35410 −0.326445 −0.163223 0.986589i \(-0.552189\pi\)
−0.163223 + 0.986589i \(0.552189\pi\)
\(270\) 0 0
\(271\) 23.0993 1.40318 0.701590 0.712581i \(-0.252474\pi\)
0.701590 + 0.712581i \(0.252474\pi\)
\(272\) 0 0
\(273\) 51.7529 3.13223
\(274\) 0 0
\(275\) 2.41416 0.145579
\(276\) 0 0
\(277\) −17.7469 −1.06631 −0.533154 0.846018i \(-0.678993\pi\)
−0.533154 + 0.846018i \(0.678993\pi\)
\(278\) 0 0
\(279\) −15.9736 −0.956314
\(280\) 0 0
\(281\) −2.28993 −0.136606 −0.0683028 0.997665i \(-0.521758\pi\)
−0.0683028 + 0.997665i \(0.521758\pi\)
\(282\) 0 0
\(283\) 8.13516 0.483585 0.241793 0.970328i \(-0.422265\pi\)
0.241793 + 0.970328i \(0.422265\pi\)
\(284\) 0 0
\(285\) 5.09657 0.301895
\(286\) 0 0
\(287\) −40.1411 −2.36946
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 30.0601 1.76215
\(292\) 0 0
\(293\) 3.10338 0.181301 0.0906507 0.995883i \(-0.471105\pi\)
0.0906507 + 0.995883i \(0.471105\pi\)
\(294\) 0 0
\(295\) −15.6364 −0.910386
\(296\) 0 0
\(297\) 2.85204 0.165492
\(298\) 0 0
\(299\) 42.2618 2.44406
\(300\) 0 0
\(301\) −34.3901 −1.98221
\(302\) 0 0
\(303\) −31.8262 −1.82837
\(304\) 0 0
\(305\) 18.7297 1.07246
\(306\) 0 0
\(307\) 0.580785 0.0331472 0.0165736 0.999863i \(-0.494724\pi\)
0.0165736 + 0.999863i \(0.494724\pi\)
\(308\) 0 0
\(309\) −30.9162 −1.75876
\(310\) 0 0
\(311\) 21.0128 1.19153 0.595763 0.803160i \(-0.296850\pi\)
0.595763 + 0.803160i \(0.296850\pi\)
\(312\) 0 0
\(313\) 9.12836 0.515965 0.257983 0.966150i \(-0.416942\pi\)
0.257983 + 0.966150i \(0.416942\pi\)
\(314\) 0 0
\(315\) 11.3696 0.640604
\(316\) 0 0
\(317\) 8.04189 0.451677 0.225839 0.974165i \(-0.427488\pi\)
0.225839 + 0.974165i \(0.427488\pi\)
\(318\) 0 0
\(319\) 8.40879 0.470802
\(320\) 0 0
\(321\) 3.02404 0.168786
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −13.8520 −0.768373
\(326\) 0 0
\(327\) −18.0392 −0.997570
\(328\) 0 0
\(329\) 12.5175 0.690114
\(330\) 0 0
\(331\) −4.03920 −0.222015 −0.111007 0.993820i \(-0.535408\pi\)
−0.111007 + 0.993820i \(0.535408\pi\)
\(332\) 0 0
\(333\) 6.16344 0.337754
\(334\) 0 0
\(335\) 3.38743 0.185075
\(336\) 0 0
\(337\) 14.9385 0.813753 0.406876 0.913483i \(-0.366618\pi\)
0.406876 + 0.913483i \(0.366618\pi\)
\(338\) 0 0
\(339\) −21.8161 −1.18489
\(340\) 0 0
\(341\) 9.58584 0.519102
\(342\) 0 0
\(343\) 4.07192 0.219863
\(344\) 0 0
\(345\) 24.9914 1.34549
\(346\) 0 0
\(347\) −2.17705 −0.116870 −0.0584351 0.998291i \(-0.518611\pi\)
−0.0584351 + 0.998291i \(0.518611\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −16.3645 −0.873474
\(352\) 0 0
\(353\) 12.8726 0.685138 0.342569 0.939493i \(-0.388703\pi\)
0.342569 + 0.939493i \(0.388703\pi\)
\(354\) 0 0
\(355\) 0.740925 0.0393242
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.7529 1.93974 0.969872 0.243616i \(-0.0783335\pi\)
0.969872 + 0.243616i \(0.0783335\pi\)
\(360\) 0 0
\(361\) −17.0077 −0.895144
\(362\) 0 0
\(363\) −21.5585 −1.13153
\(364\) 0 0
\(365\) −3.03684 −0.158955
\(366\) 0 0
\(367\) 19.9463 1.04119 0.520593 0.853805i \(-0.325711\pi\)
0.520593 + 0.853805i \(0.325711\pi\)
\(368\) 0 0
\(369\) −18.3491 −0.955213
\(370\) 0 0
\(371\) −4.12836 −0.214334
\(372\) 0 0
\(373\) −10.4929 −0.543301 −0.271651 0.962396i \(-0.587569\pi\)
−0.271651 + 0.962396i \(0.587569\pi\)
\(374\) 0 0
\(375\) −26.2455 −1.35531
\(376\) 0 0
\(377\) −48.2481 −2.48491
\(378\) 0 0
\(379\) 10.6254 0.545788 0.272894 0.962044i \(-0.412019\pi\)
0.272894 + 0.962044i \(0.412019\pi\)
\(380\) 0 0
\(381\) 19.7547 1.01206
\(382\) 0 0
\(383\) −12.4415 −0.635731 −0.317866 0.948136i \(-0.602966\pi\)
−0.317866 + 0.948136i \(0.602966\pi\)
\(384\) 0 0
\(385\) −6.82295 −0.347730
\(386\) 0 0
\(387\) −15.7202 −0.799102
\(388\) 0 0
\(389\) −18.7297 −0.949632 −0.474816 0.880085i \(-0.657485\pi\)
−0.474816 + 0.880085i \(0.657485\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 34.1174 1.72100
\(394\) 0 0
\(395\) 4.55943 0.229410
\(396\) 0 0
\(397\) 0.425088 0.0213346 0.0106673 0.999943i \(-0.496604\pi\)
0.0106673 + 0.999943i \(0.496604\pi\)
\(398\) 0 0
\(399\) 11.9632 0.598907
\(400\) 0 0
\(401\) −11.4979 −0.574180 −0.287090 0.957904i \(-0.592688\pi\)
−0.287090 + 0.957904i \(0.592688\pi\)
\(402\) 0 0
\(403\) −55.0019 −2.73984
\(404\) 0 0
\(405\) −18.4695 −0.917755
\(406\) 0 0
\(407\) −3.69871 −0.183338
\(408\) 0 0
\(409\) −22.9786 −1.13622 −0.568110 0.822952i \(-0.692325\pi\)
−0.568110 + 0.822952i \(0.692325\pi\)
\(410\) 0 0
\(411\) −38.2832 −1.88837
\(412\) 0 0
\(413\) −36.7033 −1.80605
\(414\) 0 0
\(415\) 0.643208 0.0315738
\(416\) 0 0
\(417\) 9.62124 0.471154
\(418\) 0 0
\(419\) −27.4962 −1.34328 −0.671638 0.740879i \(-0.734409\pi\)
−0.671638 + 0.740879i \(0.734409\pi\)
\(420\) 0 0
\(421\) −7.27631 −0.354626 −0.177313 0.984155i \(-0.556740\pi\)
−0.177313 + 0.984155i \(0.556740\pi\)
\(422\) 0 0
\(423\) 5.72193 0.278210
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 43.9641 2.12757
\(428\) 0 0
\(429\) −14.1967 −0.685421
\(430\) 0 0
\(431\) 8.31820 0.400674 0.200337 0.979727i \(-0.435796\pi\)
0.200337 + 0.979727i \(0.435796\pi\)
\(432\) 0 0
\(433\) −29.4047 −1.41310 −0.706549 0.707664i \(-0.749749\pi\)
−0.706549 + 0.707664i \(0.749749\pi\)
\(434\) 0 0
\(435\) −28.5315 −1.36798
\(436\) 0 0
\(437\) 9.76920 0.467324
\(438\) 0 0
\(439\) −3.65507 −0.174447 −0.0872234 0.996189i \(-0.527799\pi\)
−0.0872234 + 0.996189i \(0.527799\pi\)
\(440\) 0 0
\(441\) 14.2746 0.679741
\(442\) 0 0
\(443\) 34.9760 1.66176 0.830879 0.556453i \(-0.187838\pi\)
0.830879 + 0.556453i \(0.187838\pi\)
\(444\) 0 0
\(445\) 23.0205 1.09128
\(446\) 0 0
\(447\) 1.02229 0.0483526
\(448\) 0 0
\(449\) 35.8384 1.69132 0.845660 0.533722i \(-0.179207\pi\)
0.845660 + 0.533722i \(0.179207\pi\)
\(450\) 0 0
\(451\) 11.0114 0.518505
\(452\) 0 0
\(453\) 28.3764 1.33324
\(454\) 0 0
\(455\) 39.1489 1.83533
\(456\) 0 0
\(457\) 10.7820 0.504360 0.252180 0.967680i \(-0.418852\pi\)
0.252180 + 0.967680i \(0.418852\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.297667 0.0138637 0.00693186 0.999976i \(-0.497794\pi\)
0.00693186 + 0.999976i \(0.497794\pi\)
\(462\) 0 0
\(463\) −1.30272 −0.0605425 −0.0302712 0.999542i \(-0.509637\pi\)
−0.0302712 + 0.999542i \(0.509637\pi\)
\(464\) 0 0
\(465\) −32.5253 −1.50832
\(466\) 0 0
\(467\) 25.1584 1.16419 0.582096 0.813120i \(-0.302233\pi\)
0.582096 + 0.813120i \(0.302233\pi\)
\(468\) 0 0
\(469\) 7.95130 0.367157
\(470\) 0 0
\(471\) 21.7674 1.00299
\(472\) 0 0
\(473\) 9.43376 0.433765
\(474\) 0 0
\(475\) −3.20203 −0.146919
\(476\) 0 0
\(477\) −1.88713 −0.0864056
\(478\) 0 0
\(479\) −33.1634 −1.51528 −0.757638 0.652675i \(-0.773647\pi\)
−0.757638 + 0.652675i \(0.773647\pi\)
\(480\) 0 0
\(481\) 21.2226 0.967666
\(482\) 0 0
\(483\) 58.6623 2.66923
\(484\) 0 0
\(485\) 22.7392 1.03253
\(486\) 0 0
\(487\) −25.1848 −1.14123 −0.570616 0.821217i \(-0.693295\pi\)
−0.570616 + 0.821217i \(0.693295\pi\)
\(488\) 0 0
\(489\) 18.3773 0.831051
\(490\) 0 0
\(491\) 37.9445 1.71241 0.856206 0.516635i \(-0.172816\pi\)
0.856206 + 0.516635i \(0.172816\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −3.11886 −0.140182
\(496\) 0 0
\(497\) 1.73917 0.0780124
\(498\) 0 0
\(499\) 0.330060 0.0147755 0.00738776 0.999973i \(-0.497648\pi\)
0.00738776 + 0.999973i \(0.497648\pi\)
\(500\) 0 0
\(501\) 3.93407 0.175761
\(502\) 0 0
\(503\) −6.39187 −0.285000 −0.142500 0.989795i \(-0.545514\pi\)
−0.142500 + 0.989795i \(0.545514\pi\)
\(504\) 0 0
\(505\) −24.0752 −1.07133
\(506\) 0 0
\(507\) 53.0556 2.35628
\(508\) 0 0
\(509\) 12.2172 0.541517 0.270759 0.962647i \(-0.412725\pi\)
0.270759 + 0.962647i \(0.412725\pi\)
\(510\) 0 0
\(511\) −7.12836 −0.315340
\(512\) 0 0
\(513\) −3.78281 −0.167015
\(514\) 0 0
\(515\) −23.3868 −1.03055
\(516\) 0 0
\(517\) −3.43376 −0.151017
\(518\) 0 0
\(519\) 31.4225 1.37930
\(520\) 0 0
\(521\) −43.2763 −1.89597 −0.947985 0.318316i \(-0.896883\pi\)
−0.947985 + 0.318316i \(0.896883\pi\)
\(522\) 0 0
\(523\) −28.0036 −1.22451 −0.612256 0.790659i \(-0.709738\pi\)
−0.612256 + 0.790659i \(0.709738\pi\)
\(524\) 0 0
\(525\) −19.2276 −0.839162
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 24.9040 1.08278
\(530\) 0 0
\(531\) −16.7775 −0.728084
\(532\) 0 0
\(533\) −63.1813 −2.73669
\(534\) 0 0
\(535\) 2.28756 0.0988999
\(536\) 0 0
\(537\) 6.19934 0.267521
\(538\) 0 0
\(539\) −8.56624 −0.368974
\(540\) 0 0
\(541\) 23.9982 1.03177 0.515883 0.856659i \(-0.327464\pi\)
0.515883 + 0.856659i \(0.327464\pi\)
\(542\) 0 0
\(543\) 19.6970 0.845277
\(544\) 0 0
\(545\) −13.6459 −0.584526
\(546\) 0 0
\(547\) 34.8435 1.48980 0.744900 0.667176i \(-0.232497\pi\)
0.744900 + 0.667176i \(0.232497\pi\)
\(548\) 0 0
\(549\) 20.0966 0.857701
\(550\) 0 0
\(551\) −11.1530 −0.475134
\(552\) 0 0
\(553\) 10.7023 0.455110
\(554\) 0 0
\(555\) 12.5499 0.532715
\(556\) 0 0
\(557\) −10.3200 −0.437271 −0.218635 0.975807i \(-0.570160\pi\)
−0.218635 + 0.975807i \(0.570160\pi\)
\(558\) 0 0
\(559\) −54.1293 −2.28942
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.9290 −1.26136 −0.630679 0.776044i \(-0.717223\pi\)
−0.630679 + 0.776044i \(0.717223\pi\)
\(564\) 0 0
\(565\) −16.5030 −0.694286
\(566\) 0 0
\(567\) −43.3533 −1.82067
\(568\) 0 0
\(569\) 4.71419 0.197629 0.0988146 0.995106i \(-0.468495\pi\)
0.0988146 + 0.995106i \(0.468495\pi\)
\(570\) 0 0
\(571\) 1.14290 0.0478290 0.0239145 0.999714i \(-0.492387\pi\)
0.0239145 + 0.999714i \(0.492387\pi\)
\(572\) 0 0
\(573\) 18.0333 0.753353
\(574\) 0 0
\(575\) −15.7014 −0.654794
\(576\) 0 0
\(577\) 1.68180 0.0700142 0.0350071 0.999387i \(-0.488855\pi\)
0.0350071 + 0.999387i \(0.488855\pi\)
\(578\) 0 0
\(579\) 9.76146 0.405672
\(580\) 0 0
\(581\) 1.50980 0.0626371
\(582\) 0 0
\(583\) 1.13247 0.0469023
\(584\) 0 0
\(585\) 17.8955 0.739887
\(586\) 0 0
\(587\) −34.5330 −1.42533 −0.712665 0.701504i \(-0.752512\pi\)
−0.712665 + 0.701504i \(0.752512\pi\)
\(588\) 0 0
\(589\) −12.7142 −0.523879
\(590\) 0 0
\(591\) −42.3037 −1.74014
\(592\) 0 0
\(593\) −37.7847 −1.55163 −0.775815 0.630960i \(-0.782661\pi\)
−0.775815 + 0.630960i \(0.782661\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.822339 0.0336561
\(598\) 0 0
\(599\) 23.2841 0.951361 0.475680 0.879618i \(-0.342202\pi\)
0.475680 + 0.879618i \(0.342202\pi\)
\(600\) 0 0
\(601\) 31.4620 1.28336 0.641682 0.766971i \(-0.278237\pi\)
0.641682 + 0.766971i \(0.278237\pi\)
\(602\) 0 0
\(603\) 3.63465 0.148014
\(604\) 0 0
\(605\) −16.3081 −0.663018
\(606\) 0 0
\(607\) −28.6527 −1.16298 −0.581489 0.813554i \(-0.697530\pi\)
−0.581489 + 0.813554i \(0.697530\pi\)
\(608\) 0 0
\(609\) −66.9718 −2.71384
\(610\) 0 0
\(611\) 19.7023 0.797071
\(612\) 0 0
\(613\) −48.3996 −1.95484 −0.977421 0.211301i \(-0.932230\pi\)
−0.977421 + 0.211301i \(0.932230\pi\)
\(614\) 0 0
\(615\) −37.3622 −1.50659
\(616\) 0 0
\(617\) −33.4989 −1.34861 −0.674307 0.738451i \(-0.735558\pi\)
−0.674307 + 0.738451i \(0.735558\pi\)
\(618\) 0 0
\(619\) −2.07367 −0.0833480 −0.0416740 0.999131i \(-0.513269\pi\)
−0.0416740 + 0.999131i \(0.513269\pi\)
\(620\) 0 0
\(621\) −18.5493 −0.744359
\(622\) 0 0
\(623\) 54.0360 2.16491
\(624\) 0 0
\(625\) −8.51073 −0.340429
\(626\) 0 0
\(627\) −3.28169 −0.131058
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.52704 0.0607904 0.0303952 0.999538i \(-0.490323\pi\)
0.0303952 + 0.999538i \(0.490323\pi\)
\(632\) 0 0
\(633\) 42.9819 1.70838
\(634\) 0 0
\(635\) 14.9436 0.593017
\(636\) 0 0
\(637\) 49.1516 1.94746
\(638\) 0 0
\(639\) 0.794998 0.0314496
\(640\) 0 0
\(641\) 14.5098 0.573103 0.286551 0.958065i \(-0.407491\pi\)
0.286551 + 0.958065i \(0.407491\pi\)
\(642\) 0 0
\(643\) 20.0155 0.789334 0.394667 0.918824i \(-0.370860\pi\)
0.394667 + 0.918824i \(0.370860\pi\)
\(644\) 0 0
\(645\) −32.0093 −1.26036
\(646\) 0 0
\(647\) −24.9486 −0.980831 −0.490416 0.871489i \(-0.663155\pi\)
−0.490416 + 0.871489i \(0.663155\pi\)
\(648\) 0 0
\(649\) 10.0683 0.395215
\(650\) 0 0
\(651\) −76.3465 −2.99225
\(652\) 0 0
\(653\) −4.97359 −0.194632 −0.0973159 0.995254i \(-0.531026\pi\)
−0.0973159 + 0.995254i \(0.531026\pi\)
\(654\) 0 0
\(655\) 25.8084 1.00842
\(656\) 0 0
\(657\) −3.25847 −0.127125
\(658\) 0 0
\(659\) 26.9009 1.04791 0.523954 0.851746i \(-0.324456\pi\)
0.523954 + 0.851746i \(0.324456\pi\)
\(660\) 0 0
\(661\) −4.86390 −0.189184 −0.0945920 0.995516i \(-0.530155\pi\)
−0.0945920 + 0.995516i \(0.530155\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.04963 0.350930
\(666\) 0 0
\(667\) −54.6897 −2.11759
\(668\) 0 0
\(669\) 6.80098 0.262941
\(670\) 0 0
\(671\) −12.0601 −0.465573
\(672\) 0 0
\(673\) 30.4252 1.17281 0.586403 0.810020i \(-0.300544\pi\)
0.586403 + 0.810020i \(0.300544\pi\)
\(674\) 0 0
\(675\) 6.07987 0.234014
\(676\) 0 0
\(677\) −9.97266 −0.383280 −0.191640 0.981465i \(-0.561381\pi\)
−0.191640 + 0.981465i \(0.561381\pi\)
\(678\) 0 0
\(679\) 53.3756 2.04837
\(680\) 0 0
\(681\) 36.7118 1.40680
\(682\) 0 0
\(683\) −12.7784 −0.488951 −0.244475 0.969655i \(-0.578616\pi\)
−0.244475 + 0.969655i \(0.578616\pi\)
\(684\) 0 0
\(685\) −28.9597 −1.10649
\(686\) 0 0
\(687\) −50.0634 −1.91004
\(688\) 0 0
\(689\) −6.49794 −0.247552
\(690\) 0 0
\(691\) 25.9564 0.987426 0.493713 0.869625i \(-0.335639\pi\)
0.493713 + 0.869625i \(0.335639\pi\)
\(692\) 0 0
\(693\) −7.32089 −0.278098
\(694\) 0 0
\(695\) 7.27807 0.276073
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −17.4894 −0.661509
\(700\) 0 0
\(701\) −37.7279 −1.42496 −0.712482 0.701690i \(-0.752429\pi\)
−0.712482 + 0.701690i \(0.752429\pi\)
\(702\) 0 0
\(703\) 4.90579 0.185025
\(704\) 0 0
\(705\) 11.6509 0.438800
\(706\) 0 0
\(707\) −56.5117 −2.12534
\(708\) 0 0
\(709\) 32.5936 1.22408 0.612039 0.790828i \(-0.290350\pi\)
0.612039 + 0.790828i \(0.290350\pi\)
\(710\) 0 0
\(711\) 4.89218 0.183471
\(712\) 0 0
\(713\) −62.3450 −2.33484
\(714\) 0 0
\(715\) −10.7392 −0.401622
\(716\) 0 0
\(717\) −7.60462 −0.284000
\(718\) 0 0
\(719\) 33.5708 1.25198 0.625990 0.779831i \(-0.284695\pi\)
0.625990 + 0.779831i \(0.284695\pi\)
\(720\) 0 0
\(721\) −54.8958 −2.04443
\(722\) 0 0
\(723\) −9.07934 −0.337664
\(724\) 0 0
\(725\) 17.9255 0.665737
\(726\) 0 0
\(727\) −33.6313 −1.24732 −0.623659 0.781697i \(-0.714355\pi\)
−0.623659 + 0.781697i \(0.714355\pi\)
\(728\) 0 0
\(729\) −2.25133 −0.0833828
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 6.53209 0.241268 0.120634 0.992697i \(-0.461507\pi\)
0.120634 + 0.992697i \(0.461507\pi\)
\(734\) 0 0
\(735\) 29.0657 1.07211
\(736\) 0 0
\(737\) −2.18117 −0.0803444
\(738\) 0 0
\(739\) 9.57903 0.352370 0.176185 0.984357i \(-0.443624\pi\)
0.176185 + 0.984357i \(0.443624\pi\)
\(740\) 0 0
\(741\) 18.8298 0.691728
\(742\) 0 0
\(743\) −9.98639 −0.366365 −0.183182 0.983079i \(-0.558640\pi\)
−0.183182 + 0.983079i \(0.558640\pi\)
\(744\) 0 0
\(745\) 0.773318 0.0283322
\(746\) 0 0
\(747\) 0.690150 0.0252513
\(748\) 0 0
\(749\) 5.36959 0.196200
\(750\) 0 0
\(751\) −4.90261 −0.178899 −0.0894493 0.995991i \(-0.528511\pi\)
−0.0894493 + 0.995991i \(0.528511\pi\)
\(752\) 0 0
\(753\) −34.4089 −1.25393
\(754\) 0 0
\(755\) 21.4655 0.781211
\(756\) 0 0
\(757\) 26.5340 0.964393 0.482197 0.876063i \(-0.339839\pi\)
0.482197 + 0.876063i \(0.339839\pi\)
\(758\) 0 0
\(759\) −16.0920 −0.584103
\(760\) 0 0
\(761\) −43.3628 −1.57190 −0.785950 0.618290i \(-0.787826\pi\)
−0.785950 + 0.618290i \(0.787826\pi\)
\(762\) 0 0
\(763\) −32.0310 −1.15960
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −57.7701 −2.08596
\(768\) 0 0
\(769\) −47.7333 −1.72131 −0.860653 0.509191i \(-0.829945\pi\)
−0.860653 + 0.509191i \(0.829945\pi\)
\(770\) 0 0
\(771\) −9.92962 −0.357607
\(772\) 0 0
\(773\) 46.9205 1.68761 0.843806 0.536649i \(-0.180310\pi\)
0.843806 + 0.536649i \(0.180310\pi\)
\(774\) 0 0
\(775\) 20.4347 0.734036
\(776\) 0 0
\(777\) 29.4584 1.05681
\(778\) 0 0
\(779\) −14.6049 −0.523276
\(780\) 0 0
\(781\) −0.477082 −0.0170713
\(782\) 0 0
\(783\) 21.1768 0.756799
\(784\) 0 0
\(785\) 16.4662 0.587702
\(786\) 0 0
\(787\) 8.41828 0.300079 0.150040 0.988680i \(-0.452060\pi\)
0.150040 + 0.988680i \(0.452060\pi\)
\(788\) 0 0
\(789\) −29.4097 −1.04701
\(790\) 0 0
\(791\) −38.7374 −1.37734
\(792\) 0 0
\(793\) 69.1985 2.45731
\(794\) 0 0
\(795\) −3.84255 −0.136281
\(796\) 0 0
\(797\) −8.56355 −0.303336 −0.151668 0.988431i \(-0.548465\pi\)
−0.151668 + 0.988431i \(0.548465\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 24.7006 0.872752
\(802\) 0 0
\(803\) 1.95542 0.0690054
\(804\) 0 0
\(805\) 44.3756 1.56403
\(806\) 0 0
\(807\) −11.6976 −0.411775
\(808\) 0 0
\(809\) 13.1935 0.463858 0.231929 0.972733i \(-0.425496\pi\)
0.231929 + 0.972733i \(0.425496\pi\)
\(810\) 0 0
\(811\) 6.96854 0.244699 0.122349 0.992487i \(-0.460957\pi\)
0.122349 + 0.992487i \(0.460957\pi\)
\(812\) 0 0
\(813\) 50.4671 1.76996
\(814\) 0 0
\(815\) 13.9017 0.486954
\(816\) 0 0
\(817\) −12.5125 −0.437757
\(818\) 0 0
\(819\) 42.0060 1.46781
\(820\) 0 0
\(821\) 10.3226 0.360263 0.180131 0.983643i \(-0.442348\pi\)
0.180131 + 0.983643i \(0.442348\pi\)
\(822\) 0 0
\(823\) 36.8800 1.28556 0.642778 0.766053i \(-0.277782\pi\)
0.642778 + 0.766053i \(0.277782\pi\)
\(824\) 0 0
\(825\) 5.27444 0.183633
\(826\) 0 0
\(827\) −18.6391 −0.648145 −0.324072 0.946032i \(-0.605052\pi\)
−0.324072 + 0.946032i \(0.605052\pi\)
\(828\) 0 0
\(829\) 18.2594 0.634175 0.317088 0.948396i \(-0.397295\pi\)
0.317088 + 0.948396i \(0.397295\pi\)
\(830\) 0 0
\(831\) −38.7733 −1.34503
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.97596 0.102987
\(836\) 0 0
\(837\) 24.1411 0.834440
\(838\) 0 0
\(839\) −46.9421 −1.62062 −0.810311 0.586000i \(-0.800702\pi\)
−0.810311 + 0.586000i \(0.800702\pi\)
\(840\) 0 0
\(841\) 33.4365 1.15298
\(842\) 0 0
\(843\) −5.00301 −0.172313
\(844\) 0 0
\(845\) 40.1343 1.38066
\(846\) 0 0
\(847\) −38.2799 −1.31531
\(848\) 0 0
\(849\) 17.7736 0.609990
\(850\) 0 0
\(851\) 24.0559 0.824627
\(852\) 0 0
\(853\) 30.5790 1.04701 0.523503 0.852024i \(-0.324625\pi\)
0.523503 + 0.852024i \(0.324625\pi\)
\(854\) 0 0
\(855\) 4.13671 0.141472
\(856\) 0 0
\(857\) 43.1739 1.47479 0.737396 0.675461i \(-0.236055\pi\)
0.737396 + 0.675461i \(0.236055\pi\)
\(858\) 0 0
\(859\) 3.50030 0.119429 0.0597144 0.998216i \(-0.480981\pi\)
0.0597144 + 0.998216i \(0.480981\pi\)
\(860\) 0 0
\(861\) −87.7001 −2.98881
\(862\) 0 0
\(863\) −36.2894 −1.23531 −0.617653 0.786451i \(-0.711916\pi\)
−0.617653 + 0.786451i \(0.711916\pi\)
\(864\) 0 0
\(865\) 23.7698 0.808198
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.93582 −0.0995909
\(870\) 0 0
\(871\) 12.5152 0.424061
\(872\) 0 0
\(873\) 24.3987 0.825770
\(874\) 0 0
\(875\) −46.6023 −1.57544
\(876\) 0 0
\(877\) 24.2517 0.818920 0.409460 0.912328i \(-0.365717\pi\)
0.409460 + 0.912328i \(0.365717\pi\)
\(878\) 0 0
\(879\) 6.78024 0.228692
\(880\) 0 0
\(881\) 26.9932 0.909424 0.454712 0.890639i \(-0.349742\pi\)
0.454712 + 0.890639i \(0.349742\pi\)
\(882\) 0 0
\(883\) −45.9992 −1.54800 −0.773998 0.633188i \(-0.781746\pi\)
−0.773998 + 0.633188i \(0.781746\pi\)
\(884\) 0 0
\(885\) −34.1623 −1.14835
\(886\) 0 0
\(887\) 1.78880 0.0600620 0.0300310 0.999549i \(-0.490439\pi\)
0.0300310 + 0.999549i \(0.490439\pi\)
\(888\) 0 0
\(889\) 35.0770 1.17644
\(890\) 0 0
\(891\) 11.8925 0.398414
\(892\) 0 0
\(893\) 4.55438 0.152406
\(894\) 0 0
\(895\) 4.68954 0.156754
\(896\) 0 0
\(897\) 92.3332 3.08292
\(898\) 0 0
\(899\) 71.1762 2.37386
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −75.1353 −2.50035
\(904\) 0 0
\(905\) 14.8999 0.495290
\(906\) 0 0
\(907\) 15.3874 0.510931 0.255466 0.966818i \(-0.417771\pi\)
0.255466 + 0.966818i \(0.417771\pi\)
\(908\) 0 0
\(909\) −25.8322 −0.856801
\(910\) 0 0
\(911\) −49.7998 −1.64994 −0.824971 0.565175i \(-0.808809\pi\)
−0.824971 + 0.565175i \(0.808809\pi\)
\(912\) 0 0
\(913\) −0.414162 −0.0137068
\(914\) 0 0
\(915\) 40.9205 1.35279
\(916\) 0 0
\(917\) 60.5800 2.00053
\(918\) 0 0
\(919\) −53.7847 −1.77419 −0.887096 0.461584i \(-0.847281\pi\)
−0.887096 + 0.461584i \(0.847281\pi\)
\(920\) 0 0
\(921\) 1.26889 0.0418115
\(922\) 0 0
\(923\) 2.73742 0.0901031
\(924\) 0 0
\(925\) −7.88476 −0.259249
\(926\) 0 0
\(927\) −25.0936 −0.824182
\(928\) 0 0
\(929\) −13.6486 −0.447796 −0.223898 0.974613i \(-0.571878\pi\)
−0.223898 + 0.974613i \(0.571878\pi\)
\(930\) 0 0
\(931\) 11.3618 0.372369
\(932\) 0 0
\(933\) 45.9086 1.50298
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.0847 −0.460127 −0.230064 0.973176i \(-0.573893\pi\)
−0.230064 + 0.973176i \(0.573893\pi\)
\(938\) 0 0
\(939\) 19.9436 0.650834
\(940\) 0 0
\(941\) 37.7606 1.23096 0.615481 0.788152i \(-0.288962\pi\)
0.615481 + 0.788152i \(0.288962\pi\)
\(942\) 0 0
\(943\) −71.6165 −2.33215
\(944\) 0 0
\(945\) −17.1830 −0.558964
\(946\) 0 0
\(947\) −12.9145 −0.419664 −0.209832 0.977737i \(-0.567292\pi\)
−0.209832 + 0.977737i \(0.567292\pi\)
\(948\) 0 0
\(949\) −11.2199 −0.364213
\(950\) 0 0
\(951\) 17.5699 0.569742
\(952\) 0 0
\(953\) −16.8375 −0.545420 −0.272710 0.962096i \(-0.587920\pi\)
−0.272710 + 0.962096i \(0.587920\pi\)
\(954\) 0 0
\(955\) 13.6415 0.441427
\(956\) 0 0
\(957\) 18.3715 0.593865
\(958\) 0 0
\(959\) −67.9769 −2.19509
\(960\) 0 0
\(961\) 50.1394 1.61740
\(962\) 0 0
\(963\) 2.45451 0.0790954
\(964\) 0 0
\(965\) 7.38413 0.237704
\(966\) 0 0
\(967\) 58.3746 1.87720 0.938601 0.345005i \(-0.112123\pi\)
0.938601 + 0.345005i \(0.112123\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0419 0.643175 0.321587 0.946880i \(-0.395784\pi\)
0.321587 + 0.946880i \(0.395784\pi\)
\(972\) 0 0
\(973\) 17.0838 0.547681
\(974\) 0 0
\(975\) −30.2638 −0.969219
\(976\) 0 0
\(977\) −29.8229 −0.954121 −0.477060 0.878871i \(-0.658298\pi\)
−0.477060 + 0.878871i \(0.658298\pi\)
\(978\) 0 0
\(979\) −14.8229 −0.473743
\(980\) 0 0
\(981\) −14.6418 −0.467476
\(982\) 0 0
\(983\) −4.80840 −0.153364 −0.0766821 0.997056i \(-0.524433\pi\)
−0.0766821 + 0.997056i \(0.524433\pi\)
\(984\) 0 0
\(985\) −32.0009 −1.01963
\(986\) 0 0
\(987\) 27.3482 0.870504
\(988\) 0 0
\(989\) −61.3560 −1.95101
\(990\) 0 0
\(991\) 2.14889 0.0682617 0.0341309 0.999417i \(-0.489134\pi\)
0.0341309 + 0.999417i \(0.489134\pi\)
\(992\) 0 0
\(993\) −8.82482 −0.280047
\(994\) 0 0
\(995\) 0.622065 0.0197208
\(996\) 0 0
\(997\) 5.84018 0.184960 0.0924802 0.995715i \(-0.470520\pi\)
0.0924802 + 0.995715i \(0.470520\pi\)
\(998\) 0 0
\(999\) −9.31490 −0.294710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.r.1.2 yes 3
4.3 odd 2 4624.2.a.bb.1.2 3
17.4 even 4 2312.2.b.l.577.3 6
17.13 even 4 2312.2.b.l.577.4 6
17.16 even 2 2312.2.a.o.1.2 3
68.67 odd 2 4624.2.a.bi.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.o.1.2 3 17.16 even 2
2312.2.a.r.1.2 yes 3 1.1 even 1 trivial
2312.2.b.l.577.3 6 17.4 even 4
2312.2.b.l.577.4 6 17.13 even 4
4624.2.a.bb.1.2 3 4.3 odd 2
4624.2.a.bi.1.2 3 68.67 odd 2