Properties

Label 2312.2.b.g.577.1
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,2,Mod(577,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.g.577.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.23607i q^{3} +2.00000i q^{5} -3.23607i q^{7} -7.47214 q^{9} -3.23607i q^{11} -4.47214 q^{13} +6.47214 q^{15} -2.47214 q^{19} -10.4721 q^{21} -3.23607i q^{23} +1.00000 q^{25} +14.4721i q^{27} +2.00000i q^{29} -3.23607i q^{31} -10.4721 q^{33} +6.47214 q^{35} +6.94427i q^{37} +14.4721i q^{39} -2.00000i q^{41} +10.4721 q^{43} -14.9443i q^{45} -4.94427 q^{47} -3.47214 q^{49} +2.00000 q^{53} +6.47214 q^{55} +8.00000i q^{57} -5.52786 q^{59} +10.9443i q^{61} +24.1803i q^{63} -8.94427i q^{65} -12.0000 q^{67} -10.4721 q^{69} +4.76393i q^{71} -2.94427i q^{73} -3.23607i q^{75} -10.4721 q^{77} +1.70820i q^{79} +24.4164 q^{81} -10.4721 q^{83} +6.47214 q^{87} -16.4721 q^{89} +14.4721i q^{91} -10.4721 q^{93} -4.94427i q^{95} +2.00000i q^{97} +24.1803i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 8 q^{15} + 8 q^{19} - 24 q^{21} + 4 q^{25} - 24 q^{33} + 8 q^{35} + 24 q^{43} + 16 q^{47} + 4 q^{49} + 8 q^{53} + 8 q^{55} - 40 q^{59} - 48 q^{67} - 24 q^{69} - 24 q^{77} + 44 q^{81} - 24 q^{83}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.23607i − 1.86834i −0.356822 0.934172i \(-0.616140\pi\)
0.356822 0.934172i \(-0.383860\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) − 3.23607i − 1.22312i −0.791199 0.611559i \(-0.790543\pi\)
0.791199 0.611559i \(-0.209457\pi\)
\(8\) 0 0
\(9\) −7.47214 −2.49071
\(10\) 0 0
\(11\) − 3.23607i − 0.975711i −0.872924 0.487856i \(-0.837779\pi\)
0.872924 0.487856i \(-0.162221\pi\)
\(12\) 0 0
\(13\) −4.47214 −1.24035 −0.620174 0.784465i \(-0.712938\pi\)
−0.620174 + 0.784465i \(0.712938\pi\)
\(14\) 0 0
\(15\) 6.47214 1.67110
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) 0 0
\(21\) −10.4721 −2.28521
\(22\) 0 0
\(23\) − 3.23607i − 0.674767i −0.941367 0.337383i \(-0.890458\pi\)
0.941367 0.337383i \(-0.109542\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 14.4721i 2.78516i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) − 3.23607i − 0.581215i −0.956842 0.290607i \(-0.906143\pi\)
0.956842 0.290607i \(-0.0938574\pi\)
\(32\) 0 0
\(33\) −10.4721 −1.82296
\(34\) 0 0
\(35\) 6.47214 1.09399
\(36\) 0 0
\(37\) 6.94427i 1.14163i 0.821078 + 0.570816i \(0.193373\pi\)
−0.821078 + 0.570816i \(0.806627\pi\)
\(38\) 0 0
\(39\) 14.4721i 2.31740i
\(40\) 0 0
\(41\) − 2.00000i − 0.312348i −0.987730 0.156174i \(-0.950084\pi\)
0.987730 0.156174i \(-0.0499160\pi\)
\(42\) 0 0
\(43\) 10.4721 1.59699 0.798493 0.602004i \(-0.205631\pi\)
0.798493 + 0.602004i \(0.205631\pi\)
\(44\) 0 0
\(45\) − 14.9443i − 2.22776i
\(46\) 0 0
\(47\) −4.94427 −0.721196 −0.360598 0.932721i \(-0.617427\pi\)
−0.360598 + 0.932721i \(0.617427\pi\)
\(48\) 0 0
\(49\) −3.47214 −0.496019
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 6.47214 0.872703
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) −5.52786 −0.719667 −0.359833 0.933017i \(-0.617166\pi\)
−0.359833 + 0.933017i \(0.617166\pi\)
\(60\) 0 0
\(61\) 10.9443i 1.40127i 0.713520 + 0.700635i \(0.247100\pi\)
−0.713520 + 0.700635i \(0.752900\pi\)
\(62\) 0 0
\(63\) 24.1803i 3.04644i
\(64\) 0 0
\(65\) − 8.94427i − 1.10940i
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −10.4721 −1.26070
\(70\) 0 0
\(71\) 4.76393i 0.565375i 0.959212 + 0.282687i \(0.0912259\pi\)
−0.959212 + 0.282687i \(0.908774\pi\)
\(72\) 0 0
\(73\) − 2.94427i − 0.344601i −0.985044 0.172300i \(-0.944880\pi\)
0.985044 0.172300i \(-0.0551200\pi\)
\(74\) 0 0
\(75\) − 3.23607i − 0.373669i
\(76\) 0 0
\(77\) −10.4721 −1.19341
\(78\) 0 0
\(79\) 1.70820i 0.192188i 0.995372 + 0.0960940i \(0.0306349\pi\)
−0.995372 + 0.0960940i \(0.969365\pi\)
\(80\) 0 0
\(81\) 24.4164 2.71293
\(82\) 0 0
\(83\) −10.4721 −1.14947 −0.574733 0.818341i \(-0.694894\pi\)
−0.574733 + 0.818341i \(0.694894\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.47214 0.693886
\(88\) 0 0
\(89\) −16.4721 −1.74604 −0.873021 0.487682i \(-0.837843\pi\)
−0.873021 + 0.487682i \(0.837843\pi\)
\(90\) 0 0
\(91\) 14.4721i 1.51709i
\(92\) 0 0
\(93\) −10.4721 −1.08591
\(94\) 0 0
\(95\) − 4.94427i − 0.507272i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 24.1803i 2.43022i
\(100\) 0 0
\(101\) 13.4164 1.33498 0.667491 0.744618i \(-0.267368\pi\)
0.667491 + 0.744618i \(0.267368\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) − 20.9443i − 2.04395i
\(106\) 0 0
\(107\) 9.70820i 0.938527i 0.883058 + 0.469264i \(0.155481\pi\)
−0.883058 + 0.469264i \(0.844519\pi\)
\(108\) 0 0
\(109\) − 10.0000i − 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0 0
\(111\) 22.4721 2.13296
\(112\) 0 0
\(113\) 2.94427i 0.276974i 0.990364 + 0.138487i \(0.0442239\pi\)
−0.990364 + 0.138487i \(0.955776\pi\)
\(114\) 0 0
\(115\) 6.47214 0.603530
\(116\) 0 0
\(117\) 33.4164 3.08935
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.527864 0.0479876
\(122\) 0 0
\(123\) −6.47214 −0.583573
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 6.47214 0.574309 0.287155 0.957884i \(-0.407291\pi\)
0.287155 + 0.957884i \(0.407291\pi\)
\(128\) 0 0
\(129\) − 33.8885i − 2.98372i
\(130\) 0 0
\(131\) − 21.1246i − 1.84567i −0.385200 0.922833i \(-0.625868\pi\)
0.385200 0.922833i \(-0.374132\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 0 0
\(135\) −28.9443 −2.49113
\(136\) 0 0
\(137\) −16.4721 −1.40731 −0.703655 0.710542i \(-0.748450\pi\)
−0.703655 + 0.710542i \(0.748450\pi\)
\(138\) 0 0
\(139\) − 11.2361i − 0.953031i −0.879166 0.476515i \(-0.841900\pi\)
0.879166 0.476515i \(-0.158100\pi\)
\(140\) 0 0
\(141\) 16.0000i 1.34744i
\(142\) 0 0
\(143\) 14.4721i 1.21022i
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 11.2361i 0.926735i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −14.4721 −1.17773 −0.588863 0.808233i \(-0.700424\pi\)
−0.588863 + 0.808233i \(0.700424\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.47214 0.519854
\(156\) 0 0
\(157\) 23.8885 1.90651 0.953257 0.302162i \(-0.0977083\pi\)
0.953257 + 0.302162i \(0.0977083\pi\)
\(158\) 0 0
\(159\) − 6.47214i − 0.513274i
\(160\) 0 0
\(161\) −10.4721 −0.825320
\(162\) 0 0
\(163\) − 0.180340i − 0.0141253i −0.999975 0.00706266i \(-0.997752\pi\)
0.999975 0.00706266i \(-0.00224813\pi\)
\(164\) 0 0
\(165\) − 20.9443i − 1.63051i
\(166\) 0 0
\(167\) − 6.29180i − 0.486874i −0.969917 0.243437i \(-0.921725\pi\)
0.969917 0.243437i \(-0.0782749\pi\)
\(168\) 0 0
\(169\) 7.00000 0.538462
\(170\) 0 0
\(171\) 18.4721 1.41260
\(172\) 0 0
\(173\) 2.00000i 0.152057i 0.997106 + 0.0760286i \(0.0242240\pi\)
−0.997106 + 0.0760286i \(0.975776\pi\)
\(174\) 0 0
\(175\) − 3.23607i − 0.244624i
\(176\) 0 0
\(177\) 17.8885i 1.34459i
\(178\) 0 0
\(179\) −5.52786 −0.413172 −0.206586 0.978428i \(-0.566235\pi\)
−0.206586 + 0.978428i \(0.566235\pi\)
\(180\) 0 0
\(181\) − 10.0000i − 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) 35.4164 2.61806
\(184\) 0 0
\(185\) −13.8885 −1.02111
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 46.8328 3.40659
\(190\) 0 0
\(191\) 4.94427 0.357755 0.178877 0.983871i \(-0.442753\pi\)
0.178877 + 0.983871i \(0.442753\pi\)
\(192\) 0 0
\(193\) 2.94427i 0.211933i 0.994370 + 0.105967i \(0.0337937\pi\)
−0.994370 + 0.105967i \(0.966206\pi\)
\(194\) 0 0
\(195\) −28.9443 −2.07274
\(196\) 0 0
\(197\) 10.9443i 0.779747i 0.920868 + 0.389874i \(0.127481\pi\)
−0.920868 + 0.389874i \(0.872519\pi\)
\(198\) 0 0
\(199\) − 0.180340i − 0.0127840i −0.999980 0.00639198i \(-0.997965\pi\)
0.999980 0.00639198i \(-0.00203464\pi\)
\(200\) 0 0
\(201\) 38.8328i 2.73906i
\(202\) 0 0
\(203\) 6.47214 0.454255
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) 24.1803i 1.68065i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) − 3.23607i − 0.222780i −0.993777 0.111390i \(-0.964470\pi\)
0.993777 0.111390i \(-0.0355303\pi\)
\(212\) 0 0
\(213\) 15.4164 1.05631
\(214\) 0 0
\(215\) 20.9443i 1.42839i
\(216\) 0 0
\(217\) −10.4721 −0.710895
\(218\) 0 0
\(219\) −9.52786 −0.643833
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.4721 −0.969126 −0.484563 0.874756i \(-0.661021\pi\)
−0.484563 + 0.874756i \(0.661021\pi\)
\(224\) 0 0
\(225\) −7.47214 −0.498142
\(226\) 0 0
\(227\) − 3.23607i − 0.214785i −0.994217 0.107393i \(-0.965750\pi\)
0.994217 0.107393i \(-0.0342502\pi\)
\(228\) 0 0
\(229\) 15.5279 1.02611 0.513055 0.858356i \(-0.328514\pi\)
0.513055 + 0.858356i \(0.328514\pi\)
\(230\) 0 0
\(231\) 33.8885i 2.22970i
\(232\) 0 0
\(233\) 11.8885i 0.778844i 0.921059 + 0.389422i \(0.127325\pi\)
−0.921059 + 0.389422i \(0.872675\pi\)
\(234\) 0 0
\(235\) − 9.88854i − 0.645057i
\(236\) 0 0
\(237\) 5.52786 0.359073
\(238\) 0 0
\(239\) −17.8885 −1.15711 −0.578557 0.815642i \(-0.696384\pi\)
−0.578557 + 0.815642i \(0.696384\pi\)
\(240\) 0 0
\(241\) − 18.9443i − 1.22031i −0.792283 0.610154i \(-0.791108\pi\)
0.792283 0.610154i \(-0.208892\pi\)
\(242\) 0 0
\(243\) − 35.5967i − 2.28353i
\(244\) 0 0
\(245\) − 6.94427i − 0.443653i
\(246\) 0 0
\(247\) 11.0557 0.703459
\(248\) 0 0
\(249\) 33.8885i 2.14760i
\(250\) 0 0
\(251\) 8.94427 0.564557 0.282279 0.959332i \(-0.408910\pi\)
0.282279 + 0.959332i \(0.408910\pi\)
\(252\) 0 0
\(253\) −10.4721 −0.658378
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −22.3607 −1.39482 −0.697410 0.716672i \(-0.745665\pi\)
−0.697410 + 0.716672i \(0.745665\pi\)
\(258\) 0 0
\(259\) 22.4721 1.39635
\(260\) 0 0
\(261\) − 14.9443i − 0.925027i
\(262\) 0 0
\(263\) −11.4164 −0.703966 −0.351983 0.936006i \(-0.614492\pi\)
−0.351983 + 0.936006i \(0.614492\pi\)
\(264\) 0 0
\(265\) 4.00000i 0.245718i
\(266\) 0 0
\(267\) 53.3050i 3.26221i
\(268\) 0 0
\(269\) − 18.9443i − 1.15505i −0.816372 0.577526i \(-0.804018\pi\)
0.816372 0.577526i \(-0.195982\pi\)
\(270\) 0 0
\(271\) 17.8885 1.08665 0.543326 0.839522i \(-0.317165\pi\)
0.543326 + 0.839522i \(0.317165\pi\)
\(272\) 0 0
\(273\) 46.8328 2.83445
\(274\) 0 0
\(275\) − 3.23607i − 0.195142i
\(276\) 0 0
\(277\) 32.8328i 1.97273i 0.164564 + 0.986366i \(0.447378\pi\)
−0.164564 + 0.986366i \(0.552622\pi\)
\(278\) 0 0
\(279\) 24.1803i 1.44764i
\(280\) 0 0
\(281\) 15.8885 0.947831 0.473916 0.880570i \(-0.342840\pi\)
0.473916 + 0.880570i \(0.342840\pi\)
\(282\) 0 0
\(283\) − 3.23607i − 0.192364i −0.995364 0.0961821i \(-0.969337\pi\)
0.995364 0.0961821i \(-0.0306631\pi\)
\(284\) 0 0
\(285\) −16.0000 −0.947758
\(286\) 0 0
\(287\) −6.47214 −0.382038
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 6.47214 0.379403
\(292\) 0 0
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) − 11.0557i − 0.643689i
\(296\) 0 0
\(297\) 46.8328 2.71752
\(298\) 0 0
\(299\) 14.4721i 0.836945i
\(300\) 0 0
\(301\) − 33.8885i − 1.95330i
\(302\) 0 0
\(303\) − 43.4164i − 2.49421i
\(304\) 0 0
\(305\) −21.8885 −1.25333
\(306\) 0 0
\(307\) −29.8885 −1.70583 −0.852915 0.522050i \(-0.825167\pi\)
−0.852915 + 0.522050i \(0.825167\pi\)
\(308\) 0 0
\(309\) 25.8885i 1.47275i
\(310\) 0 0
\(311\) − 19.2361i − 1.09078i −0.838183 0.545389i \(-0.816382\pi\)
0.838183 0.545389i \(-0.183618\pi\)
\(312\) 0 0
\(313\) − 27.8885i − 1.57635i −0.615449 0.788177i \(-0.711025\pi\)
0.615449 0.788177i \(-0.288975\pi\)
\(314\) 0 0
\(315\) −48.3607 −2.72482
\(316\) 0 0
\(317\) − 19.8885i − 1.11705i −0.829487 0.558526i \(-0.811367\pi\)
0.829487 0.558526i \(-0.188633\pi\)
\(318\) 0 0
\(319\) 6.47214 0.362370
\(320\) 0 0
\(321\) 31.4164 1.75349
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.47214 −0.248069
\(326\) 0 0
\(327\) −32.3607 −1.78955
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) 10.4721 0.575601 0.287800 0.957690i \(-0.407076\pi\)
0.287800 + 0.957690i \(0.407076\pi\)
\(332\) 0 0
\(333\) − 51.8885i − 2.84347i
\(334\) 0 0
\(335\) − 24.0000i − 1.31126i
\(336\) 0 0
\(337\) − 23.8885i − 1.30129i −0.759381 0.650646i \(-0.774498\pi\)
0.759381 0.650646i \(-0.225502\pi\)
\(338\) 0 0
\(339\) 9.52786 0.517483
\(340\) 0 0
\(341\) −10.4721 −0.567098
\(342\) 0 0
\(343\) − 11.4164i − 0.616428i
\(344\) 0 0
\(345\) − 20.9443i − 1.12760i
\(346\) 0 0
\(347\) 4.76393i 0.255741i 0.991791 + 0.127871i \(0.0408142\pi\)
−0.991791 + 0.127871i \(0.959186\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) − 64.7214i − 3.45457i
\(352\) 0 0
\(353\) −23.8885 −1.27146 −0.635729 0.771912i \(-0.719301\pi\)
−0.635729 + 0.771912i \(0.719301\pi\)
\(354\) 0 0
\(355\) −9.52786 −0.505687
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.4721 −1.18603 −0.593017 0.805190i \(-0.702063\pi\)
−0.593017 + 0.805190i \(0.702063\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 0 0
\(363\) − 1.70820i − 0.0896575i
\(364\) 0 0
\(365\) 5.88854 0.308220
\(366\) 0 0
\(367\) − 19.2361i − 1.00411i −0.864834 0.502057i \(-0.832577\pi\)
0.864834 0.502057i \(-0.167423\pi\)
\(368\) 0 0
\(369\) 14.9443i 0.777968i
\(370\) 0 0
\(371\) − 6.47214i − 0.336017i
\(372\) 0 0
\(373\) 3.52786 0.182666 0.0913329 0.995820i \(-0.470887\pi\)
0.0913329 + 0.995820i \(0.470887\pi\)
\(374\) 0 0
\(375\) 38.8328 2.00532
\(376\) 0 0
\(377\) − 8.94427i − 0.460653i
\(378\) 0 0
\(379\) − 1.34752i − 0.0692177i −0.999401 0.0346088i \(-0.988981\pi\)
0.999401 0.0346088i \(-0.0110185\pi\)
\(380\) 0 0
\(381\) − 20.9443i − 1.07301i
\(382\) 0 0
\(383\) −3.41641 −0.174570 −0.0872851 0.996183i \(-0.527819\pi\)
−0.0872851 + 0.996183i \(0.527819\pi\)
\(384\) 0 0
\(385\) − 20.9443i − 1.06742i
\(386\) 0 0
\(387\) −78.2492 −3.97763
\(388\) 0 0
\(389\) 25.4164 1.28866 0.644332 0.764746i \(-0.277136\pi\)
0.644332 + 0.764746i \(0.277136\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −68.3607 −3.44834
\(394\) 0 0
\(395\) −3.41641 −0.171898
\(396\) 0 0
\(397\) − 30.9443i − 1.55305i −0.630087 0.776524i \(-0.716981\pi\)
0.630087 0.776524i \(-0.283019\pi\)
\(398\) 0 0
\(399\) 25.8885 1.29605
\(400\) 0 0
\(401\) − 13.0557i − 0.651972i −0.945375 0.325986i \(-0.894304\pi\)
0.945375 0.325986i \(-0.105696\pi\)
\(402\) 0 0
\(403\) 14.4721i 0.720908i
\(404\) 0 0
\(405\) 48.8328i 2.42652i
\(406\) 0 0
\(407\) 22.4721 1.11390
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 53.3050i 2.62934i
\(412\) 0 0
\(413\) 17.8885i 0.880238i
\(414\) 0 0
\(415\) − 20.9443i − 1.02811i
\(416\) 0 0
\(417\) −36.3607 −1.78059
\(418\) 0 0
\(419\) 20.7639i 1.01438i 0.861833 + 0.507192i \(0.169317\pi\)
−0.861833 + 0.507192i \(0.830683\pi\)
\(420\) 0 0
\(421\) −38.3607 −1.86959 −0.934793 0.355194i \(-0.884415\pi\)
−0.934793 + 0.355194i \(0.884415\pi\)
\(422\) 0 0
\(423\) 36.9443 1.79629
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 35.4164 1.71392
\(428\) 0 0
\(429\) 46.8328 2.26111
\(430\) 0 0
\(431\) 11.5967i 0.558596i 0.960205 + 0.279298i \(0.0901017\pi\)
−0.960205 + 0.279298i \(0.909898\pi\)
\(432\) 0 0
\(433\) 19.5279 0.938449 0.469225 0.883079i \(-0.344533\pi\)
0.469225 + 0.883079i \(0.344533\pi\)
\(434\) 0 0
\(435\) 12.9443i 0.620630i
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) 30.6525i 1.46296i 0.681861 + 0.731481i \(0.261171\pi\)
−0.681861 + 0.731481i \(0.738829\pi\)
\(440\) 0 0
\(441\) 25.9443 1.23544
\(442\) 0 0
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) − 32.9443i − 1.56171i
\(446\) 0 0
\(447\) − 19.4164i − 0.918365i
\(448\) 0 0
\(449\) − 27.8885i − 1.31614i −0.752956 0.658071i \(-0.771373\pi\)
0.752956 0.658071i \(-0.228627\pi\)
\(450\) 0 0
\(451\) −6.47214 −0.304761
\(452\) 0 0
\(453\) 46.8328i 2.20040i
\(454\) 0 0
\(455\) −28.9443 −1.35693
\(456\) 0 0
\(457\) −10.5836 −0.495080 −0.247540 0.968878i \(-0.579622\pi\)
−0.247540 + 0.968878i \(0.579622\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.88854 0.181108 0.0905538 0.995892i \(-0.471136\pi\)
0.0905538 + 0.995892i \(0.471136\pi\)
\(462\) 0 0
\(463\) −22.8328 −1.06113 −0.530565 0.847644i \(-0.678020\pi\)
−0.530565 + 0.847644i \(0.678020\pi\)
\(464\) 0 0
\(465\) − 20.9443i − 0.971267i
\(466\) 0 0
\(467\) −41.3050 −1.91137 −0.955683 0.294399i \(-0.904881\pi\)
−0.955683 + 0.294399i \(0.904881\pi\)
\(468\) 0 0
\(469\) 38.8328i 1.79313i
\(470\) 0 0
\(471\) − 77.3050i − 3.56202i
\(472\) 0 0
\(473\) − 33.8885i − 1.55820i
\(474\) 0 0
\(475\) −2.47214 −0.113429
\(476\) 0 0
\(477\) −14.9443 −0.684251
\(478\) 0 0
\(479\) 33.7082i 1.54017i 0.637943 + 0.770084i \(0.279786\pi\)
−0.637943 + 0.770084i \(0.720214\pi\)
\(480\) 0 0
\(481\) − 31.0557i − 1.41602i
\(482\) 0 0
\(483\) 33.8885i 1.54198i
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) − 43.2361i − 1.95921i −0.200925 0.979607i \(-0.564395\pi\)
0.200925 0.979607i \(-0.435605\pi\)
\(488\) 0 0
\(489\) −0.583592 −0.0263909
\(490\) 0 0
\(491\) −10.4721 −0.472601 −0.236300 0.971680i \(-0.575935\pi\)
−0.236300 + 0.971680i \(0.575935\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −48.3607 −2.17365
\(496\) 0 0
\(497\) 15.4164 0.691520
\(498\) 0 0
\(499\) 15.8197i 0.708185i 0.935210 + 0.354093i \(0.115210\pi\)
−0.935210 + 0.354093i \(0.884790\pi\)
\(500\) 0 0
\(501\) −20.3607 −0.909648
\(502\) 0 0
\(503\) − 14.2918i − 0.637240i −0.947883 0.318620i \(-0.896781\pi\)
0.947883 0.318620i \(-0.103219\pi\)
\(504\) 0 0
\(505\) 26.8328i 1.19404i
\(506\) 0 0
\(507\) − 22.6525i − 1.00603i
\(508\) 0 0
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) −9.52786 −0.421488
\(512\) 0 0
\(513\) − 35.7771i − 1.57960i
\(514\) 0 0
\(515\) − 16.0000i − 0.705044i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 6.47214 0.284095
\(520\) 0 0
\(521\) − 11.8885i − 0.520847i −0.965495 0.260423i \(-0.916138\pi\)
0.965495 0.260423i \(-0.0838621\pi\)
\(522\) 0 0
\(523\) −7.05573 −0.308525 −0.154263 0.988030i \(-0.549300\pi\)
−0.154263 + 0.988030i \(0.549300\pi\)
\(524\) 0 0
\(525\) −10.4721 −0.457041
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12.5279 0.544690
\(530\) 0 0
\(531\) 41.3050 1.79248
\(532\) 0 0
\(533\) 8.94427i 0.387419i
\(534\) 0 0
\(535\) −19.4164 −0.839445
\(536\) 0 0
\(537\) 17.8885i 0.771948i
\(538\) 0 0
\(539\) 11.2361i 0.483972i
\(540\) 0 0
\(541\) − 30.0000i − 1.28980i −0.764267 0.644900i \(-0.776899\pi\)
0.764267 0.644900i \(-0.223101\pi\)
\(542\) 0 0
\(543\) −32.3607 −1.38873
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) 1.70820i 0.0730375i 0.999333 + 0.0365188i \(0.0116269\pi\)
−0.999333 + 0.0365188i \(0.988373\pi\)
\(548\) 0 0
\(549\) − 81.7771i − 3.49016i
\(550\) 0 0
\(551\) − 4.94427i − 0.210633i
\(552\) 0 0
\(553\) 5.52786 0.235069
\(554\) 0 0
\(555\) 44.9443i 1.90778i
\(556\) 0 0
\(557\) 21.4164 0.907442 0.453721 0.891144i \(-0.350096\pi\)
0.453721 + 0.891144i \(0.350096\pi\)
\(558\) 0 0
\(559\) −46.8328 −1.98082
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.3607 −0.858100 −0.429050 0.903281i \(-0.641152\pi\)
−0.429050 + 0.903281i \(0.641152\pi\)
\(564\) 0 0
\(565\) −5.88854 −0.247733
\(566\) 0 0
\(567\) − 79.0132i − 3.31824i
\(568\) 0 0
\(569\) −35.8885 −1.50453 −0.752263 0.658863i \(-0.771038\pi\)
−0.752263 + 0.658863i \(0.771038\pi\)
\(570\) 0 0
\(571\) − 3.23607i − 0.135425i −0.997705 0.0677126i \(-0.978430\pi\)
0.997705 0.0677126i \(-0.0215701\pi\)
\(572\) 0 0
\(573\) − 16.0000i − 0.668410i
\(574\) 0 0
\(575\) − 3.23607i − 0.134953i
\(576\) 0 0
\(577\) −8.47214 −0.352700 −0.176350 0.984328i \(-0.556429\pi\)
−0.176350 + 0.984328i \(0.556429\pi\)
\(578\) 0 0
\(579\) 9.52786 0.395965
\(580\) 0 0
\(581\) 33.8885i 1.40593i
\(582\) 0 0
\(583\) − 6.47214i − 0.268048i
\(584\) 0 0
\(585\) 66.8328i 2.76320i
\(586\) 0 0
\(587\) 12.3607 0.510180 0.255090 0.966917i \(-0.417895\pi\)
0.255090 + 0.966917i \(0.417895\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) 35.4164 1.45684
\(592\) 0 0
\(593\) −11.8885 −0.488204 −0.244102 0.969750i \(-0.578493\pi\)
−0.244102 + 0.969750i \(0.578493\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.583592 −0.0238848
\(598\) 0 0
\(599\) 46.8328 1.91354 0.956768 0.290851i \(-0.0939383\pi\)
0.956768 + 0.290851i \(0.0939383\pi\)
\(600\) 0 0
\(601\) − 38.9443i − 1.58857i −0.607545 0.794285i \(-0.707846\pi\)
0.607545 0.794285i \(-0.292154\pi\)
\(602\) 0 0
\(603\) 89.6656 3.65147
\(604\) 0 0
\(605\) 1.05573i 0.0429215i
\(606\) 0 0
\(607\) − 6.29180i − 0.255376i −0.991814 0.127688i \(-0.959244\pi\)
0.991814 0.127688i \(-0.0407556\pi\)
\(608\) 0 0
\(609\) − 20.9443i − 0.848705i
\(610\) 0 0
\(611\) 22.1115 0.894534
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) − 12.9443i − 0.521963i
\(616\) 0 0
\(617\) 34.0000i 1.36879i 0.729112 + 0.684394i \(0.239933\pi\)
−0.729112 + 0.684394i \(0.760067\pi\)
\(618\) 0 0
\(619\) − 1.34752i − 0.0541616i −0.999633 0.0270808i \(-0.991379\pi\)
0.999633 0.0270808i \(-0.00862114\pi\)
\(620\) 0 0
\(621\) 46.8328 1.87934
\(622\) 0 0
\(623\) 53.3050i 2.13562i
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 25.8885 1.03389
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 29.3050 1.16661 0.583306 0.812253i \(-0.301759\pi\)
0.583306 + 0.812253i \(0.301759\pi\)
\(632\) 0 0
\(633\) −10.4721 −0.416230
\(634\) 0 0
\(635\) 12.9443i 0.513678i
\(636\) 0 0
\(637\) 15.5279 0.615236
\(638\) 0 0
\(639\) − 35.5967i − 1.40819i
\(640\) 0 0
\(641\) − 7.88854i − 0.311579i −0.987790 0.155789i \(-0.950208\pi\)
0.987790 0.155789i \(-0.0497921\pi\)
\(642\) 0 0
\(643\) 48.5410i 1.91427i 0.289641 + 0.957135i \(0.406464\pi\)
−0.289641 + 0.957135i \(0.593536\pi\)
\(644\) 0 0
\(645\) 67.7771 2.66872
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 0 0
\(649\) 17.8885i 0.702187i
\(650\) 0 0
\(651\) 33.8885i 1.32820i
\(652\) 0 0
\(653\) 20.8328i 0.815251i 0.913149 + 0.407626i \(0.133643\pi\)
−0.913149 + 0.407626i \(0.866357\pi\)
\(654\) 0 0
\(655\) 42.2492 1.65081
\(656\) 0 0
\(657\) 22.0000i 0.858302i
\(658\) 0 0
\(659\) 18.8328 0.733622 0.366811 0.930295i \(-0.380450\pi\)
0.366811 + 0.930295i \(0.380450\pi\)
\(660\) 0 0
\(661\) −39.8885 −1.55148 −0.775742 0.631050i \(-0.782624\pi\)
−0.775742 + 0.631050i \(0.782624\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −16.0000 −0.620453
\(666\) 0 0
\(667\) 6.47214 0.250602
\(668\) 0 0
\(669\) 46.8328i 1.81066i
\(670\) 0 0
\(671\) 35.4164 1.36724
\(672\) 0 0
\(673\) − 37.7771i − 1.45620i −0.685471 0.728100i \(-0.740404\pi\)
0.685471 0.728100i \(-0.259596\pi\)
\(674\) 0 0
\(675\) 14.4721i 0.557033i
\(676\) 0 0
\(677\) 43.8885i 1.68677i 0.537307 + 0.843387i \(0.319442\pi\)
−0.537307 + 0.843387i \(0.680558\pi\)
\(678\) 0 0
\(679\) 6.47214 0.248378
\(680\) 0 0
\(681\) −10.4721 −0.401293
\(682\) 0 0
\(683\) − 50.0689i − 1.91583i −0.287048 0.957916i \(-0.592674\pi\)
0.287048 0.957916i \(-0.407326\pi\)
\(684\) 0 0
\(685\) − 32.9443i − 1.25874i
\(686\) 0 0
\(687\) − 50.2492i − 1.91713i
\(688\) 0 0
\(689\) −8.94427 −0.340750
\(690\) 0 0
\(691\) 11.5967i 0.441161i 0.975369 + 0.220581i \(0.0707952\pi\)
−0.975369 + 0.220581i \(0.929205\pi\)
\(692\) 0 0
\(693\) 78.2492 2.97244
\(694\) 0 0
\(695\) 22.4721 0.852417
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 38.4721 1.45515
\(700\) 0 0
\(701\) −30.3607 −1.14671 −0.573354 0.819308i \(-0.694358\pi\)
−0.573354 + 0.819308i \(0.694358\pi\)
\(702\) 0 0
\(703\) − 17.1672i − 0.647473i
\(704\) 0 0
\(705\) −32.0000 −1.20519
\(706\) 0 0
\(707\) − 43.4164i − 1.63284i
\(708\) 0 0
\(709\) − 2.94427i − 0.110574i −0.998470 0.0552872i \(-0.982393\pi\)
0.998470 0.0552872i \(-0.0176074\pi\)
\(710\) 0 0
\(711\) − 12.7639i − 0.478685i
\(712\) 0 0
\(713\) −10.4721 −0.392185
\(714\) 0 0
\(715\) −28.9443 −1.08245
\(716\) 0 0
\(717\) 57.8885i 2.16189i
\(718\) 0 0
\(719\) 22.6525i 0.844795i 0.906411 + 0.422397i \(0.138811\pi\)
−0.906411 + 0.422397i \(0.861189\pi\)
\(720\) 0 0
\(721\) 25.8885i 0.964140i
\(722\) 0 0
\(723\) −61.3050 −2.27996
\(724\) 0 0
\(725\) 2.00000i 0.0742781i
\(726\) 0 0
\(727\) 3.05573 0.113331 0.0566653 0.998393i \(-0.481953\pi\)
0.0566653 + 0.998393i \(0.481953\pi\)
\(728\) 0 0
\(729\) −41.9443 −1.55349
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.111456 0.00411673 0.00205836 0.999998i \(-0.499345\pi\)
0.00205836 + 0.999998i \(0.499345\pi\)
\(734\) 0 0
\(735\) −22.4721 −0.828897
\(736\) 0 0
\(737\) 38.8328i 1.43043i
\(738\) 0 0
\(739\) 16.5836 0.610037 0.305019 0.952346i \(-0.401337\pi\)
0.305019 + 0.952346i \(0.401337\pi\)
\(740\) 0 0
\(741\) − 35.7771i − 1.31430i
\(742\) 0 0
\(743\) − 17.3475i − 0.636419i −0.948020 0.318209i \(-0.896918\pi\)
0.948020 0.318209i \(-0.103082\pi\)
\(744\) 0 0
\(745\) 12.0000i 0.439646i
\(746\) 0 0
\(747\) 78.2492 2.86299
\(748\) 0 0
\(749\) 31.4164 1.14793
\(750\) 0 0
\(751\) − 22.2918i − 0.813439i −0.913553 0.406720i \(-0.866673\pi\)
0.913553 0.406720i \(-0.133327\pi\)
\(752\) 0 0
\(753\) − 28.9443i − 1.05479i
\(754\) 0 0
\(755\) − 28.9443i − 1.05339i
\(756\) 0 0
\(757\) −16.4721 −0.598690 −0.299345 0.954145i \(-0.596768\pi\)
−0.299345 + 0.954145i \(0.596768\pi\)
\(758\) 0 0
\(759\) 33.8885i 1.23008i
\(760\) 0 0
\(761\) −10.3607 −0.375574 −0.187787 0.982210i \(-0.560132\pi\)
−0.187787 + 0.982210i \(0.560132\pi\)
\(762\) 0 0
\(763\) −32.3607 −1.17154
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.7214 0.892637
\(768\) 0 0
\(769\) 7.52786 0.271462 0.135731 0.990746i \(-0.456662\pi\)
0.135731 + 0.990746i \(0.456662\pi\)
\(770\) 0 0
\(771\) 72.3607i 2.60601i
\(772\) 0 0
\(773\) 35.3050 1.26983 0.634915 0.772582i \(-0.281035\pi\)
0.634915 + 0.772582i \(0.281035\pi\)
\(774\) 0 0
\(775\) − 3.23607i − 0.116243i
\(776\) 0 0
\(777\) − 72.7214i − 2.60886i
\(778\) 0 0
\(779\) 4.94427i 0.177147i
\(780\) 0 0
\(781\) 15.4164 0.551642
\(782\) 0 0
\(783\) −28.9443 −1.03438
\(784\) 0 0
\(785\) 47.7771i 1.70524i
\(786\) 0 0
\(787\) 6.65248i 0.237135i 0.992946 + 0.118568i \(0.0378302\pi\)
−0.992946 + 0.118568i \(0.962170\pi\)
\(788\) 0 0
\(789\) 36.9443i 1.31525i
\(790\) 0 0
\(791\) 9.52786 0.338772
\(792\) 0 0
\(793\) − 48.9443i − 1.73806i
\(794\) 0 0
\(795\) 12.9443 0.459086
\(796\) 0 0
\(797\) 19.8885 0.704488 0.352244 0.935908i \(-0.385419\pi\)
0.352244 + 0.935908i \(0.385419\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 123.082 4.34889
\(802\) 0 0
\(803\) −9.52786 −0.336231
\(804\) 0 0
\(805\) − 20.9443i − 0.738189i
\(806\) 0 0
\(807\) −61.3050 −2.15804
\(808\) 0 0
\(809\) 25.0557i 0.880912i 0.897774 + 0.440456i \(0.145183\pi\)
−0.897774 + 0.440456i \(0.854817\pi\)
\(810\) 0 0
\(811\) − 13.1246i − 0.460867i −0.973088 0.230434i \(-0.925986\pi\)
0.973088 0.230434i \(-0.0740145\pi\)
\(812\) 0 0
\(813\) − 57.8885i − 2.03024i
\(814\) 0 0
\(815\) 0.360680 0.0126341
\(816\) 0 0
\(817\) −25.8885 −0.905725
\(818\) 0 0
\(819\) − 108.138i − 3.77864i
\(820\) 0 0
\(821\) 50.0000i 1.74501i 0.488603 + 0.872506i \(0.337507\pi\)
−0.488603 + 0.872506i \(0.662493\pi\)
\(822\) 0 0
\(823\) 51.5967i 1.79855i 0.437384 + 0.899275i \(0.355905\pi\)
−0.437384 + 0.899275i \(0.644095\pi\)
\(824\) 0 0
\(825\) −10.4721 −0.364593
\(826\) 0 0
\(827\) 20.7639i 0.722033i 0.932559 + 0.361016i \(0.117570\pi\)
−0.932559 + 0.361016i \(0.882430\pi\)
\(828\) 0 0
\(829\) −8.11146 −0.281723 −0.140861 0.990029i \(-0.544987\pi\)
−0.140861 + 0.990029i \(0.544987\pi\)
\(830\) 0 0
\(831\) 106.249 3.68574
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.5836 0.435473
\(836\) 0 0
\(837\) 46.8328 1.61878
\(838\) 0 0
\(839\) − 26.0689i − 0.899998i −0.893029 0.449999i \(-0.851424\pi\)
0.893029 0.449999i \(-0.148576\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) − 51.4164i − 1.77088i
\(844\) 0 0
\(845\) 14.0000i 0.481615i
\(846\) 0 0
\(847\) − 1.70820i − 0.0586946i
\(848\) 0 0
\(849\) −10.4721 −0.359403
\(850\) 0 0
\(851\) 22.4721 0.770335
\(852\) 0 0
\(853\) − 33.7771i − 1.15651i −0.815858 0.578253i \(-0.803735\pi\)
0.815858 0.578253i \(-0.196265\pi\)
\(854\) 0 0
\(855\) 36.9443i 1.26347i
\(856\) 0 0
\(857\) − 27.8885i − 0.952655i −0.879268 0.476327i \(-0.841968\pi\)
0.879268 0.476327i \(-0.158032\pi\)
\(858\) 0 0
\(859\) 30.2492 1.03209 0.516045 0.856561i \(-0.327404\pi\)
0.516045 + 0.856561i \(0.327404\pi\)
\(860\) 0 0
\(861\) 20.9443i 0.713779i
\(862\) 0 0
\(863\) 22.8328 0.777238 0.388619 0.921399i \(-0.372952\pi\)
0.388619 + 0.921399i \(0.372952\pi\)
\(864\) 0 0
\(865\) −4.00000 −0.136004
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.52786 0.187520
\(870\) 0 0
\(871\) 53.6656 1.81839
\(872\) 0 0
\(873\) − 14.9443i − 0.505787i
\(874\) 0 0
\(875\) 38.8328 1.31279
\(876\) 0 0
\(877\) 31.8885i 1.07680i 0.842690 + 0.538400i \(0.180971\pi\)
−0.842690 + 0.538400i \(0.819029\pi\)
\(878\) 0 0
\(879\) 32.3607i 1.09150i
\(880\) 0 0
\(881\) 27.8885i 0.939589i 0.882776 + 0.469794i \(0.155672\pi\)
−0.882776 + 0.469794i \(0.844328\pi\)
\(882\) 0 0
\(883\) −37.8885 −1.27505 −0.637526 0.770429i \(-0.720042\pi\)
−0.637526 + 0.770429i \(0.720042\pi\)
\(884\) 0 0
\(885\) −35.7771 −1.20263
\(886\) 0 0
\(887\) − 29.1246i − 0.977909i −0.872309 0.488954i \(-0.837378\pi\)
0.872309 0.488954i \(-0.162622\pi\)
\(888\) 0 0
\(889\) − 20.9443i − 0.702448i
\(890\) 0 0
\(891\) − 79.0132i − 2.64704i
\(892\) 0 0
\(893\) 12.2229 0.409024
\(894\) 0 0
\(895\) − 11.0557i − 0.369552i
\(896\) 0 0
\(897\) 46.8328 1.56370
\(898\) 0 0
\(899\) 6.47214 0.215858
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −109.666 −3.64944
\(904\) 0 0
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) 18.8754i 0.626747i 0.949630 + 0.313373i \(0.101459\pi\)
−0.949630 + 0.313373i \(0.898541\pi\)
\(908\) 0 0
\(909\) −100.249 −3.32506
\(910\) 0 0
\(911\) − 14.2918i − 0.473508i −0.971570 0.236754i \(-0.923916\pi\)
0.971570 0.236754i \(-0.0760836\pi\)
\(912\) 0 0
\(913\) 33.8885i 1.12155i
\(914\) 0 0
\(915\) 70.8328i 2.34166i
\(916\) 0 0
\(917\) −68.3607 −2.25747
\(918\) 0 0
\(919\) −6.11146 −0.201598 −0.100799 0.994907i \(-0.532140\pi\)
−0.100799 + 0.994907i \(0.532140\pi\)
\(920\) 0 0
\(921\) 96.7214i 3.18708i
\(922\) 0 0
\(923\) − 21.3050i − 0.701261i
\(924\) 0 0
\(925\) 6.94427i 0.228326i
\(926\) 0 0
\(927\) 59.7771 1.96334
\(928\) 0 0
\(929\) 9.05573i 0.297109i 0.988904 + 0.148554i \(0.0474620\pi\)
−0.988904 + 0.148554i \(0.952538\pi\)
\(930\) 0 0
\(931\) 8.58359 0.281316
\(932\) 0 0
\(933\) −62.2492 −2.03795
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) −90.2492 −2.94517
\(940\) 0 0
\(941\) − 45.7771i − 1.49229i −0.665783 0.746145i \(-0.731902\pi\)
0.665783 0.746145i \(-0.268098\pi\)
\(942\) 0 0
\(943\) −6.47214 −0.210762
\(944\) 0 0
\(945\) 93.6656i 3.04694i
\(946\) 0 0
\(947\) − 39.0132i − 1.26776i −0.773433 0.633879i \(-0.781462\pi\)
0.773433 0.633879i \(-0.218538\pi\)
\(948\) 0 0
\(949\) 13.1672i 0.427425i
\(950\) 0 0
\(951\) −64.3607 −2.08704
\(952\) 0 0
\(953\) −32.4721 −1.05188 −0.525938 0.850523i \(-0.676286\pi\)
−0.525938 + 0.850523i \(0.676286\pi\)
\(954\) 0 0
\(955\) 9.88854i 0.319986i
\(956\) 0 0
\(957\) − 20.9443i − 0.677032i
\(958\) 0 0
\(959\) 53.3050i 1.72131i
\(960\) 0 0
\(961\) 20.5279 0.662189
\(962\) 0 0
\(963\) − 72.5410i − 2.33760i
\(964\) 0 0
\(965\) −5.88854 −0.189559
\(966\) 0 0
\(967\) −6.47214 −0.208130 −0.104065 0.994571i \(-0.533185\pi\)
−0.104065 + 0.994571i \(0.533185\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.4721 −0.592799 −0.296400 0.955064i \(-0.595786\pi\)
−0.296400 + 0.955064i \(0.595786\pi\)
\(972\) 0 0
\(973\) −36.3607 −1.16567
\(974\) 0 0
\(975\) 14.4721i 0.463479i
\(976\) 0 0
\(977\) −34.0000 −1.08776 −0.543878 0.839164i \(-0.683045\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(978\) 0 0
\(979\) 53.3050i 1.70363i
\(980\) 0 0
\(981\) 74.7214i 2.38567i
\(982\) 0 0
\(983\) − 11.2361i − 0.358375i −0.983815 0.179187i \(-0.942653\pi\)
0.983815 0.179187i \(-0.0573469\pi\)
\(984\) 0 0
\(985\) −21.8885 −0.697427
\(986\) 0 0
\(987\) 51.7771 1.64808
\(988\) 0 0
\(989\) − 33.8885i − 1.07759i
\(990\) 0 0
\(991\) 12.7639i 0.405460i 0.979235 + 0.202730i \(0.0649813\pi\)
−0.979235 + 0.202730i \(0.935019\pi\)
\(992\) 0 0
\(993\) − 33.8885i − 1.07542i
\(994\) 0 0
\(995\) 0.360680 0.0114343
\(996\) 0 0
\(997\) − 46.9443i − 1.48674i −0.668880 0.743370i \(-0.733226\pi\)
0.668880 0.743370i \(-0.266774\pi\)
\(998\) 0 0
\(999\) −100.498 −3.17963
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.g.577.1 4
17.4 even 4 136.2.a.c.1.1 2
17.13 even 4 2312.2.a.m.1.2 2
17.16 even 2 inner 2312.2.b.g.577.4 4
51.38 odd 4 1224.2.a.i.1.2 2
68.47 odd 4 4624.2.a.h.1.1 2
68.55 odd 4 272.2.a.f.1.2 2
85.4 even 4 3400.2.a.i.1.2 2
85.38 odd 4 3400.2.e.f.2449.1 4
85.72 odd 4 3400.2.e.f.2449.4 4
119.55 odd 4 6664.2.a.i.1.2 2
136.21 even 4 1088.2.a.s.1.2 2
136.123 odd 4 1088.2.a.o.1.1 2
204.191 even 4 2448.2.a.u.1.1 2
340.259 odd 4 6800.2.a.bd.1.1 2
408.293 odd 4 9792.2.a.db.1.2 2
408.395 even 4 9792.2.a.da.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.a.c.1.1 2 17.4 even 4
272.2.a.f.1.2 2 68.55 odd 4
1088.2.a.o.1.1 2 136.123 odd 4
1088.2.a.s.1.2 2 136.21 even 4
1224.2.a.i.1.2 2 51.38 odd 4
2312.2.a.m.1.2 2 17.13 even 4
2312.2.b.g.577.1 4 1.1 even 1 trivial
2312.2.b.g.577.4 4 17.16 even 2 inner
2448.2.a.u.1.1 2 204.191 even 4
3400.2.a.i.1.2 2 85.4 even 4
3400.2.e.f.2449.1 4 85.38 odd 4
3400.2.e.f.2449.4 4 85.72 odd 4
4624.2.a.h.1.1 2 68.47 odd 4
6664.2.a.i.1.2 2 119.55 odd 4
6800.2.a.bd.1.1 2 340.259 odd 4
9792.2.a.da.1.1 2 408.395 even 4
9792.2.a.db.1.2 2 408.293 odd 4