Properties

Label 2320.2.a.u.1.5
Level $2320$
Weight $2$
Character 2320.1
Self dual yes
Analytic conductor $18.525$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5252932689\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.580484.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 7x^{3} - 3x^{2} + 8x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.92335\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37998 q^{3} +1.00000 q^{5} -4.57754 q^{7} +2.66429 q^{9} -5.84671 q^{11} +2.86531 q^{13} +2.37998 q^{15} -6.90957 q^{17} +2.24183 q^{19} -10.8944 q^{21} +0.981401 q^{23} +1.00000 q^{25} -0.798983 q^{27} +1.00000 q^{29} -4.18242 q^{31} -13.9150 q^{33} -4.57754 q^{35} +2.31182 q^{37} +6.81936 q^{39} -7.15507 q^{41} +4.90957 q^{43} +2.66429 q^{45} -6.85016 q^{47} +13.9538 q^{49} -16.4446 q^{51} -6.06632 q^{53} -5.84671 q^{55} +5.33549 q^{57} -10.8281 q^{59} +10.9538 q^{61} -12.1959 q^{63} +2.86531 q^{65} -7.30837 q^{67} +2.33571 q^{69} -9.51991 q^{71} -12.7361 q^{73} +2.37998 q^{75} +26.7635 q^{77} -2.44306 q^{79} -9.89443 q^{81} +9.93524 q^{83} -6.90957 q^{85} +2.37998 q^{87} -9.41711 q^{89} -13.1160 q^{91} -9.95406 q^{93} +2.24183 q^{95} -4.95552 q^{97} -15.5773 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{3} + 5 q^{5} - 7 q^{7} + 8 q^{9} - 10 q^{11} + q^{13} - 3 q^{15} - q^{17} - 10 q^{19} - 8 q^{21} - q^{23} + 5 q^{25} - 12 q^{27} + 5 q^{29} - 7 q^{31} - 8 q^{33} - 7 q^{35} - 8 q^{37} - 3 q^{39}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.37998 1.37408 0.687040 0.726619i \(-0.258910\pi\)
0.687040 + 0.726619i \(0.258910\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.57754 −1.73015 −0.865073 0.501646i \(-0.832728\pi\)
−0.865073 + 0.501646i \(0.832728\pi\)
\(8\) 0 0
\(9\) 2.66429 0.888096
\(10\) 0 0
\(11\) −5.84671 −1.76285 −0.881424 0.472326i \(-0.843415\pi\)
−0.881424 + 0.472326i \(0.843415\pi\)
\(12\) 0 0
\(13\) 2.86531 0.794693 0.397346 0.917669i \(-0.369931\pi\)
0.397346 + 0.917669i \(0.369931\pi\)
\(14\) 0 0
\(15\) 2.37998 0.614507
\(16\) 0 0
\(17\) −6.90957 −1.67582 −0.837909 0.545810i \(-0.816222\pi\)
−0.837909 + 0.545810i \(0.816222\pi\)
\(18\) 0 0
\(19\) 2.24183 0.514310 0.257155 0.966370i \(-0.417215\pi\)
0.257155 + 0.966370i \(0.417215\pi\)
\(20\) 0 0
\(21\) −10.8944 −2.37736
\(22\) 0 0
\(23\) 0.981401 0.204636 0.102318 0.994752i \(-0.467374\pi\)
0.102318 + 0.994752i \(0.467374\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −0.798983 −0.153764
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −4.18242 −0.751184 −0.375592 0.926785i \(-0.622561\pi\)
−0.375592 + 0.926785i \(0.622561\pi\)
\(32\) 0 0
\(33\) −13.9150 −2.42230
\(34\) 0 0
\(35\) −4.57754 −0.773745
\(36\) 0 0
\(37\) 2.31182 0.380061 0.190031 0.981778i \(-0.439141\pi\)
0.190031 + 0.981778i \(0.439141\pi\)
\(38\) 0 0
\(39\) 6.81936 1.09197
\(40\) 0 0
\(41\) −7.15507 −1.11743 −0.558717 0.829358i \(-0.688706\pi\)
−0.558717 + 0.829358i \(0.688706\pi\)
\(42\) 0 0
\(43\) 4.90957 0.748703 0.374351 0.927287i \(-0.377865\pi\)
0.374351 + 0.927287i \(0.377865\pi\)
\(44\) 0 0
\(45\) 2.66429 0.397169
\(46\) 0 0
\(47\) −6.85016 −0.999199 −0.499600 0.866256i \(-0.666519\pi\)
−0.499600 + 0.866256i \(0.666519\pi\)
\(48\) 0 0
\(49\) 13.9538 1.99341
\(50\) 0 0
\(51\) −16.4446 −2.30271
\(52\) 0 0
\(53\) −6.06632 −0.833274 −0.416637 0.909073i \(-0.636791\pi\)
−0.416637 + 0.909073i \(0.636791\pi\)
\(54\) 0 0
\(55\) −5.84671 −0.788370
\(56\) 0 0
\(57\) 5.33549 0.706703
\(58\) 0 0
\(59\) −10.8281 −1.40970 −0.704850 0.709357i \(-0.748986\pi\)
−0.704850 + 0.709357i \(0.748986\pi\)
\(60\) 0 0
\(61\) 10.9538 1.40250 0.701248 0.712918i \(-0.252627\pi\)
0.701248 + 0.712918i \(0.252627\pi\)
\(62\) 0 0
\(63\) −12.1959 −1.53654
\(64\) 0 0
\(65\) 2.86531 0.355397
\(66\) 0 0
\(67\) −7.30837 −0.892859 −0.446430 0.894819i \(-0.647305\pi\)
−0.446430 + 0.894819i \(0.647305\pi\)
\(68\) 0 0
\(69\) 2.33571 0.281187
\(70\) 0 0
\(71\) −9.51991 −1.12981 −0.564903 0.825158i \(-0.691086\pi\)
−0.564903 + 0.825158i \(0.691086\pi\)
\(72\) 0 0
\(73\) −12.7361 −1.49064 −0.745322 0.666705i \(-0.767704\pi\)
−0.745322 + 0.666705i \(0.767704\pi\)
\(74\) 0 0
\(75\) 2.37998 0.274816
\(76\) 0 0
\(77\) 26.7635 3.04999
\(78\) 0 0
\(79\) −2.44306 −0.274866 −0.137433 0.990511i \(-0.543885\pi\)
−0.137433 + 0.990511i \(0.543885\pi\)
\(80\) 0 0
\(81\) −9.89443 −1.09938
\(82\) 0 0
\(83\) 9.93524 1.09053 0.545267 0.838262i \(-0.316428\pi\)
0.545267 + 0.838262i \(0.316428\pi\)
\(84\) 0 0
\(85\) −6.90957 −0.749448
\(86\) 0 0
\(87\) 2.37998 0.255160
\(88\) 0 0
\(89\) −9.41711 −0.998212 −0.499106 0.866541i \(-0.666338\pi\)
−0.499106 + 0.866541i \(0.666338\pi\)
\(90\) 0 0
\(91\) −13.1160 −1.37493
\(92\) 0 0
\(93\) −9.95406 −1.03219
\(94\) 0 0
\(95\) 2.24183 0.230006
\(96\) 0 0
\(97\) −4.95552 −0.503156 −0.251578 0.967837i \(-0.580950\pi\)
−0.251578 + 0.967837i \(0.580950\pi\)
\(98\) 0 0
\(99\) −15.5773 −1.56558
\(100\) 0 0
\(101\) 6.25948 0.622842 0.311421 0.950272i \(-0.399195\pi\)
0.311421 + 0.950272i \(0.399195\pi\)
\(102\) 0 0
\(103\) 7.00178 0.689906 0.344953 0.938620i \(-0.387895\pi\)
0.344953 + 0.938620i \(0.387895\pi\)
\(104\) 0 0
\(105\) −10.8944 −1.06319
\(106\) 0 0
\(107\) −0.415332 −0.0401517 −0.0200758 0.999798i \(-0.506391\pi\)
−0.0200758 + 0.999798i \(0.506391\pi\)
\(108\) 0 0
\(109\) 10.1844 0.975490 0.487745 0.872986i \(-0.337820\pi\)
0.487745 + 0.872986i \(0.337820\pi\)
\(110\) 0 0
\(111\) 5.50209 0.522235
\(112\) 0 0
\(113\) 8.19221 0.770658 0.385329 0.922779i \(-0.374088\pi\)
0.385329 + 0.922779i \(0.374088\pi\)
\(114\) 0 0
\(115\) 0.981401 0.0915161
\(116\) 0 0
\(117\) 7.63400 0.705764
\(118\) 0 0
\(119\) 31.6288 2.89941
\(120\) 0 0
\(121\) 23.1840 2.10763
\(122\) 0 0
\(123\) −17.0289 −1.53544
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −19.3338 −1.71560 −0.857799 0.513985i \(-0.828169\pi\)
−0.857799 + 0.513985i \(0.828169\pi\)
\(128\) 0 0
\(129\) 11.6847 1.02878
\(130\) 0 0
\(131\) 13.4038 1.17110 0.585548 0.810638i \(-0.300879\pi\)
0.585548 + 0.810638i \(0.300879\pi\)
\(132\) 0 0
\(133\) −10.2620 −0.889832
\(134\) 0 0
\(135\) −0.798983 −0.0687655
\(136\) 0 0
\(137\) −20.4685 −1.74874 −0.874371 0.485257i \(-0.838726\pi\)
−0.874371 + 0.485257i \(0.838726\pi\)
\(138\) 0 0
\(139\) −4.09661 −0.347470 −0.173735 0.984792i \(-0.555584\pi\)
−0.173735 + 0.984792i \(0.555584\pi\)
\(140\) 0 0
\(141\) −16.3032 −1.37298
\(142\) 0 0
\(143\) −16.7526 −1.40092
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 33.2098 2.73910
\(148\) 0 0
\(149\) 18.0408 1.47796 0.738978 0.673729i \(-0.235309\pi\)
0.738978 + 0.673729i \(0.235309\pi\)
\(150\) 0 0
\(151\) 9.73061 0.791866 0.395933 0.918279i \(-0.370421\pi\)
0.395933 + 0.918279i \(0.370421\pi\)
\(152\) 0 0
\(153\) −18.4091 −1.48829
\(154\) 0 0
\(155\) −4.18242 −0.335940
\(156\) 0 0
\(157\) 8.54358 0.681852 0.340926 0.940090i \(-0.389259\pi\)
0.340926 + 0.940090i \(0.389259\pi\)
\(158\) 0 0
\(159\) −14.4377 −1.14498
\(160\) 0 0
\(161\) −4.49240 −0.354050
\(162\) 0 0
\(163\) 5.64732 0.442332 0.221166 0.975236i \(-0.429014\pi\)
0.221166 + 0.975236i \(0.429014\pi\)
\(164\) 0 0
\(165\) −13.9150 −1.08328
\(166\) 0 0
\(167\) 16.7620 1.29708 0.648539 0.761181i \(-0.275380\pi\)
0.648539 + 0.761181i \(0.275380\pi\)
\(168\) 0 0
\(169\) −4.79002 −0.368463
\(170\) 0 0
\(171\) 5.97287 0.456757
\(172\) 0 0
\(173\) 24.4260 1.85707 0.928536 0.371242i \(-0.121068\pi\)
0.928536 + 0.371242i \(0.121068\pi\)
\(174\) 0 0
\(175\) −4.57754 −0.346029
\(176\) 0 0
\(177\) −25.7706 −1.93704
\(178\) 0 0
\(179\) −5.17189 −0.386565 −0.193283 0.981143i \(-0.561913\pi\)
−0.193283 + 0.981143i \(0.561913\pi\)
\(180\) 0 0
\(181\) 16.0513 1.19309 0.596543 0.802581i \(-0.296540\pi\)
0.596543 + 0.802581i \(0.296540\pi\)
\(182\) 0 0
\(183\) 26.0699 1.92714
\(184\) 0 0
\(185\) 2.31182 0.169969
\(186\) 0 0
\(187\) 40.3982 2.95421
\(188\) 0 0
\(189\) 3.65738 0.266035
\(190\) 0 0
\(191\) 12.1824 0.881489 0.440744 0.897633i \(-0.354715\pi\)
0.440744 + 0.897633i \(0.354715\pi\)
\(192\) 0 0
\(193\) −1.84164 −0.132564 −0.0662819 0.997801i \(-0.521114\pi\)
−0.0662819 + 0.997801i \(0.521114\pi\)
\(194\) 0 0
\(195\) 6.81936 0.488345
\(196\) 0 0
\(197\) 15.9372 1.13548 0.567741 0.823208i \(-0.307818\pi\)
0.567741 + 0.823208i \(0.307818\pi\)
\(198\) 0 0
\(199\) 6.19133 0.438892 0.219446 0.975625i \(-0.429575\pi\)
0.219446 + 0.975625i \(0.429575\pi\)
\(200\) 0 0
\(201\) −17.3937 −1.22686
\(202\) 0 0
\(203\) −4.57754 −0.321280
\(204\) 0 0
\(205\) −7.15507 −0.499732
\(206\) 0 0
\(207\) 2.61474 0.181737
\(208\) 0 0
\(209\) −13.1073 −0.906651
\(210\) 0 0
\(211\) −17.5401 −1.20751 −0.603756 0.797169i \(-0.706330\pi\)
−0.603756 + 0.797169i \(0.706330\pi\)
\(212\) 0 0
\(213\) −22.6572 −1.55244
\(214\) 0 0
\(215\) 4.90957 0.334830
\(216\) 0 0
\(217\) 19.1452 1.29966
\(218\) 0 0
\(219\) −30.3115 −2.04826
\(220\) 0 0
\(221\) −19.7980 −1.33176
\(222\) 0 0
\(223\) 18.5013 1.23894 0.619470 0.785021i \(-0.287348\pi\)
0.619470 + 0.785021i \(0.287348\pi\)
\(224\) 0 0
\(225\) 2.66429 0.177619
\(226\) 0 0
\(227\) −0.507552 −0.0336874 −0.0168437 0.999858i \(-0.505362\pi\)
−0.0168437 + 0.999858i \(0.505362\pi\)
\(228\) 0 0
\(229\) −7.17728 −0.474288 −0.237144 0.971474i \(-0.576211\pi\)
−0.237144 + 0.971474i \(0.576211\pi\)
\(230\) 0 0
\(231\) 63.6965 4.19092
\(232\) 0 0
\(233\) −13.2098 −0.865400 −0.432700 0.901538i \(-0.642439\pi\)
−0.432700 + 0.901538i \(0.642439\pi\)
\(234\) 0 0
\(235\) −6.85016 −0.446855
\(236\) 0 0
\(237\) −5.81443 −0.377688
\(238\) 0 0
\(239\) −20.6378 −1.33495 −0.667474 0.744634i \(-0.732624\pi\)
−0.667474 + 0.744634i \(0.732624\pi\)
\(240\) 0 0
\(241\) 16.8106 1.08287 0.541434 0.840744i \(-0.317882\pi\)
0.541434 + 0.840744i \(0.317882\pi\)
\(242\) 0 0
\(243\) −21.1516 −1.35687
\(244\) 0 0
\(245\) 13.9538 0.891478
\(246\) 0 0
\(247\) 6.42352 0.408719
\(248\) 0 0
\(249\) 23.6456 1.49848
\(250\) 0 0
\(251\) 22.5993 1.42646 0.713228 0.700932i \(-0.247232\pi\)
0.713228 + 0.700932i \(0.247232\pi\)
\(252\) 0 0
\(253\) −5.73796 −0.360743
\(254\) 0 0
\(255\) −16.4446 −1.02980
\(256\) 0 0
\(257\) −15.1551 −0.945347 −0.472674 0.881238i \(-0.656711\pi\)
−0.472674 + 0.881238i \(0.656711\pi\)
\(258\) 0 0
\(259\) −10.5825 −0.657562
\(260\) 0 0
\(261\) 2.66429 0.164915
\(262\) 0 0
\(263\) 3.22235 0.198698 0.0993492 0.995053i \(-0.468324\pi\)
0.0993492 + 0.995053i \(0.468324\pi\)
\(264\) 0 0
\(265\) −6.06632 −0.372651
\(266\) 0 0
\(267\) −22.4125 −1.37162
\(268\) 0 0
\(269\) −22.1549 −1.35081 −0.675403 0.737449i \(-0.736030\pi\)
−0.675403 + 0.737449i \(0.736030\pi\)
\(270\) 0 0
\(271\) −22.5690 −1.37097 −0.685485 0.728086i \(-0.740410\pi\)
−0.685485 + 0.728086i \(0.740410\pi\)
\(272\) 0 0
\(273\) −31.2159 −1.88927
\(274\) 0 0
\(275\) −5.84671 −0.352570
\(276\) 0 0
\(277\) −22.4941 −1.35154 −0.675770 0.737112i \(-0.736189\pi\)
−0.675770 + 0.737112i \(0.736189\pi\)
\(278\) 0 0
\(279\) −11.1432 −0.667124
\(280\) 0 0
\(281\) −7.31728 −0.436512 −0.218256 0.975892i \(-0.570037\pi\)
−0.218256 + 0.975892i \(0.570037\pi\)
\(282\) 0 0
\(283\) 5.38599 0.320164 0.160082 0.987104i \(-0.448824\pi\)
0.160082 + 0.987104i \(0.448824\pi\)
\(284\) 0 0
\(285\) 5.33549 0.316047
\(286\) 0 0
\(287\) 32.7526 1.93333
\(288\) 0 0
\(289\) 30.7422 1.80836
\(290\) 0 0
\(291\) −11.7940 −0.691377
\(292\) 0 0
\(293\) −33.2860 −1.94459 −0.972296 0.233755i \(-0.924899\pi\)
−0.972296 + 0.233755i \(0.924899\pi\)
\(294\) 0 0
\(295\) −10.8281 −0.630437
\(296\) 0 0
\(297\) 4.67142 0.271063
\(298\) 0 0
\(299\) 2.81201 0.162623
\(300\) 0 0
\(301\) −22.4737 −1.29537
\(302\) 0 0
\(303\) 14.8974 0.855835
\(304\) 0 0
\(305\) 10.9538 0.627215
\(306\) 0 0
\(307\) 6.43755 0.367411 0.183705 0.982981i \(-0.441191\pi\)
0.183705 + 0.982981i \(0.441191\pi\)
\(308\) 0 0
\(309\) 16.6641 0.947986
\(310\) 0 0
\(311\) −2.66424 −0.151075 −0.0755375 0.997143i \(-0.524067\pi\)
−0.0755375 + 0.997143i \(0.524067\pi\)
\(312\) 0 0
\(313\) 19.2877 1.09021 0.545103 0.838369i \(-0.316490\pi\)
0.545103 + 0.838369i \(0.316490\pi\)
\(314\) 0 0
\(315\) −12.1959 −0.687160
\(316\) 0 0
\(317\) 17.7161 0.995038 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(318\) 0 0
\(319\) −5.84671 −0.327353
\(320\) 0 0
\(321\) −0.988481 −0.0551716
\(322\) 0 0
\(323\) −15.4901 −0.861890
\(324\) 0 0
\(325\) 2.86531 0.158939
\(326\) 0 0
\(327\) 24.2387 1.34040
\(328\) 0 0
\(329\) 31.3569 1.72876
\(330\) 0 0
\(331\) −4.50386 −0.247555 −0.123777 0.992310i \(-0.539501\pi\)
−0.123777 + 0.992310i \(0.539501\pi\)
\(332\) 0 0
\(333\) 6.15937 0.337531
\(334\) 0 0
\(335\) −7.30837 −0.399299
\(336\) 0 0
\(337\) −0.783841 −0.0426985 −0.0213493 0.999772i \(-0.506796\pi\)
−0.0213493 + 0.999772i \(0.506796\pi\)
\(338\) 0 0
\(339\) 19.4973 1.05895
\(340\) 0 0
\(341\) 24.4534 1.32422
\(342\) 0 0
\(343\) −31.8314 −1.71874
\(344\) 0 0
\(345\) 2.33571 0.125750
\(346\) 0 0
\(347\) −0.289166 −0.0155232 −0.00776162 0.999970i \(-0.502471\pi\)
−0.00776162 + 0.999970i \(0.502471\pi\)
\(348\) 0 0
\(349\) −32.1577 −1.72136 −0.860681 0.509145i \(-0.829962\pi\)
−0.860681 + 0.509145i \(0.829962\pi\)
\(350\) 0 0
\(351\) −2.28933 −0.122195
\(352\) 0 0
\(353\) −16.2620 −0.865541 −0.432770 0.901504i \(-0.642464\pi\)
−0.432770 + 0.901504i \(0.642464\pi\)
\(354\) 0 0
\(355\) −9.51991 −0.505264
\(356\) 0 0
\(357\) 75.2759 3.98402
\(358\) 0 0
\(359\) 22.6340 1.19457 0.597287 0.802027i \(-0.296245\pi\)
0.597287 + 0.802027i \(0.296245\pi\)
\(360\) 0 0
\(361\) −13.9742 −0.735485
\(362\) 0 0
\(363\) 55.1773 2.89606
\(364\) 0 0
\(365\) −12.7361 −0.666636
\(366\) 0 0
\(367\) −24.6464 −1.28653 −0.643265 0.765644i \(-0.722421\pi\)
−0.643265 + 0.765644i \(0.722421\pi\)
\(368\) 0 0
\(369\) −19.0632 −0.992390
\(370\) 0 0
\(371\) 27.7688 1.44168
\(372\) 0 0
\(373\) −0.239829 −0.0124179 −0.00620894 0.999981i \(-0.501976\pi\)
−0.00620894 + 0.999981i \(0.501976\pi\)
\(374\) 0 0
\(375\) 2.37998 0.122901
\(376\) 0 0
\(377\) 2.86531 0.147571
\(378\) 0 0
\(379\) 27.7241 1.42409 0.712046 0.702133i \(-0.247769\pi\)
0.712046 + 0.702133i \(0.247769\pi\)
\(380\) 0 0
\(381\) −46.0140 −2.35737
\(382\) 0 0
\(383\) −9.12678 −0.466357 −0.233178 0.972434i \(-0.574913\pi\)
−0.233178 + 0.972434i \(0.574913\pi\)
\(384\) 0 0
\(385\) 26.7635 1.36399
\(386\) 0 0
\(387\) 13.0805 0.664920
\(388\) 0 0
\(389\) −39.3904 −1.99717 −0.998586 0.0531618i \(-0.983070\pi\)
−0.998586 + 0.0531618i \(0.983070\pi\)
\(390\) 0 0
\(391\) −6.78106 −0.342933
\(392\) 0 0
\(393\) 31.9008 1.60918
\(394\) 0 0
\(395\) −2.44306 −0.122924
\(396\) 0 0
\(397\) −36.4751 −1.83063 −0.915317 0.402733i \(-0.868060\pi\)
−0.915317 + 0.402733i \(0.868060\pi\)
\(398\) 0 0
\(399\) −24.4234 −1.22270
\(400\) 0 0
\(401\) 16.6845 0.833182 0.416591 0.909094i \(-0.363225\pi\)
0.416591 + 0.909094i \(0.363225\pi\)
\(402\) 0 0
\(403\) −11.9839 −0.596961
\(404\) 0 0
\(405\) −9.89443 −0.491658
\(406\) 0 0
\(407\) −13.5166 −0.669991
\(408\) 0 0
\(409\) 2.74213 0.135590 0.0677948 0.997699i \(-0.478404\pi\)
0.0677948 + 0.997699i \(0.478404\pi\)
\(410\) 0 0
\(411\) −48.7146 −2.40291
\(412\) 0 0
\(413\) 49.5661 2.43899
\(414\) 0 0
\(415\) 9.93524 0.487702
\(416\) 0 0
\(417\) −9.74983 −0.477451
\(418\) 0 0
\(419\) 14.1691 0.692207 0.346103 0.938196i \(-0.387505\pi\)
0.346103 + 0.938196i \(0.387505\pi\)
\(420\) 0 0
\(421\) −7.37991 −0.359675 −0.179837 0.983696i \(-0.557557\pi\)
−0.179837 + 0.983696i \(0.557557\pi\)
\(422\) 0 0
\(423\) −18.2508 −0.887385
\(424\) 0 0
\(425\) −6.90957 −0.335163
\(426\) 0 0
\(427\) −50.1416 −2.42652
\(428\) 0 0
\(429\) −39.8708 −1.92498
\(430\) 0 0
\(431\) 0.579533 0.0279151 0.0139576 0.999903i \(-0.495557\pi\)
0.0139576 + 0.999903i \(0.495557\pi\)
\(432\) 0 0
\(433\) 5.82082 0.279731 0.139865 0.990171i \(-0.455333\pi\)
0.139865 + 0.990171i \(0.455333\pi\)
\(434\) 0 0
\(435\) 2.37998 0.114111
\(436\) 0 0
\(437\) 2.20013 0.105246
\(438\) 0 0
\(439\) −10.0954 −0.481829 −0.240915 0.970546i \(-0.577447\pi\)
−0.240915 + 0.970546i \(0.577447\pi\)
\(440\) 0 0
\(441\) 37.1771 1.77034
\(442\) 0 0
\(443\) −32.9361 −1.56484 −0.782422 0.622749i \(-0.786016\pi\)
−0.782422 + 0.622749i \(0.786016\pi\)
\(444\) 0 0
\(445\) −9.41711 −0.446414
\(446\) 0 0
\(447\) 42.9366 2.03083
\(448\) 0 0
\(449\) 35.3426 1.66792 0.833960 0.551824i \(-0.186068\pi\)
0.833960 + 0.551824i \(0.186068\pi\)
\(450\) 0 0
\(451\) 41.8336 1.96987
\(452\) 0 0
\(453\) 23.1586 1.08809
\(454\) 0 0
\(455\) −13.1160 −0.614890
\(456\) 0 0
\(457\) 5.58739 0.261367 0.130684 0.991424i \(-0.458283\pi\)
0.130684 + 0.991424i \(0.458283\pi\)
\(458\) 0 0
\(459\) 5.52063 0.257681
\(460\) 0 0
\(461\) −8.95201 −0.416937 −0.208468 0.978029i \(-0.566848\pi\)
−0.208468 + 0.978029i \(0.566848\pi\)
\(462\) 0 0
\(463\) 1.43010 0.0664626 0.0332313 0.999448i \(-0.489420\pi\)
0.0332313 + 0.999448i \(0.489420\pi\)
\(464\) 0 0
\(465\) −9.95406 −0.461608
\(466\) 0 0
\(467\) −31.5846 −1.46156 −0.730779 0.682614i \(-0.760843\pi\)
−0.730779 + 0.682614i \(0.760843\pi\)
\(468\) 0 0
\(469\) 33.4543 1.54478
\(470\) 0 0
\(471\) 20.3335 0.936919
\(472\) 0 0
\(473\) −28.7048 −1.31985
\(474\) 0 0
\(475\) 2.24183 0.102862
\(476\) 0 0
\(477\) −16.1624 −0.740027
\(478\) 0 0
\(479\) 19.6550 0.898059 0.449030 0.893517i \(-0.351770\pi\)
0.449030 + 0.893517i \(0.351770\pi\)
\(480\) 0 0
\(481\) 6.62408 0.302032
\(482\) 0 0
\(483\) −10.6918 −0.486494
\(484\) 0 0
\(485\) −4.95552 −0.225018
\(486\) 0 0
\(487\) 3.50225 0.158702 0.0793511 0.996847i \(-0.474715\pi\)
0.0793511 + 0.996847i \(0.474715\pi\)
\(488\) 0 0
\(489\) 13.4405 0.607800
\(490\) 0 0
\(491\) 30.3886 1.37142 0.685709 0.727876i \(-0.259492\pi\)
0.685709 + 0.727876i \(0.259492\pi\)
\(492\) 0 0
\(493\) −6.90957 −0.311191
\(494\) 0 0
\(495\) −15.5773 −0.700148
\(496\) 0 0
\(497\) 43.5777 1.95473
\(498\) 0 0
\(499\) −39.6591 −1.77539 −0.887693 0.460437i \(-0.847693\pi\)
−0.887693 + 0.460437i \(0.847693\pi\)
\(500\) 0 0
\(501\) 39.8931 1.78229
\(502\) 0 0
\(503\) −27.6775 −1.23408 −0.617039 0.786933i \(-0.711668\pi\)
−0.617039 + 0.786933i \(0.711668\pi\)
\(504\) 0 0
\(505\) 6.25948 0.278543
\(506\) 0 0
\(507\) −11.4001 −0.506298
\(508\) 0 0
\(509\) −22.3009 −0.988470 −0.494235 0.869328i \(-0.664552\pi\)
−0.494235 + 0.869328i \(0.664552\pi\)
\(510\) 0 0
\(511\) 58.2998 2.57903
\(512\) 0 0
\(513\) −1.79118 −0.0790826
\(514\) 0 0
\(515\) 7.00178 0.308535
\(516\) 0 0
\(517\) 40.0509 1.76144
\(518\) 0 0
\(519\) 58.1332 2.55177
\(520\) 0 0
\(521\) −24.6454 −1.07974 −0.539868 0.841750i \(-0.681526\pi\)
−0.539868 + 0.841750i \(0.681526\pi\)
\(522\) 0 0
\(523\) −2.29608 −0.100401 −0.0502003 0.998739i \(-0.515986\pi\)
−0.0502003 + 0.998739i \(0.515986\pi\)
\(524\) 0 0
\(525\) −10.8944 −0.475472
\(526\) 0 0
\(527\) 28.8987 1.25885
\(528\) 0 0
\(529\) −22.0369 −0.958124
\(530\) 0 0
\(531\) −28.8492 −1.25195
\(532\) 0 0
\(533\) −20.5015 −0.888017
\(534\) 0 0
\(535\) −0.415332 −0.0179564
\(536\) 0 0
\(537\) −12.3090 −0.531172
\(538\) 0 0
\(539\) −81.5840 −3.51407
\(540\) 0 0
\(541\) 33.2626 1.43007 0.715035 0.699088i \(-0.246411\pi\)
0.715035 + 0.699088i \(0.246411\pi\)
\(542\) 0 0
\(543\) 38.2018 1.63940
\(544\) 0 0
\(545\) 10.1844 0.436252
\(546\) 0 0
\(547\) −17.9352 −0.766855 −0.383428 0.923571i \(-0.625256\pi\)
−0.383428 + 0.923571i \(0.625256\pi\)
\(548\) 0 0
\(549\) 29.1842 1.24555
\(550\) 0 0
\(551\) 2.24183 0.0955050
\(552\) 0 0
\(553\) 11.1832 0.475558
\(554\) 0 0
\(555\) 5.50209 0.233551
\(556\) 0 0
\(557\) −33.3929 −1.41490 −0.707452 0.706761i \(-0.750156\pi\)
−0.707452 + 0.706761i \(0.750156\pi\)
\(558\) 0 0
\(559\) 14.0674 0.594989
\(560\) 0 0
\(561\) 96.1469 4.05932
\(562\) 0 0
\(563\) −2.71685 −0.114501 −0.0572507 0.998360i \(-0.518233\pi\)
−0.0572507 + 0.998360i \(0.518233\pi\)
\(564\) 0 0
\(565\) 8.19221 0.344649
\(566\) 0 0
\(567\) 45.2921 1.90209
\(568\) 0 0
\(569\) 0.740245 0.0310327 0.0155163 0.999880i \(-0.495061\pi\)
0.0155163 + 0.999880i \(0.495061\pi\)
\(570\) 0 0
\(571\) 27.7348 1.16067 0.580333 0.814379i \(-0.302922\pi\)
0.580333 + 0.814379i \(0.302922\pi\)
\(572\) 0 0
\(573\) 28.9939 1.21124
\(574\) 0 0
\(575\) 0.981401 0.0409272
\(576\) 0 0
\(577\) −8.87606 −0.369515 −0.184758 0.982784i \(-0.559150\pi\)
−0.184758 + 0.982784i \(0.559150\pi\)
\(578\) 0 0
\(579\) −4.38305 −0.182153
\(580\) 0 0
\(581\) −45.4789 −1.88678
\(582\) 0 0
\(583\) 35.4680 1.46893
\(584\) 0 0
\(585\) 7.63400 0.315627
\(586\) 0 0
\(587\) 42.7976 1.76644 0.883222 0.468955i \(-0.155369\pi\)
0.883222 + 0.468955i \(0.155369\pi\)
\(588\) 0 0
\(589\) −9.37625 −0.386342
\(590\) 0 0
\(591\) 37.9303 1.56024
\(592\) 0 0
\(593\) −32.7635 −1.34544 −0.672718 0.739899i \(-0.734873\pi\)
−0.672718 + 0.739899i \(0.734873\pi\)
\(594\) 0 0
\(595\) 31.6288 1.29666
\(596\) 0 0
\(597\) 14.7352 0.603072
\(598\) 0 0
\(599\) −16.6005 −0.678277 −0.339138 0.940736i \(-0.610136\pi\)
−0.339138 + 0.940736i \(0.610136\pi\)
\(600\) 0 0
\(601\) 36.7383 1.49859 0.749294 0.662237i \(-0.230393\pi\)
0.749294 + 0.662237i \(0.230393\pi\)
\(602\) 0 0
\(603\) −19.4716 −0.792945
\(604\) 0 0
\(605\) 23.1840 0.942563
\(606\) 0 0
\(607\) −37.8761 −1.53735 −0.768673 0.639642i \(-0.779083\pi\)
−0.768673 + 0.639642i \(0.779083\pi\)
\(608\) 0 0
\(609\) −10.8944 −0.441465
\(610\) 0 0
\(611\) −19.6278 −0.794056
\(612\) 0 0
\(613\) 13.3293 0.538366 0.269183 0.963089i \(-0.413246\pi\)
0.269183 + 0.963089i \(0.413246\pi\)
\(614\) 0 0
\(615\) −17.0289 −0.686672
\(616\) 0 0
\(617\) −29.8255 −1.20073 −0.600366 0.799726i \(-0.704978\pi\)
−0.600366 + 0.799726i \(0.704978\pi\)
\(618\) 0 0
\(619\) 17.0316 0.684559 0.342279 0.939598i \(-0.388801\pi\)
0.342279 + 0.939598i \(0.388801\pi\)
\(620\) 0 0
\(621\) −0.784123 −0.0314658
\(622\) 0 0
\(623\) 43.1072 1.72705
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −31.1951 −1.24581
\(628\) 0 0
\(629\) −15.9737 −0.636913
\(630\) 0 0
\(631\) 32.6571 1.30006 0.650028 0.759910i \(-0.274757\pi\)
0.650028 + 0.759910i \(0.274757\pi\)
\(632\) 0 0
\(633\) −41.7451 −1.65922
\(634\) 0 0
\(635\) −19.3338 −0.767239
\(636\) 0 0
\(637\) 39.9820 1.58415
\(638\) 0 0
\(639\) −25.3638 −1.00338
\(640\) 0 0
\(641\) −43.1622 −1.70480 −0.852402 0.522887i \(-0.824855\pi\)
−0.852402 + 0.522887i \(0.824855\pi\)
\(642\) 0 0
\(643\) −24.8243 −0.978974 −0.489487 0.872011i \(-0.662816\pi\)
−0.489487 + 0.872011i \(0.662816\pi\)
\(644\) 0 0
\(645\) 11.6847 0.460083
\(646\) 0 0
\(647\) 31.2444 1.22835 0.614173 0.789172i \(-0.289490\pi\)
0.614173 + 0.789172i \(0.289490\pi\)
\(648\) 0 0
\(649\) 63.3088 2.48509
\(650\) 0 0
\(651\) 45.5651 1.78584
\(652\) 0 0
\(653\) 17.5550 0.686980 0.343490 0.939156i \(-0.388391\pi\)
0.343490 + 0.939156i \(0.388391\pi\)
\(654\) 0 0
\(655\) 13.4038 0.523730
\(656\) 0 0
\(657\) −33.9326 −1.32384
\(658\) 0 0
\(659\) 28.9383 1.12728 0.563638 0.826022i \(-0.309401\pi\)
0.563638 + 0.826022i \(0.309401\pi\)
\(660\) 0 0
\(661\) −17.9008 −0.696259 −0.348129 0.937446i \(-0.613183\pi\)
−0.348129 + 0.937446i \(0.613183\pi\)
\(662\) 0 0
\(663\) −47.1189 −1.82995
\(664\) 0 0
\(665\) −10.2620 −0.397945
\(666\) 0 0
\(667\) 0.981401 0.0380000
\(668\) 0 0
\(669\) 44.0327 1.70240
\(670\) 0 0
\(671\) −64.0439 −2.47239
\(672\) 0 0
\(673\) 10.8518 0.418308 0.209154 0.977883i \(-0.432929\pi\)
0.209154 + 0.977883i \(0.432929\pi\)
\(674\) 0 0
\(675\) −0.798983 −0.0307529
\(676\) 0 0
\(677\) −24.2851 −0.933352 −0.466676 0.884428i \(-0.654549\pi\)
−0.466676 + 0.884428i \(0.654549\pi\)
\(678\) 0 0
\(679\) 22.6841 0.870534
\(680\) 0 0
\(681\) −1.20796 −0.0462892
\(682\) 0 0
\(683\) −47.5295 −1.81867 −0.909334 0.416068i \(-0.863408\pi\)
−0.909334 + 0.416068i \(0.863408\pi\)
\(684\) 0 0
\(685\) −20.4685 −0.782062
\(686\) 0 0
\(687\) −17.0818 −0.651710
\(688\) 0 0
\(689\) −17.3819 −0.662197
\(690\) 0 0
\(691\) 45.9262 1.74712 0.873558 0.486720i \(-0.161807\pi\)
0.873558 + 0.486720i \(0.161807\pi\)
\(692\) 0 0
\(693\) 71.3057 2.70868
\(694\) 0 0
\(695\) −4.09661 −0.155393
\(696\) 0 0
\(697\) 49.4385 1.87262
\(698\) 0 0
\(699\) −31.4389 −1.18913
\(700\) 0 0
\(701\) 11.5300 0.435484 0.217742 0.976006i \(-0.430131\pi\)
0.217742 + 0.976006i \(0.430131\pi\)
\(702\) 0 0
\(703\) 5.18270 0.195469
\(704\) 0 0
\(705\) −16.3032 −0.614015
\(706\) 0 0
\(707\) −28.6530 −1.07761
\(708\) 0 0
\(709\) 13.7237 0.515404 0.257702 0.966224i \(-0.417035\pi\)
0.257702 + 0.966224i \(0.417035\pi\)
\(710\) 0 0
\(711\) −6.50902 −0.244107
\(712\) 0 0
\(713\) −4.10463 −0.153719
\(714\) 0 0
\(715\) −16.7526 −0.626512
\(716\) 0 0
\(717\) −49.1174 −1.83432
\(718\) 0 0
\(719\) 7.42047 0.276737 0.138368 0.990381i \(-0.455814\pi\)
0.138368 + 0.990381i \(0.455814\pi\)
\(720\) 0 0
\(721\) −32.0509 −1.19364
\(722\) 0 0
\(723\) 40.0089 1.48795
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 1.52514 0.0565644 0.0282822 0.999600i \(-0.490996\pi\)
0.0282822 + 0.999600i \(0.490996\pi\)
\(728\) 0 0
\(729\) −20.6569 −0.765072
\(730\) 0 0
\(731\) −33.9230 −1.25469
\(732\) 0 0
\(733\) −1.38528 −0.0511664 −0.0255832 0.999673i \(-0.508144\pi\)
−0.0255832 + 0.999673i \(0.508144\pi\)
\(734\) 0 0
\(735\) 33.2098 1.22496
\(736\) 0 0
\(737\) 42.7299 1.57398
\(738\) 0 0
\(739\) 50.6505 1.86321 0.931605 0.363472i \(-0.118409\pi\)
0.931605 + 0.363472i \(0.118409\pi\)
\(740\) 0 0
\(741\) 15.2878 0.561612
\(742\) 0 0
\(743\) 8.47107 0.310773 0.155387 0.987854i \(-0.450338\pi\)
0.155387 + 0.987854i \(0.450338\pi\)
\(744\) 0 0
\(745\) 18.0408 0.660962
\(746\) 0 0
\(747\) 26.4704 0.968500
\(748\) 0 0
\(749\) 1.90120 0.0694682
\(750\) 0 0
\(751\) 19.2566 0.702683 0.351342 0.936247i \(-0.385726\pi\)
0.351342 + 0.936247i \(0.385726\pi\)
\(752\) 0 0
\(753\) 53.7858 1.96006
\(754\) 0 0
\(755\) 9.73061 0.354133
\(756\) 0 0
\(757\) −29.1406 −1.05913 −0.529567 0.848268i \(-0.677645\pi\)
−0.529567 + 0.848268i \(0.677645\pi\)
\(758\) 0 0
\(759\) −13.6562 −0.495689
\(760\) 0 0
\(761\) 13.3242 0.483002 0.241501 0.970401i \(-0.422360\pi\)
0.241501 + 0.970401i \(0.422360\pi\)
\(762\) 0 0
\(763\) −46.6195 −1.68774
\(764\) 0 0
\(765\) −18.4091 −0.665582
\(766\) 0 0
\(767\) −31.0258 −1.12028
\(768\) 0 0
\(769\) 3.75578 0.135437 0.0677185 0.997704i \(-0.478428\pi\)
0.0677185 + 0.997704i \(0.478428\pi\)
\(770\) 0 0
\(771\) −36.0687 −1.29898
\(772\) 0 0
\(773\) −17.9841 −0.646842 −0.323421 0.946255i \(-0.604833\pi\)
−0.323421 + 0.946255i \(0.604833\pi\)
\(774\) 0 0
\(775\) −4.18242 −0.150237
\(776\) 0 0
\(777\) −25.1860 −0.903543
\(778\) 0 0
\(779\) −16.0404 −0.574708
\(780\) 0 0
\(781\) 55.6601 1.99168
\(782\) 0 0
\(783\) −0.798983 −0.0285533
\(784\) 0 0
\(785\) 8.54358 0.304933
\(786\) 0 0
\(787\) −39.9640 −1.42456 −0.712281 0.701895i \(-0.752338\pi\)
−0.712281 + 0.701895i \(0.752338\pi\)
\(788\) 0 0
\(789\) 7.66911 0.273028
\(790\) 0 0
\(791\) −37.5001 −1.33335
\(792\) 0 0
\(793\) 31.3861 1.11455
\(794\) 0 0
\(795\) −14.4377 −0.512053
\(796\) 0 0
\(797\) −20.6216 −0.730456 −0.365228 0.930918i \(-0.619009\pi\)
−0.365228 + 0.930918i \(0.619009\pi\)
\(798\) 0 0
\(799\) 47.3317 1.67448
\(800\) 0 0
\(801\) −25.0899 −0.886508
\(802\) 0 0
\(803\) 74.4640 2.62778
\(804\) 0 0
\(805\) −4.49240 −0.158336
\(806\) 0 0
\(807\) −52.7280 −1.85611
\(808\) 0 0
\(809\) −14.0885 −0.495326 −0.247663 0.968846i \(-0.579663\pi\)
−0.247663 + 0.968846i \(0.579663\pi\)
\(810\) 0 0
\(811\) 2.25084 0.0790377 0.0395188 0.999219i \(-0.487417\pi\)
0.0395188 + 0.999219i \(0.487417\pi\)
\(812\) 0 0
\(813\) −53.7138 −1.88382
\(814\) 0 0
\(815\) 5.64732 0.197817
\(816\) 0 0
\(817\) 11.0064 0.385065
\(818\) 0 0
\(819\) −34.9449 −1.22107
\(820\) 0 0
\(821\) 37.9664 1.32504 0.662518 0.749046i \(-0.269488\pi\)
0.662518 + 0.749046i \(0.269488\pi\)
\(822\) 0 0
\(823\) −14.9282 −0.520365 −0.260183 0.965559i \(-0.583783\pi\)
−0.260183 + 0.965559i \(0.583783\pi\)
\(824\) 0 0
\(825\) −13.9150 −0.484459
\(826\) 0 0
\(827\) 27.8054 0.966888 0.483444 0.875375i \(-0.339386\pi\)
0.483444 + 0.875375i \(0.339386\pi\)
\(828\) 0 0
\(829\) 14.5463 0.505213 0.252607 0.967569i \(-0.418712\pi\)
0.252607 + 0.967569i \(0.418712\pi\)
\(830\) 0 0
\(831\) −53.5355 −1.85713
\(832\) 0 0
\(833\) −96.4151 −3.34058
\(834\) 0 0
\(835\) 16.7620 0.580071
\(836\) 0 0
\(837\) 3.34168 0.115505
\(838\) 0 0
\(839\) 32.8687 1.13475 0.567377 0.823458i \(-0.307958\pi\)
0.567377 + 0.823458i \(0.307958\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −17.4149 −0.599803
\(844\) 0 0
\(845\) −4.79002 −0.164782
\(846\) 0 0
\(847\) −106.126 −3.64652
\(848\) 0 0
\(849\) 12.8185 0.439931
\(850\) 0 0
\(851\) 2.26882 0.0777743
\(852\) 0 0
\(853\) −16.3843 −0.560989 −0.280494 0.959856i \(-0.590498\pi\)
−0.280494 + 0.959856i \(0.590498\pi\)
\(854\) 0 0
\(855\) 5.97287 0.204268
\(856\) 0 0
\(857\) 26.1985 0.894925 0.447463 0.894303i \(-0.352328\pi\)
0.447463 + 0.894303i \(0.352328\pi\)
\(858\) 0 0
\(859\) −40.1498 −1.36989 −0.684947 0.728593i \(-0.740175\pi\)
−0.684947 + 0.728593i \(0.740175\pi\)
\(860\) 0 0
\(861\) 77.9504 2.65654
\(862\) 0 0
\(863\) −2.19808 −0.0748234 −0.0374117 0.999300i \(-0.511911\pi\)
−0.0374117 + 0.999300i \(0.511911\pi\)
\(864\) 0 0
\(865\) 24.4260 0.830508
\(866\) 0 0
\(867\) 73.1657 2.48484
\(868\) 0 0
\(869\) 14.2839 0.484547
\(870\) 0 0
\(871\) −20.9407 −0.709549
\(872\) 0 0
\(873\) −13.2029 −0.446851
\(874\) 0 0
\(875\) −4.57754 −0.154749
\(876\) 0 0
\(877\) −18.3093 −0.618263 −0.309131 0.951019i \(-0.600038\pi\)
−0.309131 + 0.951019i \(0.600038\pi\)
\(878\) 0 0
\(879\) −79.2200 −2.67202
\(880\) 0 0
\(881\) −30.9107 −1.04141 −0.520704 0.853737i \(-0.674331\pi\)
−0.520704 + 0.853737i \(0.674331\pi\)
\(882\) 0 0
\(883\) −49.2370 −1.65696 −0.828478 0.560021i \(-0.810793\pi\)
−0.828478 + 0.560021i \(0.810793\pi\)
\(884\) 0 0
\(885\) −25.7706 −0.866271
\(886\) 0 0
\(887\) 13.3812 0.449295 0.224648 0.974440i \(-0.427877\pi\)
0.224648 + 0.974440i \(0.427877\pi\)
\(888\) 0 0
\(889\) 88.5012 2.96824
\(890\) 0 0
\(891\) 57.8498 1.93804
\(892\) 0 0
\(893\) −15.3569 −0.513898
\(894\) 0 0
\(895\) −5.17189 −0.172877
\(896\) 0 0
\(897\) 6.69253 0.223457
\(898\) 0 0
\(899\) −4.18242 −0.139491
\(900\) 0 0
\(901\) 41.9157 1.39641
\(902\) 0 0
\(903\) −53.4870 −1.77994
\(904\) 0 0
\(905\) 16.0513 0.533564
\(906\) 0 0
\(907\) 38.1302 1.26609 0.633047 0.774113i \(-0.281804\pi\)
0.633047 + 0.774113i \(0.281804\pi\)
\(908\) 0 0
\(909\) 16.6771 0.553144
\(910\) 0 0
\(911\) −32.4907 −1.07647 −0.538233 0.842796i \(-0.680908\pi\)
−0.538233 + 0.842796i \(0.680908\pi\)
\(912\) 0 0
\(913\) −58.0884 −1.92245
\(914\) 0 0
\(915\) 26.0699 0.861844
\(916\) 0 0
\(917\) −61.3564 −2.02617
\(918\) 0 0
\(919\) 25.7117 0.848150 0.424075 0.905627i \(-0.360599\pi\)
0.424075 + 0.905627i \(0.360599\pi\)
\(920\) 0 0
\(921\) 15.3212 0.504852
\(922\) 0 0
\(923\) −27.2774 −0.897848
\(924\) 0 0
\(925\) 2.31182 0.0760123
\(926\) 0 0
\(927\) 18.6548 0.612703
\(928\) 0 0
\(929\) −50.4591 −1.65551 −0.827755 0.561090i \(-0.810382\pi\)
−0.827755 + 0.561090i \(0.810382\pi\)
\(930\) 0 0
\(931\) 31.2821 1.02523
\(932\) 0 0
\(933\) −6.34082 −0.207589
\(934\) 0 0
\(935\) 40.3982 1.32116
\(936\) 0 0
\(937\) −9.03333 −0.295106 −0.147553 0.989054i \(-0.547140\pi\)
−0.147553 + 0.989054i \(0.547140\pi\)
\(938\) 0 0
\(939\) 45.9043 1.49803
\(940\) 0 0
\(941\) −9.74488 −0.317674 −0.158837 0.987305i \(-0.550774\pi\)
−0.158837 + 0.987305i \(0.550774\pi\)
\(942\) 0 0
\(943\) −7.02199 −0.228668
\(944\) 0 0
\(945\) 3.65738 0.118974
\(946\) 0 0
\(947\) 21.8008 0.708430 0.354215 0.935164i \(-0.384748\pi\)
0.354215 + 0.935164i \(0.384748\pi\)
\(948\) 0 0
\(949\) −36.4927 −1.18460
\(950\) 0 0
\(951\) 42.1640 1.36726
\(952\) 0 0
\(953\) −48.6037 −1.57443 −0.787214 0.616680i \(-0.788477\pi\)
−0.787214 + 0.616680i \(0.788477\pi\)
\(954\) 0 0
\(955\) 12.1824 0.394214
\(956\) 0 0
\(957\) −13.9150 −0.449809
\(958\) 0 0
\(959\) 93.6953 3.02558
\(960\) 0 0
\(961\) −13.5074 −0.435722
\(962\) 0 0
\(963\) −1.10656 −0.0356586
\(964\) 0 0
\(965\) −1.84164 −0.0592844
\(966\) 0 0
\(967\) −24.4922 −0.787617 −0.393809 0.919192i \(-0.628843\pi\)
−0.393809 + 0.919192i \(0.628843\pi\)
\(968\) 0 0
\(969\) −36.8660 −1.18431
\(970\) 0 0
\(971\) −43.6840 −1.40189 −0.700943 0.713217i \(-0.747237\pi\)
−0.700943 + 0.713217i \(0.747237\pi\)
\(972\) 0 0
\(973\) 18.7524 0.601173
\(974\) 0 0
\(975\) 6.81936 0.218394
\(976\) 0 0
\(977\) 33.4898 1.07143 0.535717 0.844397i \(-0.320041\pi\)
0.535717 + 0.844397i \(0.320041\pi\)
\(978\) 0 0
\(979\) 55.0591 1.75970
\(980\) 0 0
\(981\) 27.1342 0.866329
\(982\) 0 0
\(983\) −27.0615 −0.863128 −0.431564 0.902082i \(-0.642038\pi\)
−0.431564 + 0.902082i \(0.642038\pi\)
\(984\) 0 0
\(985\) 15.9372 0.507803
\(986\) 0 0
\(987\) 74.6286 2.37546
\(988\) 0 0
\(989\) 4.81826 0.153212
\(990\) 0 0
\(991\) 50.1984 1.59461 0.797303 0.603579i \(-0.206259\pi\)
0.797303 + 0.603579i \(0.206259\pi\)
\(992\) 0 0
\(993\) −10.7191 −0.340160
\(994\) 0 0
\(995\) 6.19133 0.196278
\(996\) 0 0
\(997\) 8.13064 0.257500 0.128750 0.991677i \(-0.458904\pi\)
0.128750 + 0.991677i \(0.458904\pi\)
\(998\) 0 0
\(999\) −1.84711 −0.0584399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.a.u.1.5 5
4.3 odd 2 1160.2.a.j.1.1 5
8.3 odd 2 9280.2.a.cg.1.5 5
8.5 even 2 9280.2.a.cl.1.1 5
20.19 odd 2 5800.2.a.t.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.j.1.1 5 4.3 odd 2
2320.2.a.u.1.5 5 1.1 even 1 trivial
5800.2.a.t.1.5 5 20.19 odd 2
9280.2.a.cg.1.5 5 8.3 odd 2
9280.2.a.cl.1.1 5 8.5 even 2