Properties

Label 2320.4.a.o
Level $2320$
Weight $4$
Character orbit 2320.a
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 1) q^{3} - 5 q^{5} + ( - \beta_{2} - 1) q^{7} + ( - \beta_{4} - \beta_{3} - \beta_{2} + 8) q^{9} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 1) q^{11} + (\beta_{4} - 2 \beta_{3} - 2 \beta_1 + 3) q^{13}+ \cdots + (28 \beta_{5} - 35 \beta_{4} + \cdots + 519) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 30 q^{5} - 9 q^{7} + 45 q^{9} + 10 q^{11} + 13 q^{13} - 25 q^{15} - 23 q^{17} - 10 q^{19} - 52 q^{21} - 75 q^{23} + 150 q^{25} + 116 q^{27} - 174 q^{29} + 127 q^{31} - 72 q^{33} + 45 q^{35}+ \cdots + 2976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 41\nu^{5} - 219\nu^{4} - 3644\nu^{3} + 32467\nu^{2} + 167138\nu - 657480 ) / 35415 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 41\nu^{5} - 219\nu^{4} - 3644\nu^{3} + 32467\nu^{2} + 25478\nu - 622065 ) / 35415 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -82\nu^{5} + 438\nu^{4} + 7288\nu^{3} - 29519\nu^{2} - 121786\nu + 217095 ) / 35415 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 329\nu^{5} + 834\nu^{4} - 32696\nu^{3} - 54752\nu^{2} + 745172\nu + 315375 ) / 35415 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 644\nu^{5} + 879\nu^{4} - 51191\nu^{3} - 62717\nu^{2} + 711152\nu + 561570 ) / 35415 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} + 3\beta_{2} + \beta _1 + 59 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{5} - 10\beta_{4} + 8\beta_{3} - 27\beta_{2} + 29\beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{5} + 7\beta_{4} + 127\beta_{3} + 107\beta_{2} + 28\beta _1 + 1495 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 288\beta_{5} - 407\beta_{4} + 242\beta_{3} - 797\beta_{2} + 887\beta _1 + 42 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.14528
7.95365
−8.04026
2.05033
5.06881
−4.88726
0 −7.69185 0 −5.00000 0 16.0448 0 32.1646 0
1.2 0 −4.38851 0 −5.00000 0 −7.48240 0 −7.74102 0
1.3 0 −1.41811 0 −5.00000 0 −25.6541 0 −24.9890 0
1.4 0 3.51626 0 −5.00000 0 12.1903 0 −14.6359 0
1.5 0 6.49913 0 −5.00000 0 2.97283 0 15.2386 0
1.6 0 8.48308 0 −5.00000 0 −7.07143 0 44.9627 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.4.a.o 6
4.b odd 2 1 580.4.a.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.4.a.a 6 4.b odd 2 1
2320.4.a.o 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2320))\):

\( T_{3}^{6} - 5T_{3}^{5} - 91T_{3}^{4} + 368T_{3}^{3} + 1984T_{3}^{2} - 4704T_{3} - 9280 \) Copy content Toggle raw display
\( T_{7}^{6} + 9T_{7}^{5} - 549T_{7}^{4} - 1288T_{7}^{3} + 53416T_{7}^{2} + 131568T_{7} - 789264 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 5 T^{5} + \cdots - 9280 \) Copy content Toggle raw display
$5$ \( (T + 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 9 T^{5} + \cdots - 789264 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 1637810496 \) Copy content Toggle raw display
$13$ \( T^{6} - 13 T^{5} + \cdots + 237770640 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 3829752528 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 3023977536 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 1372728944 \) Copy content Toggle raw display
$29$ \( (T + 29)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 3421377838000 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 22665723291072 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 57057919316160 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 1245956811840 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 114013374170112 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 76831969480080 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 15420665692160 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 104665577250000 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 2057711558400 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 5243365675008 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 392838603756400 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 596373632144064 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 17\!\cdots\!28 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 58\!\cdots\!40 \) Copy content Toggle raw display
show more
show less