Properties

Label 2320.4.a.o
Level 23202320
Weight 44
Character orbit 2320.a
Self dual yes
Analytic conductor 136.884136.884
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2320=24529 2320 = 2^{4} \cdot 5 \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 136.884431213136.884431213
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x591x4+90x3+1784x21456x3720 x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 580)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+1)q35q5+(β21)q7+(β4β3β2+8)q9+(β4+β3+β2++1)q11+(β42β32β1+3)q13++(28β535β4++519)q99+O(q100) q + ( - \beta_{3} + 1) q^{3} - 5 q^{5} + ( - \beta_{2} - 1) q^{7} + ( - \beta_{4} - \beta_{3} - \beta_{2} + 8) q^{9} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 1) q^{11} + (\beta_{4} - 2 \beta_{3} - 2 \beta_1 + 3) q^{13}+ \cdots + (28 \beta_{5} - 35 \beta_{4} + \cdots + 519) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+5q330q59q7+45q9+10q11+13q1325q1523q1710q1952q2175q23+150q25+116q27174q29+127q3172q33+45q35++2976q99+O(q100) 6 q + 5 q^{3} - 30 q^{5} - 9 q^{7} + 45 q^{9} + 10 q^{11} + 13 q^{13} - 25 q^{15} - 23 q^{17} - 10 q^{19} - 52 q^{21} - 75 q^{23} + 150 q^{25} + 116 q^{27} - 174 q^{29} + 127 q^{31} - 72 q^{33} + 45 q^{35}+ \cdots + 2976 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x591x4+90x3+1784x21456x3720 x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 : Copy content Toggle raw display

β1\beta_{1}== (41ν5219ν43644ν3+32467ν2+167138ν657480)/35415 ( 41\nu^{5} - 219\nu^{4} - 3644\nu^{3} + 32467\nu^{2} + 167138\nu - 657480 ) / 35415 Copy content Toggle raw display
β2\beta_{2}== (41ν5219ν43644ν3+32467ν2+25478ν622065)/35415 ( 41\nu^{5} - 219\nu^{4} - 3644\nu^{3} + 32467\nu^{2} + 25478\nu - 622065 ) / 35415 Copy content Toggle raw display
β3\beta_{3}== (82ν5+438ν4+7288ν329519ν2121786ν+217095)/35415 ( -82\nu^{5} + 438\nu^{4} + 7288\nu^{3} - 29519\nu^{2} - 121786\nu + 217095 ) / 35415 Copy content Toggle raw display
β4\beta_{4}== (329ν5+834ν432696ν354752ν2+745172ν+315375)/35415 ( 329\nu^{5} + 834\nu^{4} - 32696\nu^{3} - 54752\nu^{2} + 745172\nu + 315375 ) / 35415 Copy content Toggle raw display
β5\beta_{5}== (644ν5+879ν451191ν362717ν2+711152ν+561570)/35415 ( 644\nu^{5} + 879\nu^{4} - 51191\nu^{3} - 62717\nu^{2} + 711152\nu + 561570 ) / 35415 Copy content Toggle raw display
ν\nu== (β2+β1+1)/4 ( -\beta_{2} + \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (2β3+3β2+β1+59)/2 ( 2\beta_{3} + 3\beta_{2} + \beta _1 + 59 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (6β510β4+8β327β2+29β1+9)/2 ( 6\beta_{5} - 10\beta_{4} + 8\beta_{3} - 27\beta_{2} + 29\beta _1 + 9 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 4β5+7β4+127β3+107β2+28β1+1495 4\beta_{5} + 7\beta_{4} + 127\beta_{3} + 107\beta_{2} + 28\beta _1 + 1495 Copy content Toggle raw display
ν5\nu^{5}== 288β5407β4+242β3797β2+887β1+42 288\beta_{5} - 407\beta_{4} + 242\beta_{3} - 797\beta_{2} + 887\beta _1 + 42 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.14528
7.95365
−8.04026
2.05033
5.06881
−4.88726
0 −7.69185 0 −5.00000 0 16.0448 0 32.1646 0
1.2 0 −4.38851 0 −5.00000 0 −7.48240 0 −7.74102 0
1.3 0 −1.41811 0 −5.00000 0 −25.6541 0 −24.9890 0
1.4 0 3.51626 0 −5.00000 0 12.1903 0 −14.6359 0
1.5 0 6.49913 0 −5.00000 0 2.97283 0 15.2386 0
1.6 0 8.48308 0 −5.00000 0 −7.07143 0 44.9627 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.4.a.o 6
4.b odd 2 1 580.4.a.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.4.a.a 6 4.b odd 2 1
2320.4.a.o 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2320))S_{4}^{\mathrm{new}}(\Gamma_0(2320)):

T365T3591T34+368T33+1984T324704T39280 T_{3}^{6} - 5T_{3}^{5} - 91T_{3}^{4} + 368T_{3}^{3} + 1984T_{3}^{2} - 4704T_{3} - 9280 Copy content Toggle raw display
T76+9T75549T741288T73+53416T72+131568T7789264 T_{7}^{6} + 9T_{7}^{5} - 549T_{7}^{4} - 1288T_{7}^{3} + 53416T_{7}^{2} + 131568T_{7} - 789264 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T65T5+9280 T^{6} - 5 T^{5} + \cdots - 9280 Copy content Toggle raw display
55 (T+5)6 (T + 5)^{6} Copy content Toggle raw display
77 T6+9T5+789264 T^{6} + 9 T^{5} + \cdots - 789264 Copy content Toggle raw display
1111 T6+1637810496 T^{6} + \cdots - 1637810496 Copy content Toggle raw display
1313 T613T5++237770640 T^{6} - 13 T^{5} + \cdots + 237770640 Copy content Toggle raw display
1717 T6+3829752528 T^{6} + \cdots - 3829752528 Copy content Toggle raw display
1919 T6++3023977536 T^{6} + \cdots + 3023977536 Copy content Toggle raw display
2323 T6+1372728944 T^{6} + \cdots - 1372728944 Copy content Toggle raw display
2929 (T+29)6 (T + 29)^{6} Copy content Toggle raw display
3131 T6+3421377838000 T^{6} + \cdots - 3421377838000 Copy content Toggle raw display
3737 T6+22665723291072 T^{6} + \cdots - 22665723291072 Copy content Toggle raw display
4141 T6+57057919316160 T^{6} + \cdots - 57057919316160 Copy content Toggle raw display
4343 T6++1245956811840 T^{6} + \cdots + 1245956811840 Copy content Toggle raw display
4747 T6+114013374170112 T^{6} + \cdots - 114013374170112 Copy content Toggle raw display
5353 T6++76831969480080 T^{6} + \cdots + 76831969480080 Copy content Toggle raw display
5959 T6+15420665692160 T^{6} + \cdots - 15420665692160 Copy content Toggle raw display
6161 T6+104665577250000 T^{6} + \cdots - 104665577250000 Copy content Toggle raw display
6767 T6+2057711558400 T^{6} + \cdots - 2057711558400 Copy content Toggle raw display
7171 T6++5243365675008 T^{6} + \cdots + 5243365675008 Copy content Toggle raw display
7373 T6++392838603756400 T^{6} + \cdots + 392838603756400 Copy content Toggle raw display
7979 T6+18 ⁣ ⁣00 T^{6} + \cdots - 18\!\cdots\!00 Copy content Toggle raw display
8383 T6++596373632144064 T^{6} + \cdots + 596373632144064 Copy content Toggle raw display
8989 T6++17 ⁣ ⁣28 T^{6} + \cdots + 17\!\cdots\!28 Copy content Toggle raw display
9797 T6+58 ⁣ ⁣40 T^{6} + \cdots - 58\!\cdots\!40 Copy content Toggle raw display
show more
show less