Properties

Label 2320.4.a.o.1.6
Level $2320$
Weight $4$
Character 2320.1
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-4.88726\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.48308 q^{3} -5.00000 q^{5} -7.07143 q^{7} +44.9627 q^{9} +49.6170 q^{11} +11.3703 q^{13} -42.4154 q^{15} -43.7733 q^{17} -140.693 q^{19} -59.9876 q^{21} -171.311 q^{23} +25.0000 q^{25} +152.379 q^{27} -29.0000 q^{29} -24.3789 q^{31} +420.905 q^{33} +35.3572 q^{35} +62.2739 q^{37} +96.4552 q^{39} -161.107 q^{41} -350.585 q^{43} -224.813 q^{45} -211.265 q^{47} -292.995 q^{49} -371.332 q^{51} -581.165 q^{53} -248.085 q^{55} -1193.51 q^{57} +609.450 q^{59} -169.936 q^{61} -317.951 q^{63} -56.8515 q^{65} +322.156 q^{67} -1453.25 q^{69} +419.068 q^{71} -138.501 q^{73} +212.077 q^{75} -350.863 q^{77} -15.7298 q^{79} +78.6508 q^{81} +1051.81 q^{83} +218.866 q^{85} -246.009 q^{87} +606.725 q^{89} -80.4044 q^{91} -206.808 q^{93} +703.464 q^{95} +1506.62 q^{97} +2230.91 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 30 q^{5} - 9 q^{7} + 45 q^{9} + 10 q^{11} + 13 q^{13} - 25 q^{15} - 23 q^{17} - 10 q^{19} - 52 q^{21} - 75 q^{23} + 150 q^{25} + 116 q^{27} - 174 q^{29} + 127 q^{31} - 72 q^{33} + 45 q^{35}+ \cdots + 2976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.48308 1.63257 0.816285 0.577649i \(-0.196030\pi\)
0.816285 + 0.577649i \(0.196030\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.07143 −0.381822 −0.190911 0.981607i \(-0.561144\pi\)
−0.190911 + 0.981607i \(0.561144\pi\)
\(8\) 0 0
\(9\) 44.9627 1.66528
\(10\) 0 0
\(11\) 49.6170 1.36001 0.680004 0.733209i \(-0.261978\pi\)
0.680004 + 0.733209i \(0.261978\pi\)
\(12\) 0 0
\(13\) 11.3703 0.242581 0.121291 0.992617i \(-0.461297\pi\)
0.121291 + 0.992617i \(0.461297\pi\)
\(14\) 0 0
\(15\) −42.4154 −0.730107
\(16\) 0 0
\(17\) −43.7733 −0.624505 −0.312252 0.949999i \(-0.601083\pi\)
−0.312252 + 0.949999i \(0.601083\pi\)
\(18\) 0 0
\(19\) −140.693 −1.69880 −0.849398 0.527753i \(-0.823035\pi\)
−0.849398 + 0.527753i \(0.823035\pi\)
\(20\) 0 0
\(21\) −59.9876 −0.623350
\(22\) 0 0
\(23\) −171.311 −1.55308 −0.776539 0.630069i \(-0.783027\pi\)
−0.776539 + 0.630069i \(0.783027\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 152.379 1.08612
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −24.3789 −0.141245 −0.0706223 0.997503i \(-0.522499\pi\)
−0.0706223 + 0.997503i \(0.522499\pi\)
\(32\) 0 0
\(33\) 420.905 2.22031
\(34\) 0 0
\(35\) 35.3572 0.170756
\(36\) 0 0
\(37\) 62.2739 0.276696 0.138348 0.990384i \(-0.455821\pi\)
0.138348 + 0.990384i \(0.455821\pi\)
\(38\) 0 0
\(39\) 96.4552 0.396031
\(40\) 0 0
\(41\) −161.107 −0.613675 −0.306838 0.951762i \(-0.599271\pi\)
−0.306838 + 0.951762i \(0.599271\pi\)
\(42\) 0 0
\(43\) −350.585 −1.24334 −0.621671 0.783279i \(-0.713546\pi\)
−0.621671 + 0.783279i \(0.713546\pi\)
\(44\) 0 0
\(45\) −224.813 −0.744738
\(46\) 0 0
\(47\) −211.265 −0.655664 −0.327832 0.944736i \(-0.606318\pi\)
−0.327832 + 0.944736i \(0.606318\pi\)
\(48\) 0 0
\(49\) −292.995 −0.854212
\(50\) 0 0
\(51\) −371.332 −1.01955
\(52\) 0 0
\(53\) −581.165 −1.50621 −0.753106 0.657900i \(-0.771445\pi\)
−0.753106 + 0.657900i \(0.771445\pi\)
\(54\) 0 0
\(55\) −248.085 −0.608214
\(56\) 0 0
\(57\) −1193.51 −2.77340
\(58\) 0 0
\(59\) 609.450 1.34481 0.672404 0.740184i \(-0.265262\pi\)
0.672404 + 0.740184i \(0.265262\pi\)
\(60\) 0 0
\(61\) −169.936 −0.356690 −0.178345 0.983968i \(-0.557074\pi\)
−0.178345 + 0.983968i \(0.557074\pi\)
\(62\) 0 0
\(63\) −317.951 −0.635842
\(64\) 0 0
\(65\) −56.8515 −0.108486
\(66\) 0 0
\(67\) 322.156 0.587428 0.293714 0.955893i \(-0.405109\pi\)
0.293714 + 0.955893i \(0.405109\pi\)
\(68\) 0 0
\(69\) −1453.25 −2.53551
\(70\) 0 0
\(71\) 419.068 0.700483 0.350241 0.936660i \(-0.386100\pi\)
0.350241 + 0.936660i \(0.386100\pi\)
\(72\) 0 0
\(73\) −138.501 −0.222059 −0.111030 0.993817i \(-0.535415\pi\)
−0.111030 + 0.993817i \(0.535415\pi\)
\(74\) 0 0
\(75\) 212.077 0.326514
\(76\) 0 0
\(77\) −350.863 −0.519280
\(78\) 0 0
\(79\) −15.7298 −0.0224017 −0.0112009 0.999937i \(-0.503565\pi\)
−0.0112009 + 0.999937i \(0.503565\pi\)
\(80\) 0 0
\(81\) 78.6508 0.107889
\(82\) 0 0
\(83\) 1051.81 1.39097 0.695487 0.718538i \(-0.255189\pi\)
0.695487 + 0.718538i \(0.255189\pi\)
\(84\) 0 0
\(85\) 218.866 0.279287
\(86\) 0 0
\(87\) −246.009 −0.303161
\(88\) 0 0
\(89\) 606.725 0.722615 0.361307 0.932447i \(-0.382331\pi\)
0.361307 + 0.932447i \(0.382331\pi\)
\(90\) 0 0
\(91\) −80.4044 −0.0926227
\(92\) 0 0
\(93\) −206.808 −0.230592
\(94\) 0 0
\(95\) 703.464 0.759725
\(96\) 0 0
\(97\) 1506.62 1.57705 0.788525 0.615002i \(-0.210845\pi\)
0.788525 + 0.615002i \(0.210845\pi\)
\(98\) 0 0
\(99\) 2230.91 2.26480
\(100\) 0 0
\(101\) −788.748 −0.777063 −0.388531 0.921436i \(-0.627017\pi\)
−0.388531 + 0.921436i \(0.627017\pi\)
\(102\) 0 0
\(103\) 342.031 0.327198 0.163599 0.986527i \(-0.447690\pi\)
0.163599 + 0.986527i \(0.447690\pi\)
\(104\) 0 0
\(105\) 299.938 0.278771
\(106\) 0 0
\(107\) −29.0515 −0.0262478 −0.0131239 0.999914i \(-0.504178\pi\)
−0.0131239 + 0.999914i \(0.504178\pi\)
\(108\) 0 0
\(109\) −1294.70 −1.13771 −0.568853 0.822439i \(-0.692613\pi\)
−0.568853 + 0.822439i \(0.692613\pi\)
\(110\) 0 0
\(111\) 528.275 0.451726
\(112\) 0 0
\(113\) 1072.95 0.893228 0.446614 0.894727i \(-0.352630\pi\)
0.446614 + 0.894727i \(0.352630\pi\)
\(114\) 0 0
\(115\) 856.555 0.694558
\(116\) 0 0
\(117\) 511.240 0.403967
\(118\) 0 0
\(119\) 309.540 0.238449
\(120\) 0 0
\(121\) 1130.84 0.849621
\(122\) 0 0
\(123\) −1366.68 −1.00187
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1534.40 −1.07210 −0.536048 0.844188i \(-0.680083\pi\)
−0.536048 + 0.844188i \(0.680083\pi\)
\(128\) 0 0
\(129\) −2974.04 −2.02984
\(130\) 0 0
\(131\) −2216.05 −1.47800 −0.738998 0.673707i \(-0.764701\pi\)
−0.738998 + 0.673707i \(0.764701\pi\)
\(132\) 0 0
\(133\) 994.899 0.648637
\(134\) 0 0
\(135\) −761.895 −0.485729
\(136\) 0 0
\(137\) −1791.50 −1.11721 −0.558606 0.829433i \(-0.688663\pi\)
−0.558606 + 0.829433i \(0.688663\pi\)
\(138\) 0 0
\(139\) 1597.56 0.974844 0.487422 0.873167i \(-0.337937\pi\)
0.487422 + 0.873167i \(0.337937\pi\)
\(140\) 0 0
\(141\) −1792.18 −1.07042
\(142\) 0 0
\(143\) 564.160 0.329912
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) −2485.50 −1.39456
\(148\) 0 0
\(149\) −3028.56 −1.66516 −0.832581 0.553903i \(-0.813138\pi\)
−0.832581 + 0.553903i \(0.813138\pi\)
\(150\) 0 0
\(151\) 1004.38 0.541293 0.270646 0.962679i \(-0.412763\pi\)
0.270646 + 0.962679i \(0.412763\pi\)
\(152\) 0 0
\(153\) −1968.16 −1.03998
\(154\) 0 0
\(155\) 121.895 0.0631665
\(156\) 0 0
\(157\) −1590.05 −0.808281 −0.404141 0.914697i \(-0.632429\pi\)
−0.404141 + 0.914697i \(0.632429\pi\)
\(158\) 0 0
\(159\) −4930.07 −2.45900
\(160\) 0 0
\(161\) 1211.41 0.592999
\(162\) 0 0
\(163\) 670.551 0.322219 0.161109 0.986937i \(-0.448493\pi\)
0.161109 + 0.986937i \(0.448493\pi\)
\(164\) 0 0
\(165\) −2104.52 −0.992952
\(166\) 0 0
\(167\) 397.647 0.184257 0.0921283 0.995747i \(-0.470633\pi\)
0.0921283 + 0.995747i \(0.470633\pi\)
\(168\) 0 0
\(169\) −2067.72 −0.941154
\(170\) 0 0
\(171\) −6325.92 −2.82898
\(172\) 0 0
\(173\) 2673.82 1.17507 0.587534 0.809199i \(-0.300099\pi\)
0.587534 + 0.809199i \(0.300099\pi\)
\(174\) 0 0
\(175\) −176.786 −0.0763643
\(176\) 0 0
\(177\) 5170.02 2.19549
\(178\) 0 0
\(179\) −375.124 −0.156637 −0.0783186 0.996928i \(-0.524955\pi\)
−0.0783186 + 0.996928i \(0.524955\pi\)
\(180\) 0 0
\(181\) −2962.43 −1.21655 −0.608276 0.793726i \(-0.708139\pi\)
−0.608276 + 0.793726i \(0.708139\pi\)
\(182\) 0 0
\(183\) −1441.58 −0.582322
\(184\) 0 0
\(185\) −311.369 −0.123742
\(186\) 0 0
\(187\) −2171.90 −0.849331
\(188\) 0 0
\(189\) −1077.54 −0.414706
\(190\) 0 0
\(191\) −3178.65 −1.20418 −0.602092 0.798427i \(-0.705666\pi\)
−0.602092 + 0.798427i \(0.705666\pi\)
\(192\) 0 0
\(193\) 271.618 0.101303 0.0506515 0.998716i \(-0.483870\pi\)
0.0506515 + 0.998716i \(0.483870\pi\)
\(194\) 0 0
\(195\) −482.276 −0.177110
\(196\) 0 0
\(197\) 2936.50 1.06202 0.531008 0.847367i \(-0.321813\pi\)
0.531008 + 0.847367i \(0.321813\pi\)
\(198\) 0 0
\(199\) −4011.65 −1.42904 −0.714519 0.699616i \(-0.753354\pi\)
−0.714519 + 0.699616i \(0.753354\pi\)
\(200\) 0 0
\(201\) 2732.88 0.959017
\(202\) 0 0
\(203\) 205.072 0.0709025
\(204\) 0 0
\(205\) 805.535 0.274444
\(206\) 0 0
\(207\) −7702.60 −2.58632
\(208\) 0 0
\(209\) −6980.75 −2.31038
\(210\) 0 0
\(211\) 5321.80 1.73634 0.868171 0.496266i \(-0.165296\pi\)
0.868171 + 0.496266i \(0.165296\pi\)
\(212\) 0 0
\(213\) 3554.99 1.14359
\(214\) 0 0
\(215\) 1752.92 0.556039
\(216\) 0 0
\(217\) 172.394 0.0539302
\(218\) 0 0
\(219\) −1174.92 −0.362527
\(220\) 0 0
\(221\) −497.716 −0.151493
\(222\) 0 0
\(223\) −4132.12 −1.24084 −0.620420 0.784270i \(-0.713038\pi\)
−0.620420 + 0.784270i \(0.713038\pi\)
\(224\) 0 0
\(225\) 1124.07 0.333057
\(226\) 0 0
\(227\) 6160.58 1.80129 0.900643 0.434559i \(-0.143096\pi\)
0.900643 + 0.434559i \(0.143096\pi\)
\(228\) 0 0
\(229\) −5702.79 −1.64564 −0.822819 0.568304i \(-0.807600\pi\)
−0.822819 + 0.568304i \(0.807600\pi\)
\(230\) 0 0
\(231\) −2976.40 −0.847761
\(232\) 0 0
\(233\) −2533.81 −0.712427 −0.356214 0.934405i \(-0.615932\pi\)
−0.356214 + 0.934405i \(0.615932\pi\)
\(234\) 0 0
\(235\) 1056.33 0.293222
\(236\) 0 0
\(237\) −133.437 −0.0365724
\(238\) 0 0
\(239\) −339.594 −0.0919101 −0.0459550 0.998944i \(-0.514633\pi\)
−0.0459550 + 0.998944i \(0.514633\pi\)
\(240\) 0 0
\(241\) 2490.58 0.665693 0.332847 0.942981i \(-0.391991\pi\)
0.332847 + 0.942981i \(0.391991\pi\)
\(242\) 0 0
\(243\) −3447.03 −0.909988
\(244\) 0 0
\(245\) 1464.97 0.382015
\(246\) 0 0
\(247\) −1599.72 −0.412096
\(248\) 0 0
\(249\) 8922.57 2.27086
\(250\) 0 0
\(251\) −1934.93 −0.486581 −0.243291 0.969953i \(-0.578227\pi\)
−0.243291 + 0.969953i \(0.578227\pi\)
\(252\) 0 0
\(253\) −8499.93 −2.11220
\(254\) 0 0
\(255\) 1856.66 0.455956
\(256\) 0 0
\(257\) −741.416 −0.179954 −0.0899772 0.995944i \(-0.528679\pi\)
−0.0899772 + 0.995944i \(0.528679\pi\)
\(258\) 0 0
\(259\) −440.366 −0.105649
\(260\) 0 0
\(261\) −1303.92 −0.309236
\(262\) 0 0
\(263\) 4691.78 1.10003 0.550014 0.835155i \(-0.314622\pi\)
0.550014 + 0.835155i \(0.314622\pi\)
\(264\) 0 0
\(265\) 2905.83 0.673598
\(266\) 0 0
\(267\) 5146.90 1.17972
\(268\) 0 0
\(269\) −6449.25 −1.46178 −0.730888 0.682498i \(-0.760894\pi\)
−0.730888 + 0.682498i \(0.760894\pi\)
\(270\) 0 0
\(271\) 5486.65 1.22985 0.614926 0.788585i \(-0.289186\pi\)
0.614926 + 0.788585i \(0.289186\pi\)
\(272\) 0 0
\(273\) −682.077 −0.151213
\(274\) 0 0
\(275\) 1240.42 0.272002
\(276\) 0 0
\(277\) −4441.54 −0.963417 −0.481708 0.876332i \(-0.659984\pi\)
−0.481708 + 0.876332i \(0.659984\pi\)
\(278\) 0 0
\(279\) −1096.14 −0.235212
\(280\) 0 0
\(281\) 492.309 0.104515 0.0522575 0.998634i \(-0.483358\pi\)
0.0522575 + 0.998634i \(0.483358\pi\)
\(282\) 0 0
\(283\) −4850.65 −1.01887 −0.509437 0.860508i \(-0.670146\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(284\) 0 0
\(285\) 5967.54 1.24030
\(286\) 0 0
\(287\) 1139.26 0.234314
\(288\) 0 0
\(289\) −2996.90 −0.609994
\(290\) 0 0
\(291\) 12780.8 2.57465
\(292\) 0 0
\(293\) 6560.79 1.30814 0.654071 0.756433i \(-0.273060\pi\)
0.654071 + 0.756433i \(0.273060\pi\)
\(294\) 0 0
\(295\) −3047.25 −0.601416
\(296\) 0 0
\(297\) 7560.58 1.47714
\(298\) 0 0
\(299\) −1947.86 −0.376748
\(300\) 0 0
\(301\) 2479.14 0.474734
\(302\) 0 0
\(303\) −6691.01 −1.26861
\(304\) 0 0
\(305\) 849.681 0.159517
\(306\) 0 0
\(307\) −7308.77 −1.35874 −0.679370 0.733796i \(-0.737747\pi\)
−0.679370 + 0.733796i \(0.737747\pi\)
\(308\) 0 0
\(309\) 2901.48 0.534173
\(310\) 0 0
\(311\) 761.424 0.138831 0.0694154 0.997588i \(-0.477887\pi\)
0.0694154 + 0.997588i \(0.477887\pi\)
\(312\) 0 0
\(313\) 5238.58 0.946014 0.473007 0.881059i \(-0.343169\pi\)
0.473007 + 0.881059i \(0.343169\pi\)
\(314\) 0 0
\(315\) 1589.75 0.284357
\(316\) 0 0
\(317\) −8054.16 −1.42702 −0.713512 0.700643i \(-0.752897\pi\)
−0.713512 + 0.700643i \(0.752897\pi\)
\(318\) 0 0
\(319\) −1438.89 −0.252547
\(320\) 0 0
\(321\) −246.446 −0.0428513
\(322\) 0 0
\(323\) 6158.58 1.06091
\(324\) 0 0
\(325\) 284.258 0.0485162
\(326\) 0 0
\(327\) −10983.1 −1.85738
\(328\) 0 0
\(329\) 1493.95 0.250347
\(330\) 0 0
\(331\) 115.772 0.0192249 0.00961243 0.999954i \(-0.496940\pi\)
0.00961243 + 0.999954i \(0.496940\pi\)
\(332\) 0 0
\(333\) 2800.00 0.460778
\(334\) 0 0
\(335\) −1610.78 −0.262706
\(336\) 0 0
\(337\) 5101.77 0.824662 0.412331 0.911034i \(-0.364715\pi\)
0.412331 + 0.911034i \(0.364715\pi\)
\(338\) 0 0
\(339\) 9101.94 1.45826
\(340\) 0 0
\(341\) −1209.61 −0.192094
\(342\) 0 0
\(343\) 4497.40 0.707978
\(344\) 0 0
\(345\) 7266.23 1.13391
\(346\) 0 0
\(347\) −7932.92 −1.22727 −0.613633 0.789591i \(-0.710293\pi\)
−0.613633 + 0.789591i \(0.710293\pi\)
\(348\) 0 0
\(349\) −3840.43 −0.589035 −0.294518 0.955646i \(-0.595159\pi\)
−0.294518 + 0.955646i \(0.595159\pi\)
\(350\) 0 0
\(351\) 1732.60 0.263473
\(352\) 0 0
\(353\) −5282.31 −0.796456 −0.398228 0.917287i \(-0.630375\pi\)
−0.398228 + 0.917287i \(0.630375\pi\)
\(354\) 0 0
\(355\) −2095.34 −0.313265
\(356\) 0 0
\(357\) 2625.85 0.389285
\(358\) 0 0
\(359\) 5124.61 0.753389 0.376694 0.926338i \(-0.377061\pi\)
0.376694 + 0.926338i \(0.377061\pi\)
\(360\) 0 0
\(361\) 12935.4 1.88591
\(362\) 0 0
\(363\) 9593.05 1.38706
\(364\) 0 0
\(365\) 692.505 0.0993078
\(366\) 0 0
\(367\) 5397.49 0.767702 0.383851 0.923395i \(-0.374598\pi\)
0.383851 + 0.923395i \(0.374598\pi\)
\(368\) 0 0
\(369\) −7243.81 −1.02194
\(370\) 0 0
\(371\) 4109.67 0.575104
\(372\) 0 0
\(373\) −2075.12 −0.288058 −0.144029 0.989573i \(-0.546006\pi\)
−0.144029 + 0.989573i \(0.546006\pi\)
\(374\) 0 0
\(375\) −1060.39 −0.146021
\(376\) 0 0
\(377\) −329.739 −0.0450462
\(378\) 0 0
\(379\) −1471.60 −0.199448 −0.0997242 0.995015i \(-0.531796\pi\)
−0.0997242 + 0.995015i \(0.531796\pi\)
\(380\) 0 0
\(381\) −13016.5 −1.75027
\(382\) 0 0
\(383\) 2887.39 0.385219 0.192609 0.981276i \(-0.438305\pi\)
0.192609 + 0.981276i \(0.438305\pi\)
\(384\) 0 0
\(385\) 1754.32 0.232229
\(386\) 0 0
\(387\) −15763.2 −2.07052
\(388\) 0 0
\(389\) 8032.30 1.04692 0.523462 0.852049i \(-0.324640\pi\)
0.523462 + 0.852049i \(0.324640\pi\)
\(390\) 0 0
\(391\) 7498.84 0.969905
\(392\) 0 0
\(393\) −18799.0 −2.41293
\(394\) 0 0
\(395\) 78.6488 0.0100184
\(396\) 0 0
\(397\) −2958.09 −0.373961 −0.186980 0.982364i \(-0.559870\pi\)
−0.186980 + 0.982364i \(0.559870\pi\)
\(398\) 0 0
\(399\) 8439.81 1.05895
\(400\) 0 0
\(401\) 11859.8 1.47694 0.738470 0.674287i \(-0.235549\pi\)
0.738470 + 0.674287i \(0.235549\pi\)
\(402\) 0 0
\(403\) −277.196 −0.0342633
\(404\) 0 0
\(405\) −393.254 −0.0482492
\(406\) 0 0
\(407\) 3089.84 0.376309
\(408\) 0 0
\(409\) 9048.69 1.09396 0.546979 0.837146i \(-0.315778\pi\)
0.546979 + 0.837146i \(0.315778\pi\)
\(410\) 0 0
\(411\) −15197.4 −1.82393
\(412\) 0 0
\(413\) −4309.69 −0.513477
\(414\) 0 0
\(415\) −5259.04 −0.622063
\(416\) 0 0
\(417\) 13552.2 1.59150
\(418\) 0 0
\(419\) −12491.8 −1.45648 −0.728239 0.685323i \(-0.759661\pi\)
−0.728239 + 0.685323i \(0.759661\pi\)
\(420\) 0 0
\(421\) 2674.89 0.309658 0.154829 0.987941i \(-0.450517\pi\)
0.154829 + 0.987941i \(0.450517\pi\)
\(422\) 0 0
\(423\) −9499.05 −1.09187
\(424\) 0 0
\(425\) −1094.33 −0.124901
\(426\) 0 0
\(427\) 1201.69 0.136192
\(428\) 0 0
\(429\) 4785.82 0.538605
\(430\) 0 0
\(431\) 14304.3 1.59864 0.799321 0.600905i \(-0.205193\pi\)
0.799321 + 0.600905i \(0.205193\pi\)
\(432\) 0 0
\(433\) −13331.8 −1.47965 −0.739824 0.672800i \(-0.765091\pi\)
−0.739824 + 0.672800i \(0.765091\pi\)
\(434\) 0 0
\(435\) 1230.05 0.135578
\(436\) 0 0
\(437\) 24102.2 2.63836
\(438\) 0 0
\(439\) 2642.00 0.287234 0.143617 0.989633i \(-0.454127\pi\)
0.143617 + 0.989633i \(0.454127\pi\)
\(440\) 0 0
\(441\) −13173.8 −1.42251
\(442\) 0 0
\(443\) 13499.5 1.44781 0.723906 0.689899i \(-0.242345\pi\)
0.723906 + 0.689899i \(0.242345\pi\)
\(444\) 0 0
\(445\) −3033.62 −0.323163
\(446\) 0 0
\(447\) −25691.5 −2.71849
\(448\) 0 0
\(449\) −7584.76 −0.797209 −0.398605 0.917123i \(-0.630505\pi\)
−0.398605 + 0.917123i \(0.630505\pi\)
\(450\) 0 0
\(451\) −7993.65 −0.834603
\(452\) 0 0
\(453\) 8520.23 0.883698
\(454\) 0 0
\(455\) 402.022 0.0414221
\(456\) 0 0
\(457\) −2116.33 −0.216625 −0.108313 0.994117i \(-0.534545\pi\)
−0.108313 + 0.994117i \(0.534545\pi\)
\(458\) 0 0
\(459\) −6670.13 −0.678289
\(460\) 0 0
\(461\) 10534.8 1.06432 0.532162 0.846643i \(-0.321380\pi\)
0.532162 + 0.846643i \(0.321380\pi\)
\(462\) 0 0
\(463\) 11067.4 1.11089 0.555447 0.831552i \(-0.312547\pi\)
0.555447 + 0.831552i \(0.312547\pi\)
\(464\) 0 0
\(465\) 1034.04 0.103124
\(466\) 0 0
\(467\) 3678.32 0.364480 0.182240 0.983254i \(-0.441665\pi\)
0.182240 + 0.983254i \(0.441665\pi\)
\(468\) 0 0
\(469\) −2278.11 −0.224293
\(470\) 0 0
\(471\) −13488.6 −1.31958
\(472\) 0 0
\(473\) −17395.0 −1.69095
\(474\) 0 0
\(475\) −3517.32 −0.339759
\(476\) 0 0
\(477\) −26130.8 −2.50827
\(478\) 0 0
\(479\) −4779.57 −0.455917 −0.227959 0.973671i \(-0.573205\pi\)
−0.227959 + 0.973671i \(0.573205\pi\)
\(480\) 0 0
\(481\) 708.073 0.0671213
\(482\) 0 0
\(483\) 10276.5 0.968112
\(484\) 0 0
\(485\) −7533.09 −0.705278
\(486\) 0 0
\(487\) 12663.6 1.17833 0.589163 0.808015i \(-0.299458\pi\)
0.589163 + 0.808015i \(0.299458\pi\)
\(488\) 0 0
\(489\) 5688.34 0.526045
\(490\) 0 0
\(491\) 7219.24 0.663543 0.331772 0.943360i \(-0.392354\pi\)
0.331772 + 0.943360i \(0.392354\pi\)
\(492\) 0 0
\(493\) 1269.43 0.115968
\(494\) 0 0
\(495\) −11154.6 −1.01285
\(496\) 0 0
\(497\) −2963.41 −0.267459
\(498\) 0 0
\(499\) −5718.31 −0.512999 −0.256500 0.966544i \(-0.582569\pi\)
−0.256500 + 0.966544i \(0.582569\pi\)
\(500\) 0 0
\(501\) 3373.27 0.300812
\(502\) 0 0
\(503\) 17206.0 1.52520 0.762602 0.646868i \(-0.223921\pi\)
0.762602 + 0.646868i \(0.223921\pi\)
\(504\) 0 0
\(505\) 3943.74 0.347513
\(506\) 0 0
\(507\) −17540.6 −1.53650
\(508\) 0 0
\(509\) −18691.0 −1.62763 −0.813817 0.581121i \(-0.802614\pi\)
−0.813817 + 0.581121i \(0.802614\pi\)
\(510\) 0 0
\(511\) 979.400 0.0847869
\(512\) 0 0
\(513\) −21438.6 −1.84510
\(514\) 0 0
\(515\) −1710.16 −0.146327
\(516\) 0 0
\(517\) −10482.3 −0.891708
\(518\) 0 0
\(519\) 22682.2 1.91838
\(520\) 0 0
\(521\) −7074.55 −0.594898 −0.297449 0.954738i \(-0.596136\pi\)
−0.297449 + 0.954738i \(0.596136\pi\)
\(522\) 0 0
\(523\) 12647.5 1.05743 0.528716 0.848799i \(-0.322674\pi\)
0.528716 + 0.848799i \(0.322674\pi\)
\(524\) 0 0
\(525\) −1499.69 −0.124670
\(526\) 0 0
\(527\) 1067.14 0.0882079
\(528\) 0 0
\(529\) 17180.5 1.41205
\(530\) 0 0
\(531\) 27402.5 2.23949
\(532\) 0 0
\(533\) −1831.84 −0.148866
\(534\) 0 0
\(535\) 145.257 0.0117384
\(536\) 0 0
\(537\) −3182.21 −0.255721
\(538\) 0 0
\(539\) −14537.5 −1.16174
\(540\) 0 0
\(541\) 2430.45 0.193148 0.0965742 0.995326i \(-0.469211\pi\)
0.0965742 + 0.995326i \(0.469211\pi\)
\(542\) 0 0
\(543\) −25130.6 −1.98611
\(544\) 0 0
\(545\) 6473.51 0.508797
\(546\) 0 0
\(547\) 13829.9 1.08103 0.540515 0.841334i \(-0.318229\pi\)
0.540515 + 0.841334i \(0.318229\pi\)
\(548\) 0 0
\(549\) −7640.79 −0.593991
\(550\) 0 0
\(551\) 4080.09 0.315459
\(552\) 0 0
\(553\) 111.232 0.00855346
\(554\) 0 0
\(555\) −2641.37 −0.202018
\(556\) 0 0
\(557\) −19656.7 −1.49530 −0.747649 0.664094i \(-0.768817\pi\)
−0.747649 + 0.664094i \(0.768817\pi\)
\(558\) 0 0
\(559\) −3986.26 −0.301611
\(560\) 0 0
\(561\) −18424.4 −1.38659
\(562\) 0 0
\(563\) 18649.4 1.39605 0.698026 0.716073i \(-0.254062\pi\)
0.698026 + 0.716073i \(0.254062\pi\)
\(564\) 0 0
\(565\) −5364.76 −0.399464
\(566\) 0 0
\(567\) −556.174 −0.0411942
\(568\) 0 0
\(569\) −13392.7 −0.986734 −0.493367 0.869821i \(-0.664234\pi\)
−0.493367 + 0.869821i \(0.664234\pi\)
\(570\) 0 0
\(571\) −7573.58 −0.555069 −0.277535 0.960716i \(-0.589517\pi\)
−0.277535 + 0.960716i \(0.589517\pi\)
\(572\) 0 0
\(573\) −26964.8 −1.96591
\(574\) 0 0
\(575\) −4282.77 −0.310616
\(576\) 0 0
\(577\) −12135.1 −0.875549 −0.437775 0.899085i \(-0.644233\pi\)
−0.437775 + 0.899085i \(0.644233\pi\)
\(578\) 0 0
\(579\) 2304.16 0.165384
\(580\) 0 0
\(581\) −7437.79 −0.531104
\(582\) 0 0
\(583\) −28835.7 −2.04846
\(584\) 0 0
\(585\) −2556.20 −0.180659
\(586\) 0 0
\(587\) −11035.3 −0.775940 −0.387970 0.921672i \(-0.626824\pi\)
−0.387970 + 0.921672i \(0.626824\pi\)
\(588\) 0 0
\(589\) 3429.94 0.239946
\(590\) 0 0
\(591\) 24910.6 1.73382
\(592\) 0 0
\(593\) 2023.70 0.140140 0.0700702 0.997542i \(-0.477678\pi\)
0.0700702 + 0.997542i \(0.477678\pi\)
\(594\) 0 0
\(595\) −1547.70 −0.106638
\(596\) 0 0
\(597\) −34031.2 −2.33300
\(598\) 0 0
\(599\) 14464.5 0.986651 0.493326 0.869845i \(-0.335781\pi\)
0.493326 + 0.869845i \(0.335781\pi\)
\(600\) 0 0
\(601\) 3879.55 0.263312 0.131656 0.991295i \(-0.457971\pi\)
0.131656 + 0.991295i \(0.457971\pi\)
\(602\) 0 0
\(603\) 14485.0 0.978235
\(604\) 0 0
\(605\) −5654.22 −0.379962
\(606\) 0 0
\(607\) −13794.8 −0.922430 −0.461215 0.887289i \(-0.652586\pi\)
−0.461215 + 0.887289i \(0.652586\pi\)
\(608\) 0 0
\(609\) 1739.64 0.115753
\(610\) 0 0
\(611\) −2402.15 −0.159052
\(612\) 0 0
\(613\) 16546.1 1.09020 0.545100 0.838371i \(-0.316492\pi\)
0.545100 + 0.838371i \(0.316492\pi\)
\(614\) 0 0
\(615\) 6833.42 0.448049
\(616\) 0 0
\(617\) −5014.18 −0.327169 −0.163585 0.986529i \(-0.552306\pi\)
−0.163585 + 0.986529i \(0.552306\pi\)
\(618\) 0 0
\(619\) 20464.2 1.32880 0.664398 0.747379i \(-0.268688\pi\)
0.664398 + 0.747379i \(0.268688\pi\)
\(620\) 0 0
\(621\) −26104.2 −1.68684
\(622\) 0 0
\(623\) −4290.41 −0.275910
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −59218.3 −3.77185
\(628\) 0 0
\(629\) −2725.93 −0.172798
\(630\) 0 0
\(631\) 28218.5 1.78029 0.890144 0.455678i \(-0.150603\pi\)
0.890144 + 0.455678i \(0.150603\pi\)
\(632\) 0 0
\(633\) 45145.3 2.83470
\(634\) 0 0
\(635\) 7672.01 0.479456
\(636\) 0 0
\(637\) −3331.44 −0.207216
\(638\) 0 0
\(639\) 18842.4 1.16650
\(640\) 0 0
\(641\) −8127.40 −0.500800 −0.250400 0.968142i \(-0.580562\pi\)
−0.250400 + 0.968142i \(0.580562\pi\)
\(642\) 0 0
\(643\) −11416.6 −0.700195 −0.350097 0.936713i \(-0.613852\pi\)
−0.350097 + 0.936713i \(0.613852\pi\)
\(644\) 0 0
\(645\) 14870.2 0.907773
\(646\) 0 0
\(647\) −21087.5 −1.28135 −0.640675 0.767812i \(-0.721345\pi\)
−0.640675 + 0.767812i \(0.721345\pi\)
\(648\) 0 0
\(649\) 30239.1 1.82895
\(650\) 0 0
\(651\) 1462.43 0.0880449
\(652\) 0 0
\(653\) 25908.5 1.55265 0.776324 0.630334i \(-0.217082\pi\)
0.776324 + 0.630334i \(0.217082\pi\)
\(654\) 0 0
\(655\) 11080.3 0.660980
\(656\) 0 0
\(657\) −6227.38 −0.369792
\(658\) 0 0
\(659\) 9718.64 0.574483 0.287242 0.957858i \(-0.407262\pi\)
0.287242 + 0.957858i \(0.407262\pi\)
\(660\) 0 0
\(661\) 20789.9 1.22335 0.611675 0.791109i \(-0.290496\pi\)
0.611675 + 0.791109i \(0.290496\pi\)
\(662\) 0 0
\(663\) −4222.16 −0.247323
\(664\) 0 0
\(665\) −4974.50 −0.290079
\(666\) 0 0
\(667\) 4968.02 0.288399
\(668\) 0 0
\(669\) −35053.1 −2.02576
\(670\) 0 0
\(671\) −8431.72 −0.485102
\(672\) 0 0
\(673\) 31415.5 1.79938 0.899688 0.436533i \(-0.143794\pi\)
0.899688 + 0.436533i \(0.143794\pi\)
\(674\) 0 0
\(675\) 3809.47 0.217225
\(676\) 0 0
\(677\) 18356.1 1.04207 0.521037 0.853534i \(-0.325546\pi\)
0.521037 + 0.853534i \(0.325546\pi\)
\(678\) 0 0
\(679\) −10653.9 −0.602152
\(680\) 0 0
\(681\) 52260.7 2.94073
\(682\) 0 0
\(683\) −4497.91 −0.251988 −0.125994 0.992031i \(-0.540212\pi\)
−0.125994 + 0.992031i \(0.540212\pi\)
\(684\) 0 0
\(685\) 8957.48 0.499632
\(686\) 0 0
\(687\) −48377.2 −2.68662
\(688\) 0 0
\(689\) −6608.03 −0.365379
\(690\) 0 0
\(691\) −32246.3 −1.77526 −0.887632 0.460553i \(-0.847651\pi\)
−0.887632 + 0.460553i \(0.847651\pi\)
\(692\) 0 0
\(693\) −15775.8 −0.864749
\(694\) 0 0
\(695\) −7987.80 −0.435963
\(696\) 0 0
\(697\) 7052.18 0.383243
\(698\) 0 0
\(699\) −21494.5 −1.16309
\(700\) 0 0
\(701\) 12062.9 0.649944 0.324972 0.945724i \(-0.394645\pi\)
0.324972 + 0.945724i \(0.394645\pi\)
\(702\) 0 0
\(703\) −8761.48 −0.470051
\(704\) 0 0
\(705\) 8960.90 0.478705
\(706\) 0 0
\(707\) 5577.58 0.296699
\(708\) 0 0
\(709\) −29560.0 −1.56579 −0.782897 0.622151i \(-0.786259\pi\)
−0.782897 + 0.622151i \(0.786259\pi\)
\(710\) 0 0
\(711\) −707.252 −0.0373052
\(712\) 0 0
\(713\) 4176.38 0.219364
\(714\) 0 0
\(715\) −2820.80 −0.147541
\(716\) 0 0
\(717\) −2880.80 −0.150050
\(718\) 0 0
\(719\) 10289.1 0.533683 0.266841 0.963740i \(-0.414020\pi\)
0.266841 + 0.963740i \(0.414020\pi\)
\(720\) 0 0
\(721\) −2418.65 −0.124931
\(722\) 0 0
\(723\) 21127.8 1.08679
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −11916.5 −0.607923 −0.303961 0.952684i \(-0.598309\pi\)
−0.303961 + 0.952684i \(0.598309\pi\)
\(728\) 0 0
\(729\) −31365.0 −1.59351
\(730\) 0 0
\(731\) 15346.2 0.776472
\(732\) 0 0
\(733\) −13690.9 −0.689883 −0.344941 0.938624i \(-0.612101\pi\)
−0.344941 + 0.938624i \(0.612101\pi\)
\(734\) 0 0
\(735\) 12427.5 0.623667
\(736\) 0 0
\(737\) 15984.4 0.798907
\(738\) 0 0
\(739\) −2562.38 −0.127549 −0.0637744 0.997964i \(-0.520314\pi\)
−0.0637744 + 0.997964i \(0.520314\pi\)
\(740\) 0 0
\(741\) −13570.6 −0.672776
\(742\) 0 0
\(743\) −28880.9 −1.42603 −0.713014 0.701150i \(-0.752670\pi\)
−0.713014 + 0.701150i \(0.752670\pi\)
\(744\) 0 0
\(745\) 15142.8 0.744683
\(746\) 0 0
\(747\) 47292.1 2.31637
\(748\) 0 0
\(749\) 205.436 0.0100220
\(750\) 0 0
\(751\) 38418.9 1.86675 0.933373 0.358909i \(-0.116851\pi\)
0.933373 + 0.358909i \(0.116851\pi\)
\(752\) 0 0
\(753\) −16414.2 −0.794378
\(754\) 0 0
\(755\) −5021.89 −0.242073
\(756\) 0 0
\(757\) 3302.67 0.158570 0.0792850 0.996852i \(-0.474736\pi\)
0.0792850 + 0.996852i \(0.474736\pi\)
\(758\) 0 0
\(759\) −72105.6 −3.44831
\(760\) 0 0
\(761\) 8833.40 0.420776 0.210388 0.977618i \(-0.432527\pi\)
0.210388 + 0.977618i \(0.432527\pi\)
\(762\) 0 0
\(763\) 9155.39 0.434400
\(764\) 0 0
\(765\) 9840.82 0.465092
\(766\) 0 0
\(767\) 6929.64 0.326225
\(768\) 0 0
\(769\) −6910.59 −0.324060 −0.162030 0.986786i \(-0.551804\pi\)
−0.162030 + 0.986786i \(0.551804\pi\)
\(770\) 0 0
\(771\) −6289.49 −0.293788
\(772\) 0 0
\(773\) −25699.3 −1.19578 −0.597892 0.801577i \(-0.703995\pi\)
−0.597892 + 0.801577i \(0.703995\pi\)
\(774\) 0 0
\(775\) −609.473 −0.0282489
\(776\) 0 0
\(777\) −3735.66 −0.172479
\(778\) 0 0
\(779\) 22666.6 1.04251
\(780\) 0 0
\(781\) 20792.9 0.952662
\(782\) 0 0
\(783\) −4418.99 −0.201688
\(784\) 0 0
\(785\) 7950.27 0.361474
\(786\) 0 0
\(787\) −21967.0 −0.994966 −0.497483 0.867474i \(-0.665742\pi\)
−0.497483 + 0.867474i \(0.665742\pi\)
\(788\) 0 0
\(789\) 39800.7 1.79587
\(790\) 0 0
\(791\) −7587.31 −0.341054
\(792\) 0 0
\(793\) −1932.23 −0.0865264
\(794\) 0 0
\(795\) 24650.4 1.09970
\(796\) 0 0
\(797\) −33264.7 −1.47842 −0.739208 0.673477i \(-0.764800\pi\)
−0.739208 + 0.673477i \(0.764800\pi\)
\(798\) 0 0
\(799\) 9247.77 0.409465
\(800\) 0 0
\(801\) 27280.0 1.20336
\(802\) 0 0
\(803\) −6872.00 −0.302002
\(804\) 0 0
\(805\) −6057.07 −0.265197
\(806\) 0 0
\(807\) −54709.5 −2.38645
\(808\) 0 0
\(809\) −23154.0 −1.00624 −0.503121 0.864216i \(-0.667815\pi\)
−0.503121 + 0.864216i \(0.667815\pi\)
\(810\) 0 0
\(811\) −27819.4 −1.20453 −0.602263 0.798298i \(-0.705734\pi\)
−0.602263 + 0.798298i \(0.705734\pi\)
\(812\) 0 0
\(813\) 46543.7 2.00782
\(814\) 0 0
\(815\) −3352.76 −0.144101
\(816\) 0 0
\(817\) 49324.7 2.11218
\(818\) 0 0
\(819\) −3615.20 −0.154243
\(820\) 0 0
\(821\) −11310.9 −0.480818 −0.240409 0.970672i \(-0.577282\pi\)
−0.240409 + 0.970672i \(0.577282\pi\)
\(822\) 0 0
\(823\) −12873.4 −0.545249 −0.272625 0.962121i \(-0.587892\pi\)
−0.272625 + 0.962121i \(0.587892\pi\)
\(824\) 0 0
\(825\) 10522.6 0.444062
\(826\) 0 0
\(827\) 12564.4 0.528305 0.264153 0.964481i \(-0.414908\pi\)
0.264153 + 0.964481i \(0.414908\pi\)
\(828\) 0 0
\(829\) 20023.0 0.838877 0.419439 0.907784i \(-0.362227\pi\)
0.419439 + 0.907784i \(0.362227\pi\)
\(830\) 0 0
\(831\) −37678.0 −1.57285
\(832\) 0 0
\(833\) 12825.3 0.533460
\(834\) 0 0
\(835\) −1988.24 −0.0824021
\(836\) 0 0
\(837\) −3714.83 −0.153409
\(838\) 0 0
\(839\) −38199.5 −1.57186 −0.785932 0.618313i \(-0.787816\pi\)
−0.785932 + 0.618313i \(0.787816\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 4176.30 0.170628
\(844\) 0 0
\(845\) 10338.6 0.420897
\(846\) 0 0
\(847\) −7996.69 −0.324403
\(848\) 0 0
\(849\) −41148.5 −1.66338
\(850\) 0 0
\(851\) −10668.2 −0.429731
\(852\) 0 0
\(853\) 7748.13 0.311009 0.155505 0.987835i \(-0.450300\pi\)
0.155505 + 0.987835i \(0.450300\pi\)
\(854\) 0 0
\(855\) 31629.6 1.26516
\(856\) 0 0
\(857\) −41669.4 −1.66091 −0.830455 0.557085i \(-0.811920\pi\)
−0.830455 + 0.557085i \(0.811920\pi\)
\(858\) 0 0
\(859\) 31271.5 1.24211 0.621053 0.783769i \(-0.286705\pi\)
0.621053 + 0.783769i \(0.286705\pi\)
\(860\) 0 0
\(861\) 9664.42 0.382535
\(862\) 0 0
\(863\) 22150.9 0.873727 0.436863 0.899528i \(-0.356089\pi\)
0.436863 + 0.899528i \(0.356089\pi\)
\(864\) 0 0
\(865\) −13369.1 −0.525507
\(866\) 0 0
\(867\) −25423.0 −0.995858
\(868\) 0 0
\(869\) −780.463 −0.0304665
\(870\) 0 0
\(871\) 3663.02 0.142499
\(872\) 0 0
\(873\) 67741.6 2.62624
\(874\) 0 0
\(875\) 883.929 0.0341512
\(876\) 0 0
\(877\) 1057.91 0.0407332 0.0203666 0.999793i \(-0.493517\pi\)
0.0203666 + 0.999793i \(0.493517\pi\)
\(878\) 0 0
\(879\) 55655.8 2.13563
\(880\) 0 0
\(881\) 43948.4 1.68066 0.840328 0.542078i \(-0.182362\pi\)
0.840328 + 0.542078i \(0.182362\pi\)
\(882\) 0 0
\(883\) 1203.63 0.0458724 0.0229362 0.999737i \(-0.492699\pi\)
0.0229362 + 0.999737i \(0.492699\pi\)
\(884\) 0 0
\(885\) −25850.1 −0.981854
\(886\) 0 0
\(887\) 25700.6 0.972875 0.486438 0.873715i \(-0.338296\pi\)
0.486438 + 0.873715i \(0.338296\pi\)
\(888\) 0 0
\(889\) 10850.4 0.409349
\(890\) 0 0
\(891\) 3902.41 0.146729
\(892\) 0 0
\(893\) 29723.5 1.11384
\(894\) 0 0
\(895\) 1875.62 0.0700503
\(896\) 0 0
\(897\) −16523.8 −0.615067
\(898\) 0 0
\(899\) 706.988 0.0262285
\(900\) 0 0
\(901\) 25439.5 0.940636
\(902\) 0 0
\(903\) 21030.7 0.775037
\(904\) 0 0
\(905\) 14812.2 0.544058
\(906\) 0 0
\(907\) 26715.7 0.978037 0.489018 0.872273i \(-0.337355\pi\)
0.489018 + 0.872273i \(0.337355\pi\)
\(908\) 0 0
\(909\) −35464.2 −1.29403
\(910\) 0 0
\(911\) −41003.4 −1.49122 −0.745611 0.666381i \(-0.767842\pi\)
−0.745611 + 0.666381i \(0.767842\pi\)
\(912\) 0 0
\(913\) 52187.5 1.89174
\(914\) 0 0
\(915\) 7207.92 0.260422
\(916\) 0 0
\(917\) 15670.7 0.564331
\(918\) 0 0
\(919\) −18318.5 −0.657533 −0.328766 0.944411i \(-0.606633\pi\)
−0.328766 + 0.944411i \(0.606633\pi\)
\(920\) 0 0
\(921\) −62000.9 −2.21824
\(922\) 0 0
\(923\) 4764.94 0.169924
\(924\) 0 0
\(925\) 1556.85 0.0553393
\(926\) 0 0
\(927\) 15378.7 0.544877
\(928\) 0 0
\(929\) −45848.5 −1.61920 −0.809602 0.586980i \(-0.800317\pi\)
−0.809602 + 0.586980i \(0.800317\pi\)
\(930\) 0 0
\(931\) 41222.2 1.45113
\(932\) 0 0
\(933\) 6459.22 0.226651
\(934\) 0 0
\(935\) 10859.5 0.379832
\(936\) 0 0
\(937\) 5905.46 0.205894 0.102947 0.994687i \(-0.467173\pi\)
0.102947 + 0.994687i \(0.467173\pi\)
\(938\) 0 0
\(939\) 44439.3 1.54443
\(940\) 0 0
\(941\) 2680.04 0.0928446 0.0464223 0.998922i \(-0.485218\pi\)
0.0464223 + 0.998922i \(0.485218\pi\)
\(942\) 0 0
\(943\) 27599.4 0.953086
\(944\) 0 0
\(945\) 5387.69 0.185462
\(946\) 0 0
\(947\) −5804.87 −0.199190 −0.0995950 0.995028i \(-0.531755\pi\)
−0.0995950 + 0.995028i \(0.531755\pi\)
\(948\) 0 0
\(949\) −1574.80 −0.0538674
\(950\) 0 0
\(951\) −68324.1 −2.32972
\(952\) 0 0
\(953\) −43474.4 −1.47773 −0.738864 0.673854i \(-0.764638\pi\)
−0.738864 + 0.673854i \(0.764638\pi\)
\(954\) 0 0
\(955\) 15893.3 0.538527
\(956\) 0 0
\(957\) −12206.2 −0.412301
\(958\) 0 0
\(959\) 12668.5 0.426575
\(960\) 0 0
\(961\) −29196.7 −0.980050
\(962\) 0 0
\(963\) −1306.23 −0.0437100
\(964\) 0 0
\(965\) −1358.09 −0.0453041
\(966\) 0 0
\(967\) 36054.7 1.19901 0.599504 0.800371i \(-0.295364\pi\)
0.599504 + 0.800371i \(0.295364\pi\)
\(968\) 0 0
\(969\) 52243.8 1.73200
\(970\) 0 0
\(971\) −16675.6 −0.551130 −0.275565 0.961282i \(-0.588865\pi\)
−0.275565 + 0.961282i \(0.588865\pi\)
\(972\) 0 0
\(973\) −11297.0 −0.372216
\(974\) 0 0
\(975\) 2411.38 0.0792062
\(976\) 0 0
\(977\) −24732.7 −0.809896 −0.404948 0.914340i \(-0.632710\pi\)
−0.404948 + 0.914340i \(0.632710\pi\)
\(978\) 0 0
\(979\) 30103.9 0.982761
\(980\) 0 0
\(981\) −58213.3 −1.89460
\(982\) 0 0
\(983\) −23711.9 −0.769370 −0.384685 0.923048i \(-0.625690\pi\)
−0.384685 + 0.923048i \(0.625690\pi\)
\(984\) 0 0
\(985\) −14682.5 −0.474948
\(986\) 0 0
\(987\) 12673.3 0.408708
\(988\) 0 0
\(989\) 60059.0 1.93101
\(990\) 0 0
\(991\) −29289.2 −0.938852 −0.469426 0.882972i \(-0.655539\pi\)
−0.469426 + 0.882972i \(0.655539\pi\)
\(992\) 0 0
\(993\) 982.107 0.0313859
\(994\) 0 0
\(995\) 20058.3 0.639085
\(996\) 0 0
\(997\) 28945.4 0.919470 0.459735 0.888056i \(-0.347944\pi\)
0.459735 + 0.888056i \(0.347944\pi\)
\(998\) 0 0
\(999\) 9489.23 0.300527
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.4.a.o.1.6 6
4.3 odd 2 580.4.a.a.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.4.a.a.1.1 6 4.3 odd 2
2320.4.a.o.1.6 6 1.1 even 1 trivial