Properties

Label 234.2.h.d.55.2
Level $234$
Weight $2$
Character 234.55
Analytic conductor $1.868$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(55,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.55");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-1.58114 + 2.73861i\) of defining polynomial
Character \(\chi\) \(=\) 234.55
Dual form 234.2.h.d.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +4.16228 q^{5} +(-1.58114 + 2.73861i) q^{7} +1.00000 q^{8} +(-2.08114 - 3.60464i) q^{10} +(0.581139 + 1.00656i) q^{11} +(0.0811388 + 3.60464i) q^{13} +3.16228 q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.50000 - 2.59808i) q^{17} +(2.58114 - 4.47066i) q^{19} +(-2.08114 + 3.60464i) q^{20} +(0.581139 - 1.00656i) q^{22} +(-3.58114 - 6.20271i) q^{23} +12.3246 q^{25} +(3.08114 - 1.87259i) q^{26} +(-1.58114 - 2.73861i) q^{28} +(0.918861 + 1.59151i) q^{29} -6.32456 q^{31} +(-0.500000 + 0.866025i) q^{32} -3.00000 q^{34} +(-6.58114 + 11.3989i) q^{35} +(-1.91886 - 3.32357i) q^{37} -5.16228 q^{38} +4.16228 q^{40} +(-1.50000 - 2.59808i) q^{41} +(-4.58114 + 7.93477i) q^{43} -1.16228 q^{44} +(-3.58114 + 6.20271i) q^{46} +4.83772 q^{47} +(-1.50000 - 2.59808i) q^{49} +(-6.16228 - 10.6734i) q^{50} +(-3.16228 - 1.73205i) q^{52} -12.4868 q^{53} +(2.41886 + 4.18959i) q^{55} +(-1.58114 + 2.73861i) q^{56} +(0.918861 - 1.59151i) q^{58} +(1.16228 - 2.01312i) q^{59} +(-0.0811388 + 0.140537i) q^{61} +(3.16228 + 5.47723i) q^{62} +1.00000 q^{64} +(0.337722 + 15.0035i) q^{65} +(1.41886 + 2.45754i) q^{67} +(1.50000 + 2.59808i) q^{68} +13.1623 q^{70} +(3.58114 - 6.20271i) q^{71} -1.00000 q^{73} +(-1.91886 + 3.32357i) q^{74} +(2.58114 + 4.47066i) q^{76} -3.67544 q^{77} -4.00000 q^{79} +(-2.08114 - 3.60464i) q^{80} +(-1.50000 + 2.59808i) q^{82} -3.48683 q^{83} +(6.24342 - 10.8139i) q^{85} +9.16228 q^{86} +(0.581139 + 1.00656i) q^{88} +(-6.00000 - 10.3923i) q^{89} +(-10.0000 - 5.47723i) q^{91} +7.16228 q^{92} +(-2.41886 - 4.18959i) q^{94} +(10.7434 - 18.6081i) q^{95} +(2.00000 - 3.46410i) q^{97} +(-1.50000 + 2.59808i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{5} + 4 q^{8} - 2 q^{10} - 4 q^{11} - 6 q^{13} - 2 q^{16} + 6 q^{17} + 4 q^{19} - 2 q^{20} - 4 q^{22} - 8 q^{23} + 24 q^{25} + 6 q^{26} + 10 q^{29} - 2 q^{32} - 12 q^{34} - 20 q^{35}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 4.16228 1.86143 0.930714 0.365749i \(-0.119187\pi\)
0.930714 + 0.365749i \(0.119187\pi\)
\(6\) 0 0
\(7\) −1.58114 + 2.73861i −0.597614 + 1.03510i 0.395558 + 0.918441i \(0.370551\pi\)
−0.993172 + 0.116657i \(0.962782\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.08114 3.60464i −0.658114 1.13989i
\(11\) 0.581139 + 1.00656i 0.175220 + 0.303490i 0.940237 0.340520i \(-0.110603\pi\)
−0.765017 + 0.644010i \(0.777270\pi\)
\(12\) 0 0
\(13\) 0.0811388 + 3.60464i 0.0225039 + 0.999747i
\(14\) 3.16228 0.845154
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 2.58114 4.47066i 0.592154 1.02564i −0.401788 0.915733i \(-0.631611\pi\)
0.993942 0.109908i \(-0.0350556\pi\)
\(20\) −2.08114 + 3.60464i −0.465357 + 0.806022i
\(21\) 0 0
\(22\) 0.581139 1.00656i 0.123899 0.214600i
\(23\) −3.58114 6.20271i −0.746719 1.29336i −0.949387 0.314108i \(-0.898295\pi\)
0.202668 0.979247i \(-0.435039\pi\)
\(24\) 0 0
\(25\) 12.3246 2.46491
\(26\) 3.08114 1.87259i 0.604261 0.367245i
\(27\) 0 0
\(28\) −1.58114 2.73861i −0.298807 0.517549i
\(29\) 0.918861 + 1.59151i 0.170628 + 0.295537i 0.938640 0.344899i \(-0.112087\pi\)
−0.768011 + 0.640436i \(0.778754\pi\)
\(30\) 0 0
\(31\) −6.32456 −1.13592 −0.567962 0.823055i \(-0.692268\pi\)
−0.567962 + 0.823055i \(0.692268\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) −6.58114 + 11.3989i −1.11242 + 1.92676i
\(36\) 0 0
\(37\) −1.91886 3.32357i −0.315459 0.546391i 0.664076 0.747665i \(-0.268825\pi\)
−0.979535 + 0.201274i \(0.935492\pi\)
\(38\) −5.16228 −0.837432
\(39\) 0 0
\(40\) 4.16228 0.658114
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −4.58114 + 7.93477i −0.698617 + 1.21004i 0.270329 + 0.962768i \(0.412868\pi\)
−0.968946 + 0.247272i \(0.920466\pi\)
\(44\) −1.16228 −0.175220
\(45\) 0 0
\(46\) −3.58114 + 6.20271i −0.528010 + 0.914540i
\(47\) 4.83772 0.705654 0.352827 0.935689i \(-0.385220\pi\)
0.352827 + 0.935689i \(0.385220\pi\)
\(48\) 0 0
\(49\) −1.50000 2.59808i −0.214286 0.371154i
\(50\) −6.16228 10.6734i −0.871478 1.50944i
\(51\) 0 0
\(52\) −3.16228 1.73205i −0.438529 0.240192i
\(53\) −12.4868 −1.71520 −0.857599 0.514319i \(-0.828045\pi\)
−0.857599 + 0.514319i \(0.828045\pi\)
\(54\) 0 0
\(55\) 2.41886 + 4.18959i 0.326159 + 0.564924i
\(56\) −1.58114 + 2.73861i −0.211289 + 0.365963i
\(57\) 0 0
\(58\) 0.918861 1.59151i 0.120652 0.208976i
\(59\) 1.16228 2.01312i 0.151316 0.262086i −0.780396 0.625286i \(-0.784982\pi\)
0.931711 + 0.363200i \(0.118316\pi\)
\(60\) 0 0
\(61\) −0.0811388 + 0.140537i −0.0103888 + 0.0179939i −0.871173 0.490976i \(-0.836640\pi\)
0.860784 + 0.508970i \(0.169974\pi\)
\(62\) 3.16228 + 5.47723i 0.401610 + 0.695608i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.337722 + 15.0035i 0.0418893 + 1.86096i
\(66\) 0 0
\(67\) 1.41886 + 2.45754i 0.173341 + 0.300236i 0.939586 0.342313i \(-0.111210\pi\)
−0.766245 + 0.642549i \(0.777877\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) 0 0
\(70\) 13.1623 1.57319
\(71\) 3.58114 6.20271i 0.425003 0.736127i −0.571418 0.820659i \(-0.693606\pi\)
0.996421 + 0.0845326i \(0.0269397\pi\)
\(72\) 0 0
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) −1.91886 + 3.32357i −0.223063 + 0.386357i
\(75\) 0 0
\(76\) 2.58114 + 4.47066i 0.296077 + 0.512820i
\(77\) −3.67544 −0.418856
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −2.08114 3.60464i −0.232678 0.403011i
\(81\) 0 0
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) −3.48683 −0.382730 −0.191365 0.981519i \(-0.561291\pi\)
−0.191365 + 0.981519i \(0.561291\pi\)
\(84\) 0 0
\(85\) 6.24342 10.8139i 0.677194 1.17293i
\(86\) 9.16228 0.987994
\(87\) 0 0
\(88\) 0.581139 + 1.00656i 0.0619496 + 0.107300i
\(89\) −6.00000 10.3923i −0.635999 1.10158i −0.986303 0.164946i \(-0.947255\pi\)
0.350304 0.936636i \(-0.386078\pi\)
\(90\) 0 0
\(91\) −10.0000 5.47723i −1.04828 0.574169i
\(92\) 7.16228 0.746719
\(93\) 0 0
\(94\) −2.41886 4.18959i −0.249486 0.432123i
\(95\) 10.7434 18.6081i 1.10225 1.90916i
\(96\) 0 0
\(97\) 2.00000 3.46410i 0.203069 0.351726i −0.746447 0.665445i \(-0.768242\pi\)
0.949516 + 0.313719i \(0.101575\pi\)
\(98\) −1.50000 + 2.59808i −0.151523 + 0.262445i
\(99\) 0 0
\(100\) −6.16228 + 10.6734i −0.616228 + 1.06734i
\(101\) −3.91886 6.78767i −0.389941 0.675398i 0.602500 0.798119i \(-0.294171\pi\)
−0.992441 + 0.122721i \(0.960838\pi\)
\(102\) 0 0
\(103\) −15.8114 −1.55794 −0.778971 0.627060i \(-0.784258\pi\)
−0.778971 + 0.627060i \(0.784258\pi\)
\(104\) 0.0811388 + 3.60464i 0.00795632 + 0.353464i
\(105\) 0 0
\(106\) 6.24342 + 10.8139i 0.606414 + 1.05034i
\(107\) 8.90569 + 15.4251i 0.860946 + 1.49120i 0.871017 + 0.491253i \(0.163461\pi\)
−0.0100711 + 0.999949i \(0.503206\pi\)
\(108\) 0 0
\(109\) 6.64911 0.636869 0.318435 0.947945i \(-0.396843\pi\)
0.318435 + 0.947945i \(0.396843\pi\)
\(110\) 2.41886 4.18959i 0.230629 0.399462i
\(111\) 0 0
\(112\) 3.16228 0.298807
\(113\) −3.33772 + 5.78110i −0.313987 + 0.543841i −0.979222 0.202793i \(-0.934998\pi\)
0.665235 + 0.746634i \(0.268331\pi\)
\(114\) 0 0
\(115\) −14.9057 25.8174i −1.38996 2.40749i
\(116\) −1.83772 −0.170628
\(117\) 0 0
\(118\) −2.32456 −0.213993
\(119\) 4.74342 + 8.21584i 0.434828 + 0.753145i
\(120\) 0 0
\(121\) 4.82456 8.35637i 0.438596 0.759670i
\(122\) 0.162278 0.0146919
\(123\) 0 0
\(124\) 3.16228 5.47723i 0.283981 0.491869i
\(125\) 30.4868 2.72683
\(126\) 0 0
\(127\) 9.16228 + 15.8695i 0.813021 + 1.40819i 0.910740 + 0.412979i \(0.135512\pi\)
−0.0977198 + 0.995214i \(0.531155\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 12.8246 7.79423i 1.12479 0.683599i
\(131\) 16.6491 1.45464 0.727320 0.686299i \(-0.240766\pi\)
0.727320 + 0.686299i \(0.240766\pi\)
\(132\) 0 0
\(133\) 8.16228 + 14.1375i 0.707759 + 1.22587i
\(134\) 1.41886 2.45754i 0.122571 0.212299i
\(135\) 0 0
\(136\) 1.50000 2.59808i 0.128624 0.222783i
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 3.16228 5.47723i 0.268221 0.464572i −0.700182 0.713965i \(-0.746898\pi\)
0.968402 + 0.249393i \(0.0802310\pi\)
\(140\) −6.58114 11.3989i −0.556208 0.963380i
\(141\) 0 0
\(142\) −7.16228 −0.601045
\(143\) −3.58114 + 2.17647i −0.299470 + 0.182005i
\(144\) 0 0
\(145\) 3.82456 + 6.62432i 0.317612 + 0.550120i
\(146\) 0.500000 + 0.866025i 0.0413803 + 0.0716728i
\(147\) 0 0
\(148\) 3.83772 0.315459
\(149\) −0.243416 + 0.421610i −0.0199415 + 0.0345396i −0.875824 0.482631i \(-0.839681\pi\)
0.855882 + 0.517170i \(0.173015\pi\)
\(150\) 0 0
\(151\) 0.837722 0.0681729 0.0340864 0.999419i \(-0.489148\pi\)
0.0340864 + 0.999419i \(0.489148\pi\)
\(152\) 2.58114 4.47066i 0.209358 0.362619i
\(153\) 0 0
\(154\) 1.83772 + 3.18303i 0.148088 + 0.256496i
\(155\) −26.3246 −2.11444
\(156\) 0 0
\(157\) −10.4868 −0.836940 −0.418470 0.908231i \(-0.637434\pi\)
−0.418470 + 0.908231i \(0.637434\pi\)
\(158\) 2.00000 + 3.46410i 0.159111 + 0.275589i
\(159\) 0 0
\(160\) −2.08114 + 3.60464i −0.164528 + 0.284972i
\(161\) 22.6491 1.78500
\(162\) 0 0
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) 1.74342 + 3.01969i 0.135315 + 0.234373i
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) −12.9868 + 0.584952i −0.998987 + 0.0449963i
\(170\) −12.4868 −0.957696
\(171\) 0 0
\(172\) −4.58114 7.93477i −0.349309 0.605020i
\(173\) −11.3246 + 19.6147i −0.860990 + 1.49128i 0.00998448 + 0.999950i \(0.496822\pi\)
−0.870974 + 0.491328i \(0.836512\pi\)
\(174\) 0 0
\(175\) −19.4868 + 33.7522i −1.47307 + 2.55143i
\(176\) 0.581139 1.00656i 0.0438050 0.0758725i
\(177\) 0 0
\(178\) −6.00000 + 10.3923i −0.449719 + 0.778936i
\(179\) −7.74342 13.4120i −0.578770 1.00246i −0.995621 0.0934843i \(-0.970200\pi\)
0.416851 0.908975i \(-0.363134\pi\)
\(180\) 0 0
\(181\) 3.83772 0.285256 0.142628 0.989776i \(-0.454445\pi\)
0.142628 + 0.989776i \(0.454445\pi\)
\(182\) 0.256584 + 11.3989i 0.0190192 + 0.844940i
\(183\) 0 0
\(184\) −3.58114 6.20271i −0.264005 0.457270i
\(185\) −7.98683 13.8336i −0.587204 1.01707i
\(186\) 0 0
\(187\) 3.48683 0.254982
\(188\) −2.41886 + 4.18959i −0.176414 + 0.305557i
\(189\) 0 0
\(190\) −21.4868 −1.55882
\(191\) −7.16228 + 12.4054i −0.518244 + 0.897625i 0.481531 + 0.876429i \(0.340081\pi\)
−0.999775 + 0.0211963i \(0.993252\pi\)
\(192\) 0 0
\(193\) 9.98683 + 17.2977i 0.718868 + 1.24512i 0.961449 + 0.274985i \(0.0886728\pi\)
−0.242581 + 0.970131i \(0.577994\pi\)
\(194\) −4.00000 −0.287183
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) −9.48683 16.4317i −0.675909 1.17071i −0.976202 0.216862i \(-0.930418\pi\)
0.300293 0.953847i \(-0.402915\pi\)
\(198\) 0 0
\(199\) 3.25658 5.64057i 0.230853 0.399849i −0.727206 0.686419i \(-0.759182\pi\)
0.958059 + 0.286570i \(0.0925150\pi\)
\(200\) 12.3246 0.871478
\(201\) 0 0
\(202\) −3.91886 + 6.78767i −0.275730 + 0.477579i
\(203\) −5.81139 −0.407879
\(204\) 0 0
\(205\) −6.24342 10.8139i −0.436059 0.755277i
\(206\) 7.90569 + 13.6931i 0.550816 + 0.954041i
\(207\) 0 0
\(208\) 3.08114 1.87259i 0.213639 0.129841i
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) 6.24342 10.8139i 0.428800 0.742703i
\(213\) 0 0
\(214\) 8.90569 15.4251i 0.608781 1.05444i
\(215\) −19.0680 + 33.0267i −1.30042 + 2.25240i
\(216\) 0 0
\(217\) 10.0000 17.3205i 0.678844 1.17579i
\(218\) −3.32456 5.75830i −0.225167 0.390001i
\(219\) 0 0
\(220\) −4.83772 −0.326159
\(221\) 9.48683 + 5.19615i 0.638153 + 0.349531i
\(222\) 0 0
\(223\) 0.837722 + 1.45098i 0.0560980 + 0.0971647i 0.892711 0.450630i \(-0.148801\pi\)
−0.836613 + 0.547795i \(0.815467\pi\)
\(224\) −1.58114 2.73861i −0.105644 0.182981i
\(225\) 0 0
\(226\) 6.67544 0.444044
\(227\) 7.74342 13.4120i 0.513949 0.890185i −0.485920 0.874003i \(-0.661516\pi\)
0.999869 0.0161821i \(-0.00515113\pi\)
\(228\) 0 0
\(229\) 22.3246 1.47525 0.737624 0.675212i \(-0.235948\pi\)
0.737624 + 0.675212i \(0.235948\pi\)
\(230\) −14.9057 + 25.8174i −0.982852 + 1.70235i
\(231\) 0 0
\(232\) 0.918861 + 1.59151i 0.0603262 + 0.104488i
\(233\) −16.6491 −1.09072 −0.545360 0.838202i \(-0.683607\pi\)
−0.545360 + 0.838202i \(0.683607\pi\)
\(234\) 0 0
\(235\) 20.1359 1.31352
\(236\) 1.16228 + 2.01312i 0.0756578 + 0.131043i
\(237\) 0 0
\(238\) 4.74342 8.21584i 0.307470 0.532554i
\(239\) −21.4868 −1.38987 −0.694934 0.719074i \(-0.744566\pi\)
−0.694934 + 0.719074i \(0.744566\pi\)
\(240\) 0 0
\(241\) −6.66228 + 11.5394i −0.429155 + 0.743318i −0.996798 0.0799563i \(-0.974522\pi\)
0.567643 + 0.823275i \(0.307855\pi\)
\(242\) −9.64911 −0.620268
\(243\) 0 0
\(244\) −0.0811388 0.140537i −0.00519438 0.00899693i
\(245\) −6.24342 10.8139i −0.398877 0.690876i
\(246\) 0 0
\(247\) 16.3246 + 8.94133i 1.03871 + 0.568923i
\(248\) −6.32456 −0.401610
\(249\) 0 0
\(250\) −15.2434 26.4024i −0.964078 1.66983i
\(251\) 6.00000 10.3923i 0.378717 0.655956i −0.612159 0.790735i \(-0.709699\pi\)
0.990876 + 0.134778i \(0.0430322\pi\)
\(252\) 0 0
\(253\) 4.16228 7.20928i 0.261680 0.453243i
\(254\) 9.16228 15.8695i 0.574892 0.995743i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.9868 + 19.0298i 0.685340 + 1.18704i 0.973330 + 0.229410i \(0.0736797\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(258\) 0 0
\(259\) 12.1359 0.754091
\(260\) −13.1623 7.20928i −0.816290 0.447100i
\(261\) 0 0
\(262\) −8.32456 14.4186i −0.514293 0.890781i
\(263\) 1.25658 + 2.17647i 0.0774843 + 0.134207i 0.902164 0.431393i \(-0.141978\pi\)
−0.824680 + 0.565600i \(0.808645\pi\)
\(264\) 0 0
\(265\) −51.9737 −3.19272
\(266\) 8.16228 14.1375i 0.500461 0.866824i
\(267\) 0 0
\(268\) −2.83772 −0.173341
\(269\) −3.00000 + 5.19615i −0.182913 + 0.316815i −0.942871 0.333157i \(-0.891886\pi\)
0.759958 + 0.649972i \(0.225219\pi\)
\(270\) 0 0
\(271\) 3.16228 + 5.47723i 0.192095 + 0.332718i 0.945944 0.324329i \(-0.105139\pi\)
−0.753850 + 0.657047i \(0.771805\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) 7.16228 + 12.4054i 0.431902 + 0.748076i
\(276\) 0 0
\(277\) −5.40569 + 9.36294i −0.324797 + 0.562564i −0.981471 0.191610i \(-0.938629\pi\)
0.656675 + 0.754174i \(0.271963\pi\)
\(278\) −6.32456 −0.379322
\(279\) 0 0
\(280\) −6.58114 + 11.3989i −0.393298 + 0.681213i
\(281\) −0.675445 −0.0402937 −0.0201468 0.999797i \(-0.506413\pi\)
−0.0201468 + 0.999797i \(0.506413\pi\)
\(282\) 0 0
\(283\) 1.41886 + 2.45754i 0.0843425 + 0.146086i 0.905111 0.425176i \(-0.139788\pi\)
−0.820768 + 0.571261i \(0.806454\pi\)
\(284\) 3.58114 + 6.20271i 0.212501 + 0.368063i
\(285\) 0 0
\(286\) 3.67544 + 2.01312i 0.217334 + 0.119039i
\(287\) 9.48683 0.559990
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 3.82456 6.62432i 0.224586 0.388994i
\(291\) 0 0
\(292\) 0.500000 0.866025i 0.0292603 0.0506803i
\(293\) −0.918861 + 1.59151i −0.0536804 + 0.0929773i −0.891617 0.452790i \(-0.850429\pi\)
0.837937 + 0.545768i \(0.183762\pi\)
\(294\) 0 0
\(295\) 4.83772 8.37918i 0.281663 0.487855i
\(296\) −1.91886 3.32357i −0.111532 0.193178i
\(297\) 0 0
\(298\) 0.486833 0.0282015
\(299\) 22.0680 13.4120i 1.27622 0.775635i
\(300\) 0 0
\(301\) −14.4868 25.0919i −0.835007 1.44627i
\(302\) −0.418861 0.725489i −0.0241028 0.0417472i
\(303\) 0 0
\(304\) −5.16228 −0.296077
\(305\) −0.337722 + 0.584952i −0.0193379 + 0.0334943i
\(306\) 0 0
\(307\) 11.4868 0.655588 0.327794 0.944749i \(-0.393695\pi\)
0.327794 + 0.944749i \(0.393695\pi\)
\(308\) 1.83772 3.18303i 0.104714 0.181370i
\(309\) 0 0
\(310\) 13.1623 + 22.7977i 0.747567 + 1.29482i
\(311\) 21.4868 1.21841 0.609203 0.793014i \(-0.291489\pi\)
0.609203 + 0.793014i \(0.291489\pi\)
\(312\) 0 0
\(313\) −4.00000 −0.226093 −0.113047 0.993590i \(-0.536061\pi\)
−0.113047 + 0.993590i \(0.536061\pi\)
\(314\) 5.24342 + 9.08186i 0.295903 + 0.512519i
\(315\) 0 0
\(316\) 2.00000 3.46410i 0.112509 0.194871i
\(317\) 12.4868 0.701330 0.350665 0.936501i \(-0.385956\pi\)
0.350665 + 0.936501i \(0.385956\pi\)
\(318\) 0 0
\(319\) −1.06797 + 1.84978i −0.0597949 + 0.103568i
\(320\) 4.16228 0.232678
\(321\) 0 0
\(322\) −11.3246 19.6147i −0.631093 1.09308i
\(323\) −7.74342 13.4120i −0.430855 0.746263i
\(324\) 0 0
\(325\) 1.00000 + 44.4256i 0.0554700 + 2.46429i
\(326\) −16.0000 −0.886158
\(327\) 0 0
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) −7.64911 + 13.2486i −0.421709 + 0.730422i
\(330\) 0 0
\(331\) 5.48683 9.50347i 0.301584 0.522358i −0.674911 0.737899i \(-0.735818\pi\)
0.976495 + 0.215541i \(0.0691514\pi\)
\(332\) 1.74342 3.01969i 0.0956824 0.165727i
\(333\) 0 0
\(334\) −6.00000 + 10.3923i −0.328305 + 0.568642i
\(335\) 5.90569 + 10.2290i 0.322663 + 0.558868i
\(336\) 0 0
\(337\) 11.0000 0.599208 0.299604 0.954064i \(-0.403145\pi\)
0.299604 + 0.954064i \(0.403145\pi\)
\(338\) 7.00000 + 10.9545i 0.380750 + 0.595844i
\(339\) 0 0
\(340\) 6.24342 + 10.8139i 0.338597 + 0.586467i
\(341\) −3.67544 6.36606i −0.199036 0.344741i
\(342\) 0 0
\(343\) −12.6491 −0.682988
\(344\) −4.58114 + 7.93477i −0.246998 + 0.427814i
\(345\) 0 0
\(346\) 22.6491 1.21762
\(347\) 7.74342 13.4120i 0.415688 0.719993i −0.579812 0.814750i \(-0.696874\pi\)
0.995500 + 0.0947569i \(0.0302074\pi\)
\(348\) 0 0
\(349\) 2.67544 + 4.63401i 0.143213 + 0.248053i 0.928705 0.370820i \(-0.120923\pi\)
−0.785492 + 0.618872i \(0.787590\pi\)
\(350\) 38.9737 2.08323
\(351\) 0 0
\(352\) −1.16228 −0.0619496
\(353\) −14.6623 25.3958i −0.780394 1.35168i −0.931712 0.363197i \(-0.881685\pi\)
0.151318 0.988485i \(-0.451648\pi\)
\(354\) 0 0
\(355\) 14.9057 25.8174i 0.791112 1.37025i
\(356\) 12.0000 0.635999
\(357\) 0 0
\(358\) −7.74342 + 13.4120i −0.409252 + 0.708846i
\(359\) 28.4605 1.50209 0.751044 0.660252i \(-0.229551\pi\)
0.751044 + 0.660252i \(0.229551\pi\)
\(360\) 0 0
\(361\) −3.82456 6.62432i −0.201292 0.348649i
\(362\) −1.91886 3.32357i −0.100853 0.174683i
\(363\) 0 0
\(364\) 9.74342 5.92164i 0.510694 0.310378i
\(365\) −4.16228 −0.217864
\(366\) 0 0
\(367\) 12.7434 + 22.0722i 0.665201 + 1.15216i 0.979231 + 0.202749i \(0.0649875\pi\)
−0.314030 + 0.949413i \(0.601679\pi\)
\(368\) −3.58114 + 6.20271i −0.186680 + 0.323339i
\(369\) 0 0
\(370\) −7.98683 + 13.8336i −0.415216 + 0.719175i
\(371\) 19.7434 34.1966i 1.02503 1.77540i
\(372\) 0 0
\(373\) 8.24342 14.2780i 0.426828 0.739288i −0.569761 0.821810i \(-0.692964\pi\)
0.996589 + 0.0825226i \(0.0262977\pi\)
\(374\) −1.74342 3.01969i −0.0901499 0.156144i
\(375\) 0 0
\(376\) 4.83772 0.249486
\(377\) −5.66228 + 3.44130i −0.291622 + 0.177236i
\(378\) 0 0
\(379\) −8.83772 15.3074i −0.453963 0.786288i 0.544665 0.838654i \(-0.316657\pi\)
−0.998628 + 0.0523664i \(0.983324\pi\)
\(380\) 10.7434 + 18.6081i 0.551126 + 0.954578i
\(381\) 0 0
\(382\) 14.3246 0.732908
\(383\) −15.4868 + 26.8240i −0.791340 + 1.37064i 0.133797 + 0.991009i \(0.457283\pi\)
−0.925137 + 0.379633i \(0.876050\pi\)
\(384\) 0 0
\(385\) −15.2982 −0.779670
\(386\) 9.98683 17.2977i 0.508316 0.880430i
\(387\) 0 0
\(388\) 2.00000 + 3.46410i 0.101535 + 0.175863i
\(389\) 12.4868 0.633108 0.316554 0.948575i \(-0.397474\pi\)
0.316554 + 0.948575i \(0.397474\pi\)
\(390\) 0 0
\(391\) −21.4868 −1.08664
\(392\) −1.50000 2.59808i −0.0757614 0.131223i
\(393\) 0 0
\(394\) −9.48683 + 16.4317i −0.477940 + 0.827816i
\(395\) −16.6491 −0.837708
\(396\) 0 0
\(397\) −13.0000 + 22.5167i −0.652451 + 1.13008i 0.330075 + 0.943955i \(0.392926\pi\)
−0.982526 + 0.186124i \(0.940407\pi\)
\(398\) −6.51317 −0.326476
\(399\) 0 0
\(400\) −6.16228 10.6734i −0.308114 0.533669i
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) −0.513167 22.7977i −0.0255627 1.13564i
\(404\) 7.83772 0.389941
\(405\) 0 0
\(406\) 2.90569 + 5.03281i 0.144207 + 0.249774i
\(407\) 2.23025 3.86291i 0.110549 0.191477i
\(408\) 0 0
\(409\) −7.33772 + 12.7093i −0.362827 + 0.628435i −0.988425 0.151711i \(-0.951522\pi\)
0.625598 + 0.780146i \(0.284855\pi\)
\(410\) −6.24342 + 10.8139i −0.308340 + 0.534061i
\(411\) 0 0
\(412\) 7.90569 13.6931i 0.389486 0.674609i
\(413\) 3.67544 + 6.36606i 0.180857 + 0.313253i
\(414\) 0 0
\(415\) −14.5132 −0.712423
\(416\) −3.16228 1.73205i −0.155043 0.0849208i
\(417\) 0 0
\(418\) −3.00000 5.19615i −0.146735 0.254152i
\(419\) 15.4868 + 26.8240i 0.756581 + 1.31044i 0.944584 + 0.328269i \(0.106465\pi\)
−0.188003 + 0.982168i \(0.560201\pi\)
\(420\) 0 0
\(421\) −23.8377 −1.16178 −0.580890 0.813982i \(-0.697295\pi\)
−0.580890 + 0.813982i \(0.697295\pi\)
\(422\) 2.00000 3.46410i 0.0973585 0.168630i
\(423\) 0 0
\(424\) −12.4868 −0.606414
\(425\) 18.4868 32.0201i 0.896743 1.55320i
\(426\) 0 0
\(427\) −0.256584 0.444416i −0.0124169 0.0215068i
\(428\) −17.8114 −0.860946
\(429\) 0 0
\(430\) 38.1359 1.83908
\(431\) 4.74342 + 8.21584i 0.228482 + 0.395743i 0.957359 0.288903i \(-0.0932904\pi\)
−0.728876 + 0.684646i \(0.759957\pi\)
\(432\) 0 0
\(433\) 4.66228 8.07530i 0.224055 0.388074i −0.731981 0.681325i \(-0.761404\pi\)
0.956035 + 0.293251i \(0.0947372\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) −3.32456 + 5.75830i −0.159217 + 0.275772i
\(437\) −36.9737 −1.76869
\(438\) 0 0
\(439\) 12.7434 + 22.0722i 0.608210 + 1.05345i 0.991535 + 0.129837i \(0.0414455\pi\)
−0.383325 + 0.923613i \(0.625221\pi\)
\(440\) 2.41886 + 4.18959i 0.115315 + 0.199731i
\(441\) 0 0
\(442\) −0.243416 10.8139i −0.0115781 0.514365i
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −24.9737 43.2557i −1.18387 2.05051i
\(446\) 0.837722 1.45098i 0.0396673 0.0687058i
\(447\) 0 0
\(448\) −1.58114 + 2.73861i −0.0747018 + 0.129387i
\(449\) −3.67544 + 6.36606i −0.173455 + 0.300433i −0.939625 0.342205i \(-0.888826\pi\)
0.766171 + 0.642637i \(0.222160\pi\)
\(450\) 0 0
\(451\) 1.74342 3.01969i 0.0820943 0.142191i
\(452\) −3.33772 5.78110i −0.156993 0.271920i
\(453\) 0 0
\(454\) −15.4868 −0.726833
\(455\) −41.6228 22.7977i −1.95131 1.06877i
\(456\) 0 0
\(457\) 1.66228 + 2.87915i 0.0777581 + 0.134681i 0.902282 0.431146i \(-0.141890\pi\)
−0.824524 + 0.565827i \(0.808557\pi\)
\(458\) −11.1623 19.3336i −0.521579 0.903401i
\(459\) 0 0
\(460\) 29.8114 1.38996
\(461\) −9.24342 + 16.0101i −0.430509 + 0.745663i −0.996917 0.0784616i \(-0.974999\pi\)
0.566408 + 0.824125i \(0.308333\pi\)
\(462\) 0 0
\(463\) 15.1623 0.704651 0.352325 0.935878i \(-0.385391\pi\)
0.352325 + 0.935878i \(0.385391\pi\)
\(464\) 0.918861 1.59151i 0.0426571 0.0738842i
\(465\) 0 0
\(466\) 8.32456 + 14.4186i 0.385628 + 0.667927i
\(467\) 6.18861 0.286375 0.143187 0.989696i \(-0.454265\pi\)
0.143187 + 0.989696i \(0.454265\pi\)
\(468\) 0 0
\(469\) −8.97367 −0.414365
\(470\) −10.0680 17.4382i −0.464401 0.804366i
\(471\) 0 0
\(472\) 1.16228 2.01312i 0.0534982 0.0926615i
\(473\) −10.6491 −0.489647
\(474\) 0 0
\(475\) 31.8114 55.0989i 1.45961 2.52811i
\(476\) −9.48683 −0.434828
\(477\) 0 0
\(478\) 10.7434 + 18.6081i 0.491392 + 0.851117i
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) 11.8246 7.18647i 0.539153 0.327675i
\(482\) 13.3246 0.606917
\(483\) 0 0
\(484\) 4.82456 + 8.35637i 0.219298 + 0.379835i
\(485\) 8.32456 14.4186i 0.377999 0.654713i
\(486\) 0 0
\(487\) 6.74342 11.6799i 0.305573 0.529269i −0.671815 0.740719i \(-0.734485\pi\)
0.977389 + 0.211450i \(0.0678185\pi\)
\(488\) −0.0811388 + 0.140537i −0.00367298 + 0.00636179i
\(489\) 0 0
\(490\) −6.24342 + 10.8139i −0.282049 + 0.488523i
\(491\) −2.90569 5.03281i −0.131132 0.227128i 0.792981 0.609246i \(-0.208528\pi\)
−0.924113 + 0.382119i \(0.875195\pi\)
\(492\) 0 0
\(493\) 5.51317 0.248301
\(494\) −0.418861 18.6081i −0.0188455 0.837220i
\(495\) 0 0
\(496\) 3.16228 + 5.47723i 0.141990 + 0.245935i
\(497\) 11.3246 + 19.6147i 0.507976 + 0.879840i
\(498\) 0 0
\(499\) 12.6491 0.566252 0.283126 0.959083i \(-0.408629\pi\)
0.283126 + 0.959083i \(0.408629\pi\)
\(500\) −15.2434 + 26.4024i −0.681706 + 1.18075i
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 0.0943058 0.163343i 0.00420489 0.00728308i −0.863915 0.503637i \(-0.831995\pi\)
0.868120 + 0.496354i \(0.165328\pi\)
\(504\) 0 0
\(505\) −16.3114 28.2522i −0.725847 1.25720i
\(506\) −8.32456 −0.370072
\(507\) 0 0
\(508\) −18.3246 −0.813021
\(509\) 14.0811 + 24.3892i 0.624136 + 1.08103i 0.988707 + 0.149859i \(0.0478820\pi\)
−0.364572 + 0.931175i \(0.618785\pi\)
\(510\) 0 0
\(511\) 1.58114 2.73861i 0.0699455 0.121149i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 10.9868 19.0298i 0.484608 0.839366i
\(515\) −65.8114 −2.90000
\(516\) 0 0
\(517\) 2.81139 + 4.86947i 0.123645 + 0.214159i
\(518\) −6.06797 10.5100i −0.266611 0.461784i
\(519\) 0 0
\(520\) 0.337722 + 15.0035i 0.0148101 + 0.657947i
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 2.58114 + 4.47066i 0.112865 + 0.195488i 0.916924 0.399061i \(-0.130664\pi\)
−0.804059 + 0.594549i \(0.797330\pi\)
\(524\) −8.32456 + 14.4186i −0.363660 + 0.629877i
\(525\) 0 0
\(526\) 1.25658 2.17647i 0.0547896 0.0948984i
\(527\) −9.48683 + 16.4317i −0.413253 + 0.715775i
\(528\) 0 0
\(529\) −14.1491 + 24.5070i −0.615179 + 1.06552i
\(530\) 25.9868 + 45.0105i 1.12880 + 1.95513i
\(531\) 0 0
\(532\) −16.3246 −0.707759
\(533\) 9.24342 5.61776i 0.400377 0.243332i
\(534\) 0 0
\(535\) 37.0680 + 64.2036i 1.60259 + 2.77576i
\(536\) 1.41886 + 2.45754i 0.0612855 + 0.106150i
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) 1.74342 3.01969i 0.0750943 0.130067i
\(540\) 0 0
\(541\) −15.5132 −0.666963 −0.333482 0.942757i \(-0.608223\pi\)
−0.333482 + 0.942757i \(0.608223\pi\)
\(542\) 3.16228 5.47723i 0.135831 0.235267i
\(543\) 0 0
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) 27.6754 1.18549
\(546\) 0 0
\(547\) −33.8114 −1.44567 −0.722835 0.691020i \(-0.757161\pi\)
−0.722835 + 0.691020i \(0.757161\pi\)
\(548\) 1.50000 + 2.59808i 0.0640768 + 0.110984i
\(549\) 0 0
\(550\) 7.16228 12.4054i 0.305401 0.528969i
\(551\) 9.48683 0.404153
\(552\) 0 0
\(553\) 6.32456 10.9545i 0.268947 0.465831i
\(554\) 10.8114 0.459332
\(555\) 0 0
\(556\) 3.16228 + 5.47723i 0.134110 + 0.232286i
\(557\) 9.24342 + 16.0101i 0.391656 + 0.678368i 0.992668 0.120872i \(-0.0385690\pi\)
−0.601012 + 0.799240i \(0.705236\pi\)
\(558\) 0 0
\(559\) −28.9737 15.8695i −1.22546 0.671210i
\(560\) 13.1623 0.556208
\(561\) 0 0
\(562\) 0.337722 + 0.584952i 0.0142460 + 0.0246747i
\(563\) −20.3246 + 35.2032i −0.856578 + 1.48364i 0.0185956 + 0.999827i \(0.494081\pi\)
−0.875173 + 0.483809i \(0.839253\pi\)
\(564\) 0 0
\(565\) −13.8925 + 24.0626i −0.584463 + 1.01232i
\(566\) 1.41886 2.45754i 0.0596392 0.103298i
\(567\) 0 0
\(568\) 3.58114 6.20271i 0.150261 0.260260i
\(569\) −13.6491 23.6410i −0.572200 0.991080i −0.996340 0.0854833i \(-0.972757\pi\)
0.424139 0.905597i \(-0.360577\pi\)
\(570\) 0 0
\(571\) −36.1359 −1.51224 −0.756121 0.654432i \(-0.772908\pi\)
−0.756121 + 0.654432i \(0.772908\pi\)
\(572\) −0.0943058 4.18959i −0.00394313 0.175176i
\(573\) 0 0
\(574\) −4.74342 8.21584i −0.197986 0.342922i
\(575\) −44.1359 76.4457i −1.84060 3.18801i
\(576\) 0 0
\(577\) 0.350889 0.0146077 0.00730386 0.999973i \(-0.497675\pi\)
0.00730386 + 0.999973i \(0.497675\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 0 0
\(580\) −7.64911 −0.317612
\(581\) 5.51317 9.54909i 0.228725 0.396163i
\(582\) 0 0
\(583\) −7.25658 12.5688i −0.300537 0.520545i
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) 1.83772 0.0759156
\(587\) −14.3246 24.8109i −0.591238 1.02405i −0.994066 0.108778i \(-0.965306\pi\)
0.402828 0.915276i \(-0.368027\pi\)
\(588\) 0 0
\(589\) −16.3246 + 28.2750i −0.672642 + 1.16505i
\(590\) −9.67544 −0.398332
\(591\) 0 0
\(592\) −1.91886 + 3.32357i −0.0788647 + 0.136598i
\(593\) 0.675445 0.0277372 0.0138686 0.999904i \(-0.495585\pi\)
0.0138686 + 0.999904i \(0.495585\pi\)
\(594\) 0 0
\(595\) 19.7434 + 34.1966i 0.809401 + 1.40192i
\(596\) −0.243416 0.421610i −0.00997073 0.0172698i
\(597\) 0 0
\(598\) −22.6491 12.4054i −0.926191 0.507296i
\(599\) −23.6228 −0.965200 −0.482600 0.875841i \(-0.660308\pi\)
−0.482600 + 0.875841i \(0.660308\pi\)
\(600\) 0 0
\(601\) 17.1491 + 29.7031i 0.699527 + 1.21162i 0.968631 + 0.248505i \(0.0799392\pi\)
−0.269104 + 0.963111i \(0.586727\pi\)
\(602\) −14.4868 + 25.0919i −0.590439 + 1.02267i
\(603\) 0 0
\(604\) −0.418861 + 0.725489i −0.0170432 + 0.0295197i
\(605\) 20.0811 34.7816i 0.816414 1.41407i
\(606\) 0 0
\(607\) −8.64911 + 14.9807i −0.351057 + 0.608048i −0.986435 0.164153i \(-0.947511\pi\)
0.635378 + 0.772201i \(0.280844\pi\)
\(608\) 2.58114 + 4.47066i 0.104679 + 0.181309i
\(609\) 0 0
\(610\) 0.675445 0.0273480
\(611\) 0.392527 + 17.4382i 0.0158799 + 0.705476i
\(612\) 0 0
\(613\) −10.2434 17.7421i −0.413728 0.716597i 0.581566 0.813499i \(-0.302440\pi\)
−0.995294 + 0.0969016i \(0.969107\pi\)
\(614\) −5.74342 9.94789i −0.231785 0.401464i
\(615\) 0 0
\(616\) −3.67544 −0.148088
\(617\) 13.3114 23.0560i 0.535896 0.928200i −0.463223 0.886242i \(-0.653307\pi\)
0.999119 0.0419579i \(-0.0133595\pi\)
\(618\) 0 0
\(619\) 24.6491 0.990731 0.495366 0.868685i \(-0.335034\pi\)
0.495366 + 0.868685i \(0.335034\pi\)
\(620\) 13.1623 22.7977i 0.528610 0.915579i
\(621\) 0 0
\(622\) −10.7434 18.6081i −0.430772 0.746119i
\(623\) 37.9473 1.52033
\(624\) 0 0
\(625\) 65.2719 2.61088
\(626\) 2.00000 + 3.46410i 0.0799361 + 0.138453i
\(627\) 0 0
\(628\) 5.24342 9.08186i 0.209235 0.362406i
\(629\) −11.5132 −0.459060
\(630\) 0 0
\(631\) 12.6491 21.9089i 0.503553 0.872180i −0.496438 0.868072i \(-0.665359\pi\)
0.999992 0.00410769i \(-0.00130752\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) −6.24342 10.8139i −0.247958 0.429475i
\(635\) 38.1359 + 66.0534i 1.51338 + 2.62125i
\(636\) 0 0
\(637\) 9.24342 5.61776i 0.366237 0.222584i
\(638\) 2.13594 0.0845628
\(639\) 0 0
\(640\) −2.08114 3.60464i −0.0822642 0.142486i
\(641\) −8.17544 + 14.1603i −0.322911 + 0.559298i −0.981087 0.193566i \(-0.937995\pi\)
0.658177 + 0.752864i \(0.271328\pi\)
\(642\) 0 0
\(643\) −10.0000 + 17.3205i −0.394362 + 0.683054i −0.993019 0.117951i \(-0.962368\pi\)
0.598658 + 0.801005i \(0.295701\pi\)
\(644\) −11.3246 + 19.6147i −0.446250 + 0.772928i
\(645\) 0 0
\(646\) −7.74342 + 13.4120i −0.304661 + 0.527688i
\(647\) 20.3246 + 35.2032i 0.799041 + 1.38398i 0.920241 + 0.391351i \(0.127992\pi\)
−0.121201 + 0.992628i \(0.538674\pi\)
\(648\) 0 0
\(649\) 2.70178 0.106054
\(650\) 37.9737 23.0788i 1.48945 0.905225i
\(651\) 0 0
\(652\) 8.00000 + 13.8564i 0.313304 + 0.542659i
\(653\) −15.0000 25.9808i −0.586995 1.01671i −0.994623 0.103558i \(-0.966977\pi\)
0.407628 0.913148i \(-0.366356\pi\)
\(654\) 0 0
\(655\) 69.2982 2.70771
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) 0 0
\(658\) 15.2982 0.596387
\(659\) 2.51317 4.35293i 0.0978991 0.169566i −0.812916 0.582381i \(-0.802121\pi\)
0.910815 + 0.412815i \(0.135454\pi\)
\(660\) 0 0
\(661\) −13.2434 22.9383i −0.515109 0.892195i −0.999846 0.0175354i \(-0.994418\pi\)
0.484737 0.874660i \(-0.338915\pi\)
\(662\) −10.9737 −0.426504
\(663\) 0 0
\(664\) −3.48683 −0.135315
\(665\) 33.9737 + 58.8441i 1.31744 + 2.28188i
\(666\) 0 0
\(667\) 6.58114 11.3989i 0.254823 0.441366i
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) 5.90569 10.2290i 0.228157 0.395179i
\(671\) −0.188612 −0.00728127
\(672\) 0 0
\(673\) −7.33772 12.7093i −0.282848 0.489908i 0.689237 0.724536i \(-0.257946\pi\)
−0.972085 + 0.234628i \(0.924613\pi\)
\(674\) −5.50000 9.52628i −0.211852 0.366939i
\(675\) 0 0
\(676\) 5.98683 11.5394i 0.230263 0.443823i
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 6.32456 + 10.9545i 0.242714 + 0.420393i
\(680\) 6.24342 10.8139i 0.239424 0.414695i
\(681\) 0 0
\(682\) −3.67544 + 6.36606i −0.140740 + 0.243769i
\(683\) 17.8114 30.8502i 0.681534 1.18045i −0.292979 0.956119i \(-0.594647\pi\)
0.974513 0.224332i \(-0.0720201\pi\)
\(684\) 0 0
\(685\) 6.24342 10.8139i 0.238549 0.413178i
\(686\) 6.32456 + 10.9545i 0.241473 + 0.418243i
\(687\) 0 0
\(688\) 9.16228 0.349309
\(689\) −1.01317 45.0105i −0.0385986 1.71476i
\(690\) 0 0
\(691\) −4.58114 7.93477i −0.174275 0.301853i 0.765635 0.643275i \(-0.222425\pi\)
−0.939910 + 0.341422i \(0.889091\pi\)
\(692\) −11.3246 19.6147i −0.430495 0.745639i
\(693\) 0 0
\(694\) −15.4868 −0.587872
\(695\) 13.1623 22.7977i 0.499274 0.864767i
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) 2.67544 4.63401i 0.101267 0.175400i
\(699\) 0 0
\(700\) −19.4868 33.7522i −0.736533 1.27571i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −19.8114 −0.747201
\(704\) 0.581139 + 1.00656i 0.0219025 + 0.0379362i
\(705\) 0 0
\(706\) −14.6623 + 25.3958i −0.551822 + 0.955784i
\(707\) 24.7851 0.932138
\(708\) 0 0
\(709\) −22.7302 + 39.3699i −0.853652 + 1.47857i 0.0242371 + 0.999706i \(0.492284\pi\)
−0.877890 + 0.478863i \(0.841049\pi\)
\(710\) −29.8114 −1.11880
\(711\) 0 0
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 22.6491 + 39.2294i 0.848216 + 1.46915i
\(714\) 0 0
\(715\) −14.9057 + 9.05906i −0.557441 + 0.338790i
\(716\) 15.4868 0.578770
\(717\) 0 0
\(718\) −14.2302 24.6475i −0.531068 0.919837i
\(719\) 19.1623 33.1900i 0.714632 1.23778i −0.248469 0.968640i \(-0.579927\pi\)
0.963101 0.269140i \(-0.0867393\pi\)
\(720\) 0 0
\(721\) 25.0000 43.3013i 0.931049 1.61262i
\(722\) −3.82456 + 6.62432i −0.142335 + 0.246532i
\(723\) 0 0
\(724\) −1.91886 + 3.32357i −0.0713139 + 0.123519i
\(725\) 11.3246 + 19.6147i 0.420583 + 0.728472i
\(726\) 0 0
\(727\) −8.83772 −0.327773 −0.163886 0.986479i \(-0.552403\pi\)
−0.163886 + 0.986479i \(0.552403\pi\)
\(728\) −10.0000 5.47723i −0.370625 0.202999i
\(729\) 0 0
\(730\) 2.08114 + 3.60464i 0.0770264 + 0.133414i
\(731\) 13.7434 + 23.8043i 0.508319 + 0.880434i
\(732\) 0 0
\(733\) 21.4605 0.792662 0.396331 0.918108i \(-0.370283\pi\)
0.396331 + 0.918108i \(0.370283\pi\)
\(734\) 12.7434 22.0722i 0.470368 0.814701i
\(735\) 0 0
\(736\) 7.16228 0.264005
\(737\) −1.64911 + 2.85634i −0.0607458 + 0.105215i
\(738\) 0 0
\(739\) 19.8114 + 34.3143i 0.728774 + 1.26227i 0.957402 + 0.288759i \(0.0932427\pi\)
−0.228628 + 0.973514i \(0.573424\pi\)
\(740\) 15.9737 0.587204
\(741\) 0 0
\(742\) −39.4868 −1.44961
\(743\) −1.16228 2.01312i −0.0426398 0.0738544i 0.843918 0.536472i \(-0.180243\pi\)
−0.886558 + 0.462618i \(0.846910\pi\)
\(744\) 0 0
\(745\) −1.01317 + 1.75486i −0.0371196 + 0.0642930i
\(746\) −16.4868 −0.603626
\(747\) 0 0
\(748\) −1.74342 + 3.01969i −0.0637456 + 0.110411i
\(749\) −56.3246 −2.05805
\(750\) 0 0
\(751\) −19.3925 33.5888i −0.707643 1.22567i −0.965729 0.259552i \(-0.916425\pi\)
0.258086 0.966122i \(-0.416908\pi\)
\(752\) −2.41886 4.18959i −0.0882068 0.152779i
\(753\) 0 0
\(754\) 5.81139 + 3.18303i 0.211638 + 0.115919i
\(755\) 3.48683 0.126899
\(756\) 0 0
\(757\) 13.3246 + 23.0788i 0.484289 + 0.838814i 0.999837 0.0180472i \(-0.00574493\pi\)
−0.515548 + 0.856861i \(0.672412\pi\)
\(758\) −8.83772 + 15.3074i −0.321001 + 0.555989i
\(759\) 0 0
\(760\) 10.7434 18.6081i 0.389705 0.674988i
\(761\) 6.00000 10.3923i 0.217500 0.376721i −0.736543 0.676391i \(-0.763543\pi\)
0.954043 + 0.299670i \(0.0968765\pi\)
\(762\) 0 0
\(763\) −10.5132 + 18.2093i −0.380602 + 0.659222i
\(764\) −7.16228 12.4054i −0.259122 0.448813i
\(765\) 0 0
\(766\) 30.9737 1.11912
\(767\) 7.35089 + 4.02625i 0.265425 + 0.145379i
\(768\) 0 0
\(769\) −1.67544 2.90196i −0.0604181 0.104647i 0.834234 0.551410i \(-0.185910\pi\)
−0.894652 + 0.446763i \(0.852577\pi\)
\(770\) 7.64911 + 13.2486i 0.275655 + 0.477448i
\(771\) 0 0
\(772\) −19.9737 −0.718868
\(773\) −11.3246 + 19.6147i −0.407316 + 0.705492i −0.994588 0.103898i \(-0.966869\pi\)
0.587272 + 0.809390i \(0.300202\pi\)
\(774\) 0 0
\(775\) −77.9473 −2.79995
\(776\) 2.00000 3.46410i 0.0717958 0.124354i
\(777\) 0 0
\(778\) −6.24342 10.8139i −0.223837 0.387698i
\(779\) −15.4868 −0.554873
\(780\) 0 0
\(781\) 8.32456 0.297876
\(782\) 10.7434 + 18.6081i 0.384184 + 0.665426i
\(783\) 0 0
\(784\) −1.50000 + 2.59808i −0.0535714 + 0.0927884i
\(785\) −43.6491 −1.55790
\(786\) 0 0
\(787\) 4.51317 7.81703i 0.160877 0.278647i −0.774306 0.632811i \(-0.781901\pi\)
0.935183 + 0.354164i \(0.115234\pi\)
\(788\) 18.9737 0.675909
\(789\) 0 0
\(790\) 8.32456 + 14.4186i 0.296174 + 0.512989i
\(791\) −10.5548 18.2815i −0.375286 0.650014i
\(792\) 0 0
\(793\) −0.513167 0.281073i −0.0182231 0.00998120i
\(794\) 26.0000 0.922705
\(795\) 0 0
\(796\) 3.25658 + 5.64057i 0.115427 + 0.199925i
\(797\) 9.48683 16.4317i 0.336041 0.582040i −0.647643 0.761944i \(-0.724245\pi\)
0.983684 + 0.179904i \(0.0575786\pi\)
\(798\) 0 0
\(799\) 7.25658 12.5688i 0.256719 0.444651i
\(800\) −6.16228 + 10.6734i −0.217869 + 0.377361i
\(801\) 0 0
\(802\) 7.50000 12.9904i 0.264834 0.458706i
\(803\) −0.581139 1.00656i −0.0205079 0.0355208i
\(804\) 0 0
\(805\) 94.2719 3.32265
\(806\) −19.4868 + 11.8433i −0.686394 + 0.417162i
\(807\) 0 0
\(808\) −3.91886 6.78767i −0.137865 0.238789i
\(809\) −1.50000 2.59808i −0.0527372 0.0913435i 0.838452 0.544976i \(-0.183461\pi\)
−0.891189 + 0.453632i \(0.850128\pi\)
\(810\) 0 0
\(811\) 1.02633 0.0360395 0.0180197 0.999838i \(-0.494264\pi\)
0.0180197 + 0.999838i \(0.494264\pi\)
\(812\) 2.90569 5.03281i 0.101970 0.176617i
\(813\) 0 0
\(814\) −4.46050 −0.156340
\(815\) 33.2982 57.6742i 1.16639 2.02024i
\(816\) 0 0
\(817\) 23.6491 + 40.9615i 0.827378 + 1.43306i
\(818\) 14.6754 0.513115
\(819\) 0 0
\(820\) 12.4868 0.436059
\(821\) −5.32456 9.22240i −0.185828 0.321864i 0.758027 0.652223i \(-0.226163\pi\)
−0.943855 + 0.330359i \(0.892830\pi\)
\(822\) 0 0
\(823\) −26.6491 + 46.1576i −0.928930 + 1.60895i −0.143813 + 0.989605i \(0.545936\pi\)
−0.785116 + 0.619348i \(0.787397\pi\)
\(824\) −15.8114 −0.550816
\(825\) 0 0
\(826\) 3.67544 6.36606i 0.127885 0.221503i
\(827\) −6.97367 −0.242498 −0.121249 0.992622i \(-0.538690\pi\)
−0.121249 + 0.992622i \(0.538690\pi\)
\(828\) 0 0
\(829\) −6.08114 10.5328i −0.211207 0.365821i 0.740886 0.671631i \(-0.234406\pi\)
−0.952092 + 0.305810i \(0.901073\pi\)
\(830\) 7.25658 + 12.5688i 0.251880 + 0.436268i
\(831\) 0 0
\(832\) 0.0811388 + 3.60464i 0.00281298 + 0.124968i
\(833\) −9.00000 −0.311832
\(834\) 0 0
\(835\) −24.9737 43.2557i −0.864249 1.49692i
\(836\) −3.00000 + 5.19615i −0.103757 + 0.179713i
\(837\) 0 0
\(838\) 15.4868 26.8240i 0.534984 0.926619i
\(839\) −2.32456 + 4.02625i −0.0802526 + 0.139002i −0.903358 0.428887i \(-0.858906\pi\)
0.823106 + 0.567888i \(0.192239\pi\)
\(840\) 0 0
\(841\) 12.8114 22.1900i 0.441772 0.765172i
\(842\) 11.9189 + 20.6441i 0.410751 + 0.711442i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) −54.0548 + 2.43473i −1.85954 + 0.0837574i
\(846\) 0 0
\(847\) 15.2566 + 26.4252i 0.524222 + 0.907980i
\(848\) 6.24342 + 10.8139i 0.214400 + 0.371351i
\(849\) 0 0
\(850\) −36.9737 −1.26819
\(851\) −13.7434 + 23.8043i −0.471118 + 0.816001i
\(852\) 0 0
\(853\) 55.1359 1.88782 0.943909 0.330205i \(-0.107118\pi\)
0.943909 + 0.330205i \(0.107118\pi\)
\(854\) −0.256584 + 0.444416i −0.00878011 + 0.0152076i
\(855\) 0 0
\(856\) 8.90569 + 15.4251i 0.304390 + 0.527220i
\(857\) −25.6491 −0.876157 −0.438078 0.898937i \(-0.644341\pi\)
−0.438078 + 0.898937i \(0.644341\pi\)
\(858\) 0 0
\(859\) 28.5132 0.972857 0.486428 0.873720i \(-0.338299\pi\)
0.486428 + 0.873720i \(0.338299\pi\)
\(860\) −19.0680 33.0267i −0.650212 1.12620i
\(861\) 0 0
\(862\) 4.74342 8.21584i 0.161561 0.279833i
\(863\) 47.8114 1.62752 0.813759 0.581202i \(-0.197417\pi\)
0.813759 + 0.581202i \(0.197417\pi\)
\(864\) 0 0
\(865\) −47.1359 + 81.6418i −1.60267 + 2.77591i
\(866\) −9.32456 −0.316861
\(867\) 0 0
\(868\) 10.0000 + 17.3205i 0.339422 + 0.587896i
\(869\) −2.32456 4.02625i −0.0788551 0.136581i
\(870\) 0 0
\(871\) −8.74342 + 5.31388i −0.296259 + 0.180054i
\(872\) 6.64911 0.225167
\(873\) 0 0
\(874\) 18.4868 + 32.0201i 0.625326 + 1.08310i
\(875\) −48.2039 + 83.4916i −1.62959 + 2.82253i
\(876\) 0 0
\(877\) 22.5680 39.0889i 0.762066 1.31994i −0.179717 0.983718i \(-0.557518\pi\)
0.941784 0.336219i \(-0.109148\pi\)
\(878\) 12.7434 22.0722i 0.430069 0.744902i
\(879\) 0 0
\(880\) 2.41886 4.18959i 0.0815398 0.141231i
\(881\) −4.98683 8.63745i −0.168011 0.291003i 0.769710 0.638394i \(-0.220401\pi\)
−0.937720 + 0.347391i \(0.887068\pi\)
\(882\) 0 0
\(883\) −11.3509 −0.381988 −0.190994 0.981591i \(-0.561171\pi\)
−0.190994 + 0.981591i \(0.561171\pi\)
\(884\) −9.24342 + 5.61776i −0.310890 + 0.188946i
\(885\) 0 0
\(886\) 0 0
\(887\) −19.1623 33.1900i −0.643406 1.11441i −0.984667 0.174444i \(-0.944187\pi\)
0.341261 0.939969i \(-0.389146\pi\)
\(888\) 0 0
\(889\) −57.9473 −1.94349
\(890\) −24.9737 + 43.2557i −0.837119 + 1.44993i
\(891\) 0 0
\(892\) −1.67544 −0.0560980
\(893\) 12.4868 21.6278i 0.417856 0.723748i
\(894\) 0 0
\(895\) −32.2302 55.8244i −1.07734 1.86600i
\(896\) 3.16228 0.105644
\(897\) 0 0
\(898\) 7.35089 0.245302
\(899\) −5.81139 10.0656i −0.193821 0.335707i
\(900\) 0 0
\(901\) −18.7302 + 32.4417i −0.623995 + 1.08079i
\(902\) −3.48683 −0.116099
\(903\) 0 0
\(904\) −3.33772 + 5.78110i −0.111011 + 0.192277i
\(905\) 15.9737 0.530983
\(906\) 0 0
\(907\) −18.1359 31.4124i −0.602194 1.04303i −0.992488 0.122341i \(-0.960960\pi\)
0.390294 0.920690i \(-0.372373\pi\)
\(908\) 7.74342 + 13.4120i 0.256974 + 0.445093i
\(909\) 0 0
\(910\) 1.06797 + 47.4452i 0.0354029 + 1.57279i
\(911\) −49.9473 −1.65483 −0.827414 0.561592i \(-0.810189\pi\)
−0.827414 + 0.561592i \(0.810189\pi\)
\(912\) 0 0
\(913\) −2.02633 3.50971i −0.0670619 0.116155i
\(914\) 1.66228 2.87915i 0.0549833 0.0952338i
\(915\) 0 0
\(916\) −11.1623 + 19.3336i −0.368812 + 0.638801i
\(917\) −26.3246 + 45.5955i −0.869313 + 1.50569i
\(918\) 0 0
\(919\) −1.67544 + 2.90196i −0.0552678 + 0.0957267i −0.892336 0.451372i \(-0.850935\pi\)
0.837068 + 0.547099i \(0.184268\pi\)
\(920\) −14.9057 25.8174i −0.491426 0.851175i
\(921\) 0 0
\(922\) 18.4868 0.608831
\(923\) 22.6491 + 12.4054i 0.745505 + 0.408330i
\(924\) 0 0
\(925\) −23.6491 40.9615i −0.777578 1.34680i
\(926\) −7.58114 13.1309i −0.249132 0.431509i
\(927\) 0 0
\(928\) −1.83772 −0.0603262
\(929\) −14.4737 + 25.0691i −0.474866 + 0.822491i −0.999586 0.0287835i \(-0.990837\pi\)
0.524720 + 0.851275i \(0.324170\pi\)
\(930\) 0 0
\(931\) −15.4868 −0.507560
\(932\) 8.32456 14.4186i 0.272680 0.472295i
\(933\) 0 0
\(934\) −3.09431 5.35949i −0.101249 0.175368i
\(935\) 14.5132 0.474631
\(936\) 0 0
\(937\) 14.2982 0.467103 0.233551 0.972344i \(-0.424965\pi\)
0.233551 + 0.972344i \(0.424965\pi\)
\(938\) 4.48683 + 7.77142i 0.146500 + 0.253746i
\(939\) 0 0
\(940\) −10.0680 + 17.4382i −0.328381 + 0.568773i
\(941\) −48.5964 −1.58420 −0.792099 0.610392i \(-0.791012\pi\)
−0.792099 + 0.610392i \(0.791012\pi\)
\(942\) 0 0
\(943\) −10.7434 + 18.6081i −0.349854 + 0.605965i
\(944\) −2.32456 −0.0756578
\(945\) 0 0
\(946\) 5.32456 + 9.22240i 0.173116 + 0.299846i
\(947\) −9.48683 16.4317i −0.308281 0.533958i 0.669706 0.742627i \(-0.266420\pi\)
−0.977986 + 0.208669i \(0.933087\pi\)
\(948\) 0 0
\(949\) −0.0811388 3.60464i −0.00263388 0.117012i
\(950\) −63.6228 −2.06420
\(951\) 0 0
\(952\) 4.74342 + 8.21584i 0.153735 + 0.266277i
\(953\) 13.6491 23.6410i 0.442138 0.765806i −0.555710 0.831376i \(-0.687553\pi\)
0.997848 + 0.0655707i \(0.0208868\pi\)
\(954\) 0 0
\(955\) −29.8114 + 51.6348i −0.964674 + 1.67086i
\(956\) 10.7434 18.6081i 0.347467 0.601830i
\(957\) 0 0
\(958\) 12.0000 20.7846i 0.387702 0.671520i
\(959\) 4.74342 + 8.21584i 0.153173 + 0.265303i
\(960\) 0 0
\(961\) 9.00000 0.290323
\(962\) −12.1359 6.64713i −0.391279 0.214312i
\(963\) 0 0
\(964\) −6.66228 11.5394i −0.214578 0.371659i
\(965\) 41.5680 + 71.9978i 1.33812 + 2.31769i
\(966\) 0 0
\(967\) 34.5132 1.10987 0.554934 0.831894i \(-0.312743\pi\)
0.554934 + 0.831894i \(0.312743\pi\)
\(968\) 4.82456 8.35637i 0.155067 0.268584i
\(969\) 0 0
\(970\) −16.6491 −0.534571
\(971\) 9.48683 16.4317i 0.304447 0.527318i −0.672691 0.739923i \(-0.734862\pi\)
0.977138 + 0.212606i \(0.0681950\pi\)
\(972\) 0 0
\(973\) 10.0000 + 17.3205i 0.320585 + 0.555270i
\(974\) −13.4868 −0.432146
\(975\) 0 0
\(976\) 0.162278 0.00519438
\(977\) −10.5000 18.1865i −0.335925 0.581839i 0.647737 0.761864i \(-0.275715\pi\)
−0.983662 + 0.180025i \(0.942382\pi\)
\(978\) 0 0
\(979\) 6.97367 12.0787i 0.222879 0.386038i
\(980\) 12.4868 0.398877
\(981\) 0 0
\(982\) −2.90569 + 5.03281i −0.0927244 + 0.160603i
\(983\) 23.6228 0.753450 0.376725 0.926325i \(-0.377050\pi\)
0.376725 + 0.926325i \(0.377050\pi\)
\(984\) 0 0
\(985\) −39.4868 68.3932i −1.25816 2.17919i
\(986\) −2.75658 4.77454i −0.0877875 0.152052i
\(987\) 0 0
\(988\) −15.9057 + 9.66682i −0.506028 + 0.307542i
\(989\) 65.6228 2.08668
\(990\) 0 0
\(991\) −13.3925 23.1965i −0.425428 0.736862i 0.571033 0.820927i \(-0.306543\pi\)
−0.996460 + 0.0840651i \(0.973210\pi\)
\(992\) 3.16228 5.47723i 0.100402 0.173902i
\(993\) 0 0
\(994\) 11.3246 19.6147i 0.359193 0.622141i
\(995\) 13.5548 23.4776i 0.429716 0.744290i
\(996\) 0 0
\(997\) 29.7302 51.4943i 0.941566 1.63084i 0.179082 0.983834i \(-0.442687\pi\)
0.762484 0.647007i \(-0.223979\pi\)
\(998\) −6.32456 10.9545i −0.200200 0.346757i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.h.d.55.2 4
3.2 odd 2 234.2.h.e.55.1 yes 4
4.3 odd 2 1872.2.t.p.289.2 4
12.11 even 2 1872.2.t.n.289.1 4
13.2 odd 12 3042.2.b.k.1351.1 4
13.3 even 3 3042.2.a.w.1.2 2
13.9 even 3 inner 234.2.h.d.217.2 yes 4
13.10 even 6 3042.2.a.q.1.1 2
13.11 odd 12 3042.2.b.k.1351.4 4
39.2 even 12 3042.2.b.j.1351.4 4
39.11 even 12 3042.2.b.j.1351.1 4
39.23 odd 6 3042.2.a.x.1.2 2
39.29 odd 6 3042.2.a.r.1.1 2
39.35 odd 6 234.2.h.e.217.1 yes 4
52.35 odd 6 1872.2.t.p.1153.2 4
156.35 even 6 1872.2.t.n.1153.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.h.d.55.2 4 1.1 even 1 trivial
234.2.h.d.217.2 yes 4 13.9 even 3 inner
234.2.h.e.55.1 yes 4 3.2 odd 2
234.2.h.e.217.1 yes 4 39.35 odd 6
1872.2.t.n.289.1 4 12.11 even 2
1872.2.t.n.1153.1 4 156.35 even 6
1872.2.t.p.289.2 4 4.3 odd 2
1872.2.t.p.1153.2 4 52.35 odd 6
3042.2.a.q.1.1 2 13.10 even 6
3042.2.a.r.1.1 2 39.29 odd 6
3042.2.a.w.1.2 2 13.3 even 3
3042.2.a.x.1.2 2 39.23 odd 6
3042.2.b.j.1351.1 4 39.11 even 12
3042.2.b.j.1351.4 4 39.2 even 12
3042.2.b.k.1351.1 4 13.2 odd 12
3042.2.b.k.1351.4 4 13.11 odd 12