Properties

Label 234.6.a.h
Level 234234
Weight 66
Character orbit 234.a
Self dual yes
Analytic conductor 37.53037.530
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 234=23213 234 = 2 \cdot 3^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 37.529813836237.5298138362
Analytic rank: 00
Dimension: 22
Coefficient field: Q(849)\Q(\sqrt{849})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x212 x^{2} - x - 212 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 26)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+3849)\beta = \frac{1}{2}(-1 + 3\sqrt{849}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4q2+16q4+(β37)q5+(3β+79)q764q8+(4β+148)q10+(8β+114)q11169q13+(12β316)q14+256q16+(43β+73)q17++(1860β26496)q98+O(q100) q - 4 q^{2} + 16 q^{4} + ( - \beta - 37) q^{5} + (3 \beta + 79) q^{7} - 64 q^{8} + (4 \beta + 148) q^{10} + (8 \beta + 114) q^{11} - 169 q^{13} + ( - 12 \beta - 316) q^{14} + 256 q^{16} + ( - 43 \beta + 73) q^{17}+ \cdots + ( - 1860 \beta - 26496) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q2+32q473q5+155q7128q8+292q10+220q11338q13620q14+512q16+189q172496q191168q20880q22+3044q23+235q25+51132q98+O(q100) 2 q - 8 q^{2} + 32 q^{4} - 73 q^{5} + 155 q^{7} - 128 q^{8} + 292 q^{10} + 220 q^{11} - 338 q^{13} - 620 q^{14} + 512 q^{16} + 189 q^{17} - 2496 q^{19} - 1168 q^{20} - 880 q^{22} + 3044 q^{23} + 235 q^{25}+ \cdots - 51132 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
15.0688
−14.0688
−4.00000 0 16.0000 −80.2064 0 208.619 −64.0000 0 320.826
1.2 −4.00000 0 16.0000 7.20641 0 −53.6192 −64.0000 0 −28.8256
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.6.a.h 2
3.b odd 2 1 26.6.a.c 2
12.b even 2 1 208.6.a.g 2
15.d odd 2 1 650.6.a.b 2
15.e even 4 2 650.6.b.h 4
24.f even 2 1 832.6.a.m 2
24.h odd 2 1 832.6.a.k 2
39.d odd 2 1 338.6.a.f 2
39.f even 4 2 338.6.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.c 2 3.b odd 2 1
208.6.a.g 2 12.b even 2 1
234.6.a.h 2 1.a even 1 1 trivial
338.6.a.f 2 39.d odd 2 1
338.6.b.b 4 39.f even 4 2
650.6.a.b 2 15.d odd 2 1
650.6.b.h 4 15.e even 4 2
832.6.a.k 2 24.h odd 2 1
832.6.a.m 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(234))S_{6}^{\mathrm{new}}(\Gamma_0(234)):

T52+73T5578 T_{5}^{2} + 73T_{5} - 578 Copy content Toggle raw display
T72155T711186 T_{7}^{2} - 155T_{7} - 11186 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+73T578 T^{2} + 73T - 578 Copy content Toggle raw display
77 T2155T11186 T^{2} - 155T - 11186 Copy content Toggle raw display
1111 T2220T110156 T^{2} - 220T - 110156 Copy content Toggle raw display
1313 (T+169)2 (T + 169)^{2} Copy content Toggle raw display
1717 T2189T3523122 T^{2} - 189 T - 3523122 Copy content Toggle raw display
1919 T2+2496T+793404 T^{2} + 2496 T + 793404 Copy content Toggle raw display
2323 T23044T159200 T^{2} - 3044 T - 159200 Copy content Toggle raw display
2929 T2+1900T13890476 T^{2} + 1900 T - 13890476 Copy content Toggle raw display
3131 T22798T28369928 T^{2} - 2798 T - 28369928 Copy content Toggle raw display
3737 T217805T+72604926 T^{2} - 17805 T + 72604926 Copy content Toggle raw display
4141 T2+11634T11466000 T^{2} + 11634 T - 11466000 Copy content Toggle raw display
4343 T2+4069T6040532 T^{2} + 4069 T - 6040532 Copy content Toggle raw display
4747 T225489T+127607974 T^{2} - 25489 T + 127607974 Copy content Toggle raw display
5353 T24614T129839400 T^{2} - 4614 T - 129839400 Copy content Toggle raw display
5959 T223420T+92989684 T^{2} - 23420 T + 92989684 Copy content Toggle raw display
6161 T2++2309711776 T^{2} + \cdots + 2309711776 Copy content Toggle raw display
6767 T2++1295720044 T^{2} + \cdots + 1295720044 Copy content Toggle raw display
7171 T2+1862988962 T^{2} + \cdots - 1862988962 Copy content Toggle raw display
7373 T2+1462893860 T^{2} + \cdots - 1462893860 Copy content Toggle raw display
7979 T252024T+439936528 T^{2} - 52024 T + 439936528 Copy content Toggle raw display
8383 T237758T+83472480 T^{2} - 37758 T + 83472480 Copy content Toggle raw display
8989 T2++1072134396 T^{2} + \cdots + 1072134396 Copy content Toggle raw display
9797 T2+4229773940 T^{2} + \cdots - 4229773940 Copy content Toggle raw display
show more
show less