Properties

Label 234.8.a.j
Level 234234
Weight 88
Character orbit 234.a
Self dual yes
Analytic conductor 73.09873.098
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,8,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 234=23213 234 = 2 \cdot 3^{2} \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.098095963373.0980959633
Analytic rank: 00
Dimension: 22
Coefficient field: Q(114)\Q(\sqrt{114})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2114 x^{2} - 114 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 78)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=6114\beta = 6\sqrt{114}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+8q2+64q4+(5β200)q5+(9β+1204)q7+512q8+(40β1600)q10+(98β+662)q112197q13+(72β+9632)q14+4096q16+(106β+8406)q17++(173376β+7667976)q98+O(q100) q + 8 q^{2} + 64 q^{4} + (5 \beta - 200) q^{5} + ( - 9 \beta + 1204) q^{7} + 512 q^{8} + (40 \beta - 1600) q^{10} + (98 \beta + 662) q^{11} - 2197 q^{13} + ( - 72 \beta + 9632) q^{14} + 4096 q^{16} + ( - 106 \beta + 8406) q^{17}+ \cdots + ( - 173376 \beta + 7667976) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+16q2+128q4400q5+2408q7+1024q83200q10+1324q114394q13+19264q14+8192q16+16812q17+3048q1925600q20+10592q2214824q23++15335952q98+O(q100) 2 q + 16 q^{2} + 128 q^{4} - 400 q^{5} + 2408 q^{7} + 1024 q^{8} - 3200 q^{10} + 1324 q^{11} - 4394 q^{13} + 19264 q^{14} + 8192 q^{16} + 16812 q^{17} + 3048 q^{19} - 25600 q^{20} + 10592 q^{22} - 14824 q^{23}+ \cdots + 15335952 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−10.6771
10.6771
8.00000 0 64.0000 −520.312 0 1780.56 512.000 0 −4162.50
1.2 8.00000 0 64.0000 120.312 0 627.438 512.000 0 962.499
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.8.a.j 2
3.b odd 2 1 78.8.a.c 2
12.b even 2 1 624.8.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.8.a.c 2 3.b odd 2 1
234.8.a.j 2 1.a even 1 1 trivial
624.8.a.k 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+400T562600 T_{5}^{2} + 400T_{5} - 62600 acting on S8new(Γ0(234))S_{8}^{\mathrm{new}}(\Gamma_0(234)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T8)2 (T - 8)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+400T62600 T^{2} + 400T - 62600 Copy content Toggle raw display
77 T22408T+1117192 T^{2} - 2408 T + 1117192 Copy content Toggle raw display
1111 T21324T38976572 T^{2} - 1324 T - 38976572 Copy content Toggle raw display
1313 (T+2197)2 (T + 2197)^{2} Copy content Toggle raw display
1717 T216812T+24548292 T^{2} - 16812 T + 24548292 Copy content Toggle raw display
1919 T23048T19547640 T^{2} - 3048 T - 19547640 Copy content Toggle raw display
2323 T2+2072575856 T^{2} + \cdots - 2072575856 Copy content Toggle raw display
2929 T2+29028959900 T^{2} + \cdots - 29028959900 Copy content Toggle raw display
3131 T2+21461167112 T^{2} + \cdots - 21461167112 Copy content Toggle raw display
3737 T2++32819854788 T^{2} + \cdots + 32819854788 Copy content Toggle raw display
4141 T2++126093134520 T^{2} + \cdots + 126093134520 Copy content Toggle raw display
4343 T2+86763332240 T^{2} + \cdots - 86763332240 Copy content Toggle raw display
4747 T2+714897788444 T^{2} + \cdots - 714897788444 Copy content Toggle raw display
5353 T2++218668340484 T^{2} + \cdots + 218668340484 Copy content Toggle raw display
5959 T2++556929725380 T^{2} + \cdots + 556929725380 Copy content Toggle raw display
6161 T2++702161944228 T^{2} + \cdots + 702161944228 Copy content Toggle raw display
6767 T2++2547997901176 T^{2} + \cdots + 2547997901176 Copy content Toggle raw display
7171 T2+13154135033660 T^{2} + \cdots - 13154135033660 Copy content Toggle raw display
7373 T2+11219022065468 T^{2} + \cdots - 11219022065468 Copy content Toggle raw display
7979 T2+741202679360 T^{2} + \cdots - 741202679360 Copy content Toggle raw display
8383 T2++98487631136196 T^{2} + \cdots + 98487631136196 Copy content Toggle raw display
8989 T2++11369157188040 T^{2} + \cdots + 11369157188040 Copy content Toggle raw display
9797 T2++99795841913188 T^{2} + \cdots + 99795841913188 Copy content Toggle raw display
show more
show less