Properties

Label 234.8.a.j
Level $234$
Weight $8$
Character orbit 234.a
Self dual yes
Analytic conductor $73.098$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,8,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.0980959633\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{114}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 114 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{114}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + (5 \beta - 200) q^{5} + ( - 9 \beta + 1204) q^{7} + 512 q^{8} + (40 \beta - 1600) q^{10} + (98 \beta + 662) q^{11} - 2197 q^{13} + ( - 72 \beta + 9632) q^{14} + 4096 q^{16} + ( - 106 \beta + 8406) q^{17}+ \cdots + ( - 173376 \beta + 7667976) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 128 q^{4} - 400 q^{5} + 2408 q^{7} + 1024 q^{8} - 3200 q^{10} + 1324 q^{11} - 4394 q^{13} + 19264 q^{14} + 8192 q^{16} + 16812 q^{17} + 3048 q^{19} - 25600 q^{20} + 10592 q^{22} - 14824 q^{23}+ \cdots + 15335952 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.6771
10.6771
8.00000 0 64.0000 −520.312 0 1780.56 512.000 0 −4162.50
1.2 8.00000 0 64.0000 120.312 0 627.438 512.000 0 962.499
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.8.a.j 2
3.b odd 2 1 78.8.a.c 2
12.b even 2 1 624.8.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.8.a.c 2 3.b odd 2 1
234.8.a.j 2 1.a even 1 1 trivial
624.8.a.k 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 400T_{5} - 62600 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(234))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 400T - 62600 \) Copy content Toggle raw display
$7$ \( T^{2} - 2408 T + 1117192 \) Copy content Toggle raw display
$11$ \( T^{2} - 1324 T - 38976572 \) Copy content Toggle raw display
$13$ \( (T + 2197)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 16812 T + 24548292 \) Copy content Toggle raw display
$19$ \( T^{2} - 3048 T - 19547640 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 2072575856 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 29028959900 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 21461167112 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 32819854788 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 126093134520 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 86763332240 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 714897788444 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 218668340484 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 556929725380 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 702161944228 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2547997901176 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 13154135033660 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 11219022065468 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 741202679360 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 98487631136196 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 11369157188040 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 99795841913188 \) Copy content Toggle raw display
show more
show less