Properties

Label 2352.1.z.c
Level 23522352
Weight 11
Character orbit 2352.z
Analytic conductor 1.1741.174
Analytic rank 00
Dimension 22
Projective image D2D_{2}
CM/RM discs -3, -84, 28
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,1,Mod(815,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.815");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2352.z (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.173800909711.17380090971
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 336)
Projective image: D2D_{2}
Projective field: Galois closure of Q(3,7)\Q(\sqrt{-3}, \sqrt{7})
Artin image: C3×D4C_3\times D_4
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ62q3ζ6q92ζ6q19ζ62q25q272ζ62q31+2ζ6q372q57ζ6q75+ζ62q812ζ6q93+O(q100) q - \zeta_{6}^{2} q^{3} - \zeta_{6} q^{9} - 2 \zeta_{6} q^{19} - \zeta_{6}^{2} q^{25} - q^{27} - 2 \zeta_{6}^{2} q^{31} + 2 \zeta_{6} q^{37} - 2 q^{57} - \zeta_{6} q^{75} + \zeta_{6}^{2} q^{81} - 2 \zeta_{6} q^{93} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q3q92q19+q252q27+2q31+2q374q57q75q812q93+O(q100) 2 q + q^{3} - q^{9} - 2 q^{19} + q^{25} - 2 q^{27} + 2 q^{31} + 2 q^{37} - 4 q^{57} - q^{75} - q^{81} - 2 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2352Z)×\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times.

nn 785785 14711471 17651765 22572257
χ(n)\chi(n) 1-1 1-1 11 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
815.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 0 0 0 0 −0.500000 0.866025i 0
1391.1 0 0.500000 + 0.866025i 0 0 0 0 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
28.d even 2 1 RM by Q(7)\Q(\sqrt{7})
84.h odd 2 1 CM by Q(21)\Q(\sqrt{-21})
7.c even 3 1 inner
21.h odd 6 1 inner
28.f even 6 1 inner
84.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.1.z.c 2
3.b odd 2 1 CM 2352.1.z.c 2
4.b odd 2 1 2352.1.z.b 2
7.b odd 2 1 2352.1.z.b 2
7.c even 3 1 336.1.o.a 1
7.c even 3 1 inner 2352.1.z.c 2
7.d odd 6 1 336.1.o.b yes 1
7.d odd 6 1 2352.1.z.b 2
12.b even 2 1 2352.1.z.b 2
21.c even 2 1 2352.1.z.b 2
21.g even 6 1 336.1.o.b yes 1
21.g even 6 1 2352.1.z.b 2
21.h odd 6 1 336.1.o.a 1
21.h odd 6 1 inner 2352.1.z.c 2
28.d even 2 1 RM 2352.1.z.c 2
28.f even 6 1 336.1.o.a 1
28.f even 6 1 inner 2352.1.z.c 2
28.g odd 6 1 336.1.o.b yes 1
28.g odd 6 1 2352.1.z.b 2
56.j odd 6 1 1344.1.o.a 1
56.k odd 6 1 1344.1.o.a 1
56.m even 6 1 1344.1.o.b 1
56.p even 6 1 1344.1.o.b 1
84.h odd 2 1 CM 2352.1.z.c 2
84.j odd 6 1 336.1.o.a 1
84.j odd 6 1 inner 2352.1.z.c 2
84.n even 6 1 336.1.o.b yes 1
84.n even 6 1 2352.1.z.b 2
168.s odd 6 1 1344.1.o.b 1
168.v even 6 1 1344.1.o.a 1
168.ba even 6 1 1344.1.o.a 1
168.be odd 6 1 1344.1.o.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.1.o.a 1 7.c even 3 1
336.1.o.a 1 21.h odd 6 1
336.1.o.a 1 28.f even 6 1
336.1.o.a 1 84.j odd 6 1
336.1.o.b yes 1 7.d odd 6 1
336.1.o.b yes 1 21.g even 6 1
336.1.o.b yes 1 28.g odd 6 1
336.1.o.b yes 1 84.n even 6 1
1344.1.o.a 1 56.j odd 6 1
1344.1.o.a 1 56.k odd 6 1
1344.1.o.a 1 168.v even 6 1
1344.1.o.a 1 168.ba even 6 1
1344.1.o.b 1 56.m even 6 1
1344.1.o.b 1 56.p even 6 1
1344.1.o.b 1 168.s odd 6 1
1344.1.o.b 1 168.be odd 6 1
2352.1.z.b 2 4.b odd 2 1
2352.1.z.b 2 7.b odd 2 1
2352.1.z.b 2 7.d odd 6 1
2352.1.z.b 2 12.b even 2 1
2352.1.z.b 2 21.c even 2 1
2352.1.z.b 2 21.g even 6 1
2352.1.z.b 2 28.g odd 6 1
2352.1.z.b 2 84.n even 6 1
2352.1.z.c 2 1.a even 1 1 trivial
2352.1.z.c 2 3.b odd 2 1 CM
2352.1.z.c 2 7.c even 3 1 inner
2352.1.z.c 2 21.h odd 6 1 inner
2352.1.z.c 2 28.d even 2 1 RM
2352.1.z.c 2 28.f even 6 1 inner
2352.1.z.c 2 84.h odd 2 1 CM
2352.1.z.c 2 84.j odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2352,[χ])S_{1}^{\mathrm{new}}(2352, [\chi]):

T13 T_{13} Copy content Toggle raw display
T192+2T19+4 T_{19}^{2} + 2T_{19} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
3737 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less