gp: [N,k,chi] = [2352,2,Mod(881,2352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2352.881");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-3,0,-6,0,0,0,3,0,0,0,0,0,9,0,-6,0,0,0,0,0,0,0,8,0,0,0,0,
0,0,0,-9,0,0,0,14]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 2352 Z ) × \left(\mathbb{Z}/2352\mathbb{Z}\right)^\times ( Z / 2 3 5 2 Z ) × .
n n n
785 785 7 8 5
1471 1471 1 4 7 1
1765 1765 1 7 6 5
2257 2257 2 2 5 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2352 , [ χ ] ) S_{2}^{\mathrm{new}}(2352, [\chi]) S 2 n e w ( 2 3 5 2 , [ χ ] ) :
T 5 + 3 T_{5} + 3 T 5 + 3
T5 + 3
T 13 T_{13} T 1 3
T13
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 3 T + 3 T^{2} + 3T + 3 T 2 + 3 T + 3
T^2 + 3*T + 3
5 5 5
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
13 13 1 3
T 2 T^{2} T 2
T^2
17 17 1 7
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
19 19 1 9
T 2 + 3 T^{2} + 3 T 2 + 3
T^2 + 3
23 23 2 3
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 + 3 T^{2} + 3 T 2 + 3
T^2 + 3
37 37 3 7
( T − 7 ) 2 (T - 7)^{2} ( T − 7 ) 2
(T - 7)^2
41 41 4 1
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
43 43 4 3
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
47 47 4 7
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
53 53 5 3
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
59 59 5 9
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
61 61 6 1
T 2 + 147 T^{2} + 147 T 2 + 1 4 7
T^2 + 147
67 67 6 7
( T + 5 ) 2 (T + 5)^{2} ( T + 5 ) 2
(T + 5)^2
71 71 7 1
T 2 + 108 T^{2} + 108 T 2 + 1 0 8
T^2 + 108
73 73 7 3
T 2 + 147 T^{2} + 147 T 2 + 1 4 7
T^2 + 147
79 79 7 9
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
83 83 8 3
( T + 12 ) 2 (T + 12)^{2} ( T + 1 2 ) 2
(T + 12)^2
89 89 8 9
( T − 9 ) 2 (T - 9)^{2} ( T − 9 ) 2
(T - 9)^2
97 97 9 7
T 2 + 48 T^{2} + 48 T 2 + 4 8
T^2 + 48
show more
show less