Properties

Label 2352.2.k.a
Level 23522352
Weight 22
Character orbit 2352.k
Analytic conductor 18.78118.781
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,2,Mod(881,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2352.k (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.780814555418.7808145554
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ62)q33q5+(3ζ6+3)q9+(6ζ63)q11+(3ζ6+6)q153q17+(2ζ61)q19+(6ζ63)q23+4q25+(6ζ63)q27++(9ζ6+9)q99+O(q100) q + (\zeta_{6} - 2) q^{3} - 3 q^{5} + ( - 3 \zeta_{6} + 3) q^{9} + (6 \zeta_{6} - 3) q^{11} + ( - 3 \zeta_{6} + 6) q^{15} - 3 q^{17} + (2 \zeta_{6} - 1) q^{19} + (6 \zeta_{6} - 3) q^{23} + 4 q^{25} + (6 \zeta_{6} - 3) q^{27}+ \cdots + (9 \zeta_{6} + 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q36q5+3q9+9q156q17+8q259q33+14q3712q418q439q45+6q47+9q513q576q5910q679q6912q75++27q99+O(q100) 2 q - 3 q^{3} - 6 q^{5} + 3 q^{9} + 9 q^{15} - 6 q^{17} + 8 q^{25} - 9 q^{33} + 14 q^{37} - 12 q^{41} - 8 q^{43} - 9 q^{45} + 6 q^{47} + 9 q^{51} - 3 q^{57} - 6 q^{59} - 10 q^{67} - 9 q^{69} - 12 q^{75}+ \cdots + 27 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2352Z)×\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times.

nn 785785 14711471 17651765 22572257
χ(n)\chi(n) 1-1 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
881.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 0.866025i 0 −3.00000 0 0 0 1.50000 + 2.59808i 0
881.2 0 −1.50000 + 0.866025i 0 −3.00000 0 0 0 1.50000 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.k.a 2
3.b odd 2 1 2352.2.k.d 2
4.b odd 2 1 588.2.f.c 2
7.b odd 2 1 2352.2.k.d 2
7.c even 3 1 336.2.bc.d 2
7.d odd 6 1 336.2.bc.b 2
12.b even 2 1 588.2.f.a 2
21.c even 2 1 inner 2352.2.k.a 2
21.g even 6 1 336.2.bc.d 2
21.h odd 6 1 336.2.bc.b 2
28.d even 2 1 588.2.f.a 2
28.f even 6 1 84.2.k.b yes 2
28.f even 6 1 588.2.k.d 2
28.g odd 6 1 84.2.k.a 2
28.g odd 6 1 588.2.k.c 2
84.h odd 2 1 588.2.f.c 2
84.j odd 6 1 84.2.k.a 2
84.j odd 6 1 588.2.k.c 2
84.n even 6 1 84.2.k.b yes 2
84.n even 6 1 588.2.k.d 2
140.p odd 6 1 2100.2.bi.f 2
140.s even 6 1 2100.2.bi.e 2
140.w even 12 2 2100.2.bo.a 4
140.x odd 12 2 2100.2.bo.f 4
252.n even 6 1 2268.2.bm.f 2
252.o even 6 1 2268.2.bm.f 2
252.r odd 6 1 2268.2.w.f 2
252.u odd 6 1 2268.2.w.f 2
252.bb even 6 1 2268.2.w.a 2
252.bj even 6 1 2268.2.w.a 2
252.bl odd 6 1 2268.2.bm.a 2
252.bn odd 6 1 2268.2.bm.a 2
420.ba even 6 1 2100.2.bi.e 2
420.be odd 6 1 2100.2.bi.f 2
420.bp odd 12 2 2100.2.bo.f 4
420.br even 12 2 2100.2.bo.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.k.a 2 28.g odd 6 1
84.2.k.a 2 84.j odd 6 1
84.2.k.b yes 2 28.f even 6 1
84.2.k.b yes 2 84.n even 6 1
336.2.bc.b 2 7.d odd 6 1
336.2.bc.b 2 21.h odd 6 1
336.2.bc.d 2 7.c even 3 1
336.2.bc.d 2 21.g even 6 1
588.2.f.a 2 12.b even 2 1
588.2.f.a 2 28.d even 2 1
588.2.f.c 2 4.b odd 2 1
588.2.f.c 2 84.h odd 2 1
588.2.k.c 2 28.g odd 6 1
588.2.k.c 2 84.j odd 6 1
588.2.k.d 2 28.f even 6 1
588.2.k.d 2 84.n even 6 1
2100.2.bi.e 2 140.s even 6 1
2100.2.bi.e 2 420.ba even 6 1
2100.2.bi.f 2 140.p odd 6 1
2100.2.bi.f 2 420.be odd 6 1
2100.2.bo.a 4 140.w even 12 2
2100.2.bo.a 4 420.br even 12 2
2100.2.bo.f 4 140.x odd 12 2
2100.2.bo.f 4 420.bp odd 12 2
2268.2.w.a 2 252.bb even 6 1
2268.2.w.a 2 252.bj even 6 1
2268.2.w.f 2 252.r odd 6 1
2268.2.w.f 2 252.u odd 6 1
2268.2.bm.a 2 252.bl odd 6 1
2268.2.bm.a 2 252.bn odd 6 1
2268.2.bm.f 2 252.n even 6 1
2268.2.bm.f 2 252.o even 6 1
2352.2.k.a 2 1.a even 1 1 trivial
2352.2.k.a 2 21.c even 2 1 inner
2352.2.k.d 2 3.b odd 2 1
2352.2.k.d 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2352,[χ])S_{2}^{\mathrm{new}}(2352, [\chi]):

T5+3 T_{5} + 3 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+27 T^{2} + 27 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1919 T2+3 T^{2} + 3 Copy content Toggle raw display
2323 T2+27 T^{2} + 27 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+3 T^{2} + 3 Copy content Toggle raw display
3737 (T7)2 (T - 7)^{2} Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
4747 (T3)2 (T - 3)^{2} Copy content Toggle raw display
5353 T2+27 T^{2} + 27 Copy content Toggle raw display
5959 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
6161 T2+147 T^{2} + 147 Copy content Toggle raw display
6767 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
7171 T2+108 T^{2} + 108 Copy content Toggle raw display
7373 T2+147 T^{2} + 147 Copy content Toggle raw display
7979 (T1)2 (T - 1)^{2} Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 (T9)2 (T - 9)^{2} Copy content Toggle raw display
9797 T2+48 T^{2} + 48 Copy content Toggle raw display
show more
show less