Properties

Label 2352.2.k.a
Level $2352$
Weight $2$
Character orbit 2352.k
Analytic conductor $18.781$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,2,Mod(881,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 2) q^{3} - 3 q^{5} + ( - 3 \zeta_{6} + 3) q^{9} + (6 \zeta_{6} - 3) q^{11} + ( - 3 \zeta_{6} + 6) q^{15} - 3 q^{17} + (2 \zeta_{6} - 1) q^{19} + (6 \zeta_{6} - 3) q^{23} + 4 q^{25} + (6 \zeta_{6} - 3) q^{27}+ \cdots + (9 \zeta_{6} + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} - 6 q^{5} + 3 q^{9} + 9 q^{15} - 6 q^{17} + 8 q^{25} - 9 q^{33} + 14 q^{37} - 12 q^{41} - 8 q^{43} - 9 q^{45} + 6 q^{47} + 9 q^{51} - 3 q^{57} - 6 q^{59} - 10 q^{67} - 9 q^{69} - 12 q^{75}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 0.866025i 0 −3.00000 0 0 0 1.50000 + 2.59808i 0
881.2 0 −1.50000 + 0.866025i 0 −3.00000 0 0 0 1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.k.a 2
3.b odd 2 1 2352.2.k.d 2
4.b odd 2 1 588.2.f.c 2
7.b odd 2 1 2352.2.k.d 2
7.c even 3 1 336.2.bc.d 2
7.d odd 6 1 336.2.bc.b 2
12.b even 2 1 588.2.f.a 2
21.c even 2 1 inner 2352.2.k.a 2
21.g even 6 1 336.2.bc.d 2
21.h odd 6 1 336.2.bc.b 2
28.d even 2 1 588.2.f.a 2
28.f even 6 1 84.2.k.b yes 2
28.f even 6 1 588.2.k.d 2
28.g odd 6 1 84.2.k.a 2
28.g odd 6 1 588.2.k.c 2
84.h odd 2 1 588.2.f.c 2
84.j odd 6 1 84.2.k.a 2
84.j odd 6 1 588.2.k.c 2
84.n even 6 1 84.2.k.b yes 2
84.n even 6 1 588.2.k.d 2
140.p odd 6 1 2100.2.bi.f 2
140.s even 6 1 2100.2.bi.e 2
140.w even 12 2 2100.2.bo.a 4
140.x odd 12 2 2100.2.bo.f 4
252.n even 6 1 2268.2.bm.f 2
252.o even 6 1 2268.2.bm.f 2
252.r odd 6 1 2268.2.w.f 2
252.u odd 6 1 2268.2.w.f 2
252.bb even 6 1 2268.2.w.a 2
252.bj even 6 1 2268.2.w.a 2
252.bl odd 6 1 2268.2.bm.a 2
252.bn odd 6 1 2268.2.bm.a 2
420.ba even 6 1 2100.2.bi.e 2
420.be odd 6 1 2100.2.bi.f 2
420.bp odd 12 2 2100.2.bo.f 4
420.br even 12 2 2100.2.bo.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.k.a 2 28.g odd 6 1
84.2.k.a 2 84.j odd 6 1
84.2.k.b yes 2 28.f even 6 1
84.2.k.b yes 2 84.n even 6 1
336.2.bc.b 2 7.d odd 6 1
336.2.bc.b 2 21.h odd 6 1
336.2.bc.d 2 7.c even 3 1
336.2.bc.d 2 21.g even 6 1
588.2.f.a 2 12.b even 2 1
588.2.f.a 2 28.d even 2 1
588.2.f.c 2 4.b odd 2 1
588.2.f.c 2 84.h odd 2 1
588.2.k.c 2 28.g odd 6 1
588.2.k.c 2 84.j odd 6 1
588.2.k.d 2 28.f even 6 1
588.2.k.d 2 84.n even 6 1
2100.2.bi.e 2 140.s even 6 1
2100.2.bi.e 2 420.ba even 6 1
2100.2.bi.f 2 140.p odd 6 1
2100.2.bi.f 2 420.be odd 6 1
2100.2.bo.a 4 140.w even 12 2
2100.2.bo.a 4 420.br even 12 2
2100.2.bo.f 4 140.x odd 12 2
2100.2.bo.f 4 420.bp odd 12 2
2268.2.w.a 2 252.bb even 6 1
2268.2.w.a 2 252.bj even 6 1
2268.2.w.f 2 252.r odd 6 1
2268.2.w.f 2 252.u odd 6 1
2268.2.bm.a 2 252.bl odd 6 1
2268.2.bm.a 2 252.bn odd 6 1
2268.2.bm.f 2 252.n even 6 1
2268.2.bm.f 2 252.o even 6 1
2352.2.k.a 2 1.a even 1 1 trivial
2352.2.k.a 2 21.c even 2 1 inner
2352.2.k.d 2 3.b odd 2 1
2352.2.k.d 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 27 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 3 \) Copy content Toggle raw display
$23$ \( T^{2} + 27 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3 \) Copy content Toggle raw display
$37$ \( (T - 7)^{2} \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 27 \) Copy content Toggle raw display
$59$ \( (T + 3)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 147 \) Copy content Toggle raw display
$67$ \( (T + 5)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 108 \) Copy content Toggle raw display
$73$ \( T^{2} + 147 \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( (T - 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 48 \) Copy content Toggle raw display
show more
show less