Properties

Label 2352.3.f.g.97.3
Level $2352$
Weight $3$
Character 2352.97
Analytic conductor $64.087$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,3,Mod(97,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2352.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.0873581775\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.35911766016.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 78x^{4} - 18x^{3} - 153x^{2} - 230x + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.3
Root \(2.40015 - 0.808379i\) of defining polynomial
Character \(\chi\) \(=\) 2352.97
Dual form 2352.3.f.g.97.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +5.40561i q^{5} -3.00000 q^{9} -10.5344 q^{11} -12.0366i q^{13} +9.36280 q^{15} -24.0714i q^{17} +35.6891i q^{19} +41.3104 q^{23} -4.22066 q^{25} +5.19615i q^{27} -28.6732 q^{29} +5.19884i q^{31} +18.2461i q^{33} -3.81864 q^{37} -20.8481 q^{39} -9.20741i q^{41} -54.2960 q^{43} -16.2168i q^{45} +16.5526i q^{47} -41.6929 q^{51} +19.1664 q^{53} -56.9447i q^{55} +61.8154 q^{57} -12.5009i q^{59} -97.1310i q^{61} +65.0655 q^{65} -0.998156 q^{67} -71.5517i q^{69} +14.8401 q^{71} -59.0037i q^{73} +7.31040i q^{75} +101.512 q^{79} +9.00000 q^{81} -22.7269i q^{83} +130.121 q^{85} +49.6635i q^{87} +114.029i q^{89} +9.00465 q^{93} -192.922 q^{95} -153.333i q^{97} +31.6031 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} - 44 q^{11} + 12 q^{15} + 96 q^{23} - 84 q^{25} + 68 q^{29} + 236 q^{37} - 36 q^{39} + 92 q^{43} + 72 q^{51} - 20 q^{53} + 84 q^{57} + 296 q^{65} + 44 q^{67} + 392 q^{71} + 328 q^{79} + 72 q^{81}+ \cdots + 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 5.40561i 1.08112i 0.841305 + 0.540561i \(0.181788\pi\)
−0.841305 + 0.540561i \(0.818212\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −10.5344 −0.957670 −0.478835 0.877905i \(-0.658941\pi\)
−0.478835 + 0.877905i \(0.658941\pi\)
\(12\) 0 0
\(13\) − 12.0366i − 0.925896i −0.886386 0.462948i \(-0.846792\pi\)
0.886386 0.462948i \(-0.153208\pi\)
\(14\) 0 0
\(15\) 9.36280 0.624187
\(16\) 0 0
\(17\) − 24.0714i − 1.41596i −0.706230 0.707982i \(-0.749606\pi\)
0.706230 0.707982i \(-0.250394\pi\)
\(18\) 0 0
\(19\) 35.6891i 1.87837i 0.343406 + 0.939187i \(0.388419\pi\)
−0.343406 + 0.939187i \(0.611581\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 41.3104 1.79611 0.898053 0.439888i \(-0.144982\pi\)
0.898053 + 0.439888i \(0.144982\pi\)
\(24\) 0 0
\(25\) −4.22066 −0.168826
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −28.6732 −0.988732 −0.494366 0.869254i \(-0.664600\pi\)
−0.494366 + 0.869254i \(0.664600\pi\)
\(30\) 0 0
\(31\) 5.19884i 0.167704i 0.996478 + 0.0838522i \(0.0267224\pi\)
−0.996478 + 0.0838522i \(0.973278\pi\)
\(32\) 0 0
\(33\) 18.2461i 0.552911i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.81864 −0.103207 −0.0516033 0.998668i \(-0.516433\pi\)
−0.0516033 + 0.998668i \(0.516433\pi\)
\(38\) 0 0
\(39\) −20.8481 −0.534566
\(40\) 0 0
\(41\) − 9.20741i − 0.224571i −0.993676 0.112286i \(-0.964183\pi\)
0.993676 0.112286i \(-0.0358171\pi\)
\(42\) 0 0
\(43\) −54.2960 −1.26270 −0.631349 0.775499i \(-0.717498\pi\)
−0.631349 + 0.775499i \(0.717498\pi\)
\(44\) 0 0
\(45\) − 16.2168i − 0.360374i
\(46\) 0 0
\(47\) 16.5526i 0.352184i 0.984374 + 0.176092i \(0.0563456\pi\)
−0.984374 + 0.176092i \(0.943654\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −41.6929 −0.817507
\(52\) 0 0
\(53\) 19.1664 0.361631 0.180815 0.983517i \(-0.442126\pi\)
0.180815 + 0.983517i \(0.442126\pi\)
\(54\) 0 0
\(55\) − 56.9447i − 1.03536i
\(56\) 0 0
\(57\) 61.8154 1.08448
\(58\) 0 0
\(59\) − 12.5009i − 0.211879i −0.994373 0.105939i \(-0.966215\pi\)
0.994373 0.105939i \(-0.0337850\pi\)
\(60\) 0 0
\(61\) − 97.1310i − 1.59231i −0.605092 0.796156i \(-0.706864\pi\)
0.605092 0.796156i \(-0.293136\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 65.0655 1.00101
\(66\) 0 0
\(67\) −0.998156 −0.0148979 −0.00744893 0.999972i \(-0.502371\pi\)
−0.00744893 + 0.999972i \(0.502371\pi\)
\(68\) 0 0
\(69\) − 71.5517i − 1.03698i
\(70\) 0 0
\(71\) 14.8401 0.209015 0.104507 0.994524i \(-0.466673\pi\)
0.104507 + 0.994524i \(0.466673\pi\)
\(72\) 0 0
\(73\) − 59.0037i − 0.808270i −0.914699 0.404135i \(-0.867573\pi\)
0.914699 0.404135i \(-0.132427\pi\)
\(74\) 0 0
\(75\) 7.31040i 0.0974720i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 101.512 1.28496 0.642478 0.766304i \(-0.277906\pi\)
0.642478 + 0.766304i \(0.277906\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 22.7269i − 0.273818i −0.990584 0.136909i \(-0.956283\pi\)
0.990584 0.136909i \(-0.0437168\pi\)
\(84\) 0 0
\(85\) 130.121 1.53083
\(86\) 0 0
\(87\) 49.6635i 0.570844i
\(88\) 0 0
\(89\) 114.029i 1.28122i 0.767865 + 0.640611i \(0.221319\pi\)
−0.767865 + 0.640611i \(0.778681\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.00465 0.0968242
\(94\) 0 0
\(95\) −192.922 −2.03075
\(96\) 0 0
\(97\) − 153.333i − 1.58075i −0.612621 0.790377i \(-0.709885\pi\)
0.612621 0.790377i \(-0.290115\pi\)
\(98\) 0 0
\(99\) 31.6031 0.319223
\(100\) 0 0
\(101\) − 17.6413i − 0.174666i −0.996179 0.0873329i \(-0.972166\pi\)
0.996179 0.0873329i \(-0.0278344\pi\)
\(102\) 0 0
\(103\) − 138.230i − 1.34204i −0.741441 0.671018i \(-0.765857\pi\)
0.741441 0.671018i \(-0.234143\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 82.1486 0.767744 0.383872 0.923386i \(-0.374590\pi\)
0.383872 + 0.923386i \(0.374590\pi\)
\(108\) 0 0
\(109\) 90.3779 0.829155 0.414577 0.910014i \(-0.363929\pi\)
0.414577 + 0.910014i \(0.363929\pi\)
\(110\) 0 0
\(111\) 6.61408i 0.0595863i
\(112\) 0 0
\(113\) 206.994 1.83180 0.915901 0.401405i \(-0.131478\pi\)
0.915901 + 0.401405i \(0.131478\pi\)
\(114\) 0 0
\(115\) 223.308i 1.94181i
\(116\) 0 0
\(117\) 36.1099i 0.308632i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0270 −0.0828680
\(122\) 0 0
\(123\) −15.9477 −0.129656
\(124\) 0 0
\(125\) 112.325i 0.898601i
\(126\) 0 0
\(127\) 155.159 1.22172 0.610862 0.791737i \(-0.290823\pi\)
0.610862 + 0.791737i \(0.290823\pi\)
\(128\) 0 0
\(129\) 94.0434i 0.729019i
\(130\) 0 0
\(131\) 71.6322i 0.546811i 0.961899 + 0.273405i \(0.0881500\pi\)
−0.961899 + 0.273405i \(0.911850\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −28.0884 −0.208062
\(136\) 0 0
\(137\) 152.245 1.11128 0.555639 0.831424i \(-0.312474\pi\)
0.555639 + 0.831424i \(0.312474\pi\)
\(138\) 0 0
\(139\) − 119.318i − 0.858401i −0.903209 0.429200i \(-0.858795\pi\)
0.903209 0.429200i \(-0.141205\pi\)
\(140\) 0 0
\(141\) 28.6700 0.203333
\(142\) 0 0
\(143\) 126.798i 0.886703i
\(144\) 0 0
\(145\) − 154.996i − 1.06894i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −54.1020 −0.363101 −0.181550 0.983382i \(-0.558112\pi\)
−0.181550 + 0.983382i \(0.558112\pi\)
\(150\) 0 0
\(151\) −131.751 −0.872525 −0.436262 0.899819i \(-0.643698\pi\)
−0.436262 + 0.899819i \(0.643698\pi\)
\(152\) 0 0
\(153\) 72.2142i 0.471988i
\(154\) 0 0
\(155\) −28.1029 −0.181309
\(156\) 0 0
\(157\) − 240.385i − 1.53112i −0.643367 0.765558i \(-0.722463\pi\)
0.643367 0.765558i \(-0.277537\pi\)
\(158\) 0 0
\(159\) − 33.1972i − 0.208788i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 269.170 1.65135 0.825674 0.564147i \(-0.190795\pi\)
0.825674 + 0.564147i \(0.190795\pi\)
\(164\) 0 0
\(165\) −98.6312 −0.597765
\(166\) 0 0
\(167\) 123.116i 0.737219i 0.929584 + 0.368609i \(0.120166\pi\)
−0.929584 + 0.368609i \(0.879834\pi\)
\(168\) 0 0
\(169\) 24.1192 0.142717
\(170\) 0 0
\(171\) − 107.067i − 0.626125i
\(172\) 0 0
\(173\) − 225.630i − 1.30422i −0.758126 0.652109i \(-0.773885\pi\)
0.758126 0.652109i \(-0.226115\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −21.6521 −0.122328
\(178\) 0 0
\(179\) 267.249 1.49301 0.746505 0.665380i \(-0.231730\pi\)
0.746505 + 0.665380i \(0.231730\pi\)
\(180\) 0 0
\(181\) 64.5441i 0.356597i 0.983976 + 0.178299i \(0.0570593\pi\)
−0.983976 + 0.178299i \(0.942941\pi\)
\(182\) 0 0
\(183\) −168.236 −0.919321
\(184\) 0 0
\(185\) − 20.6421i − 0.111579i
\(186\) 0 0
\(187\) 253.577i 1.35603i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −148.742 −0.778754 −0.389377 0.921078i \(-0.627310\pi\)
−0.389377 + 0.921078i \(0.627310\pi\)
\(192\) 0 0
\(193\) 29.8631 0.154731 0.0773655 0.997003i \(-0.475349\pi\)
0.0773655 + 0.997003i \(0.475349\pi\)
\(194\) 0 0
\(195\) − 112.697i − 0.577932i
\(196\) 0 0
\(197\) 191.905 0.974138 0.487069 0.873364i \(-0.338066\pi\)
0.487069 + 0.873364i \(0.338066\pi\)
\(198\) 0 0
\(199\) − 21.4733i − 0.107906i −0.998543 0.0539531i \(-0.982818\pi\)
0.998543 0.0539531i \(-0.0171821\pi\)
\(200\) 0 0
\(201\) 1.72886i 0.00860128i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 49.7717 0.242789
\(206\) 0 0
\(207\) −123.931 −0.598702
\(208\) 0 0
\(209\) − 375.962i − 1.79886i
\(210\) 0 0
\(211\) 179.565 0.851020 0.425510 0.904954i \(-0.360095\pi\)
0.425510 + 0.904954i \(0.360095\pi\)
\(212\) 0 0
\(213\) − 25.7037i − 0.120675i
\(214\) 0 0
\(215\) − 293.503i − 1.36513i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −102.197 −0.466655
\(220\) 0 0
\(221\) −289.739 −1.31104
\(222\) 0 0
\(223\) − 296.009i − 1.32739i −0.748001 0.663697i \(-0.768986\pi\)
0.748001 0.663697i \(-0.231014\pi\)
\(224\) 0 0
\(225\) 12.6620 0.0562755
\(226\) 0 0
\(227\) − 176.367i − 0.776946i −0.921460 0.388473i \(-0.873003\pi\)
0.921460 0.388473i \(-0.126997\pi\)
\(228\) 0 0
\(229\) 48.3660i 0.211205i 0.994408 + 0.105603i \(0.0336772\pi\)
−0.994408 + 0.105603i \(0.966323\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 458.429 1.96751 0.983753 0.179527i \(-0.0574568\pi\)
0.983753 + 0.179527i \(0.0574568\pi\)
\(234\) 0 0
\(235\) −89.4772 −0.380754
\(236\) 0 0
\(237\) − 175.823i − 0.741870i
\(238\) 0 0
\(239\) −124.419 −0.520581 −0.260291 0.965530i \(-0.583818\pi\)
−0.260291 + 0.965530i \(0.583818\pi\)
\(240\) 0 0
\(241\) − 219.761i − 0.911869i −0.890013 0.455935i \(-0.849305\pi\)
0.890013 0.455935i \(-0.150695\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 429.577 1.73918
\(248\) 0 0
\(249\) −39.3642 −0.158089
\(250\) 0 0
\(251\) − 69.5582i − 0.277124i −0.990354 0.138562i \(-0.955752\pi\)
0.990354 0.138562i \(-0.0442481\pi\)
\(252\) 0 0
\(253\) −435.179 −1.72008
\(254\) 0 0
\(255\) − 225.376i − 0.883826i
\(256\) 0 0
\(257\) 101.797i 0.396098i 0.980192 + 0.198049i \(0.0634605\pi\)
−0.980192 + 0.198049i \(0.936540\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 86.0197 0.329577
\(262\) 0 0
\(263\) 211.575 0.804466 0.402233 0.915537i \(-0.368234\pi\)
0.402233 + 0.915537i \(0.368234\pi\)
\(264\) 0 0
\(265\) 103.606i 0.390967i
\(266\) 0 0
\(267\) 197.504 0.739714
\(268\) 0 0
\(269\) 311.835i 1.15924i 0.814887 + 0.579620i \(0.196799\pi\)
−0.814887 + 0.579620i \(0.803201\pi\)
\(270\) 0 0
\(271\) 256.574i 0.946767i 0.880856 + 0.473383i \(0.156967\pi\)
−0.880856 + 0.473383i \(0.843033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 44.4620 0.161680
\(276\) 0 0
\(277\) −279.093 −1.00756 −0.503778 0.863833i \(-0.668057\pi\)
−0.503778 + 0.863833i \(0.668057\pi\)
\(278\) 0 0
\(279\) − 15.5965i − 0.0559015i
\(280\) 0 0
\(281\) −84.1671 −0.299527 −0.149763 0.988722i \(-0.547851\pi\)
−0.149763 + 0.988722i \(0.547851\pi\)
\(282\) 0 0
\(283\) − 465.427i − 1.64462i −0.569042 0.822309i \(-0.692686\pi\)
0.569042 0.822309i \(-0.307314\pi\)
\(284\) 0 0
\(285\) 334.150i 1.17246i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −290.432 −1.00495
\(290\) 0 0
\(291\) −265.581 −0.912648
\(292\) 0 0
\(293\) − 289.553i − 0.988237i −0.869395 0.494119i \(-0.835491\pi\)
0.869395 0.494119i \(-0.164509\pi\)
\(294\) 0 0
\(295\) 67.5748 0.229067
\(296\) 0 0
\(297\) − 54.7382i − 0.184304i
\(298\) 0 0
\(299\) − 497.239i − 1.66301i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −30.5556 −0.100843
\(304\) 0 0
\(305\) 525.053 1.72148
\(306\) 0 0
\(307\) 339.471i 1.10577i 0.833258 + 0.552884i \(0.186473\pi\)
−0.833258 + 0.552884i \(0.813527\pi\)
\(308\) 0 0
\(309\) −239.421 −0.774825
\(310\) 0 0
\(311\) − 98.7284i − 0.317455i −0.987322 0.158727i \(-0.949261\pi\)
0.987322 0.158727i \(-0.0507391\pi\)
\(312\) 0 0
\(313\) − 214.621i − 0.685689i −0.939392 0.342845i \(-0.888610\pi\)
0.939392 0.342845i \(-0.111390\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 193.607 0.610746 0.305373 0.952233i \(-0.401219\pi\)
0.305373 + 0.952233i \(0.401219\pi\)
\(318\) 0 0
\(319\) 302.054 0.946879
\(320\) 0 0
\(321\) − 142.286i − 0.443257i
\(322\) 0 0
\(323\) 859.086 2.65971
\(324\) 0 0
\(325\) 50.8026i 0.156316i
\(326\) 0 0
\(327\) − 156.539i − 0.478713i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −488.170 −1.47483 −0.737417 0.675438i \(-0.763955\pi\)
−0.737417 + 0.675438i \(0.763955\pi\)
\(332\) 0 0
\(333\) 11.4559 0.0344022
\(334\) 0 0
\(335\) − 5.39565i − 0.0161064i
\(336\) 0 0
\(337\) 535.060 1.58771 0.793857 0.608104i \(-0.208070\pi\)
0.793857 + 0.608104i \(0.208070\pi\)
\(338\) 0 0
\(339\) − 358.523i − 1.05759i
\(340\) 0 0
\(341\) − 54.7665i − 0.160606i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 386.781 1.12110
\(346\) 0 0
\(347\) −335.384 −0.966524 −0.483262 0.875476i \(-0.660548\pi\)
−0.483262 + 0.875476i \(0.660548\pi\)
\(348\) 0 0
\(349\) − 105.238i − 0.301542i −0.988569 0.150771i \(-0.951824\pi\)
0.988569 0.150771i \(-0.0481756\pi\)
\(350\) 0 0
\(351\) 62.5442 0.178189
\(352\) 0 0
\(353\) 328.060i 0.929349i 0.885482 + 0.464674i \(0.153829\pi\)
−0.885482 + 0.464674i \(0.846171\pi\)
\(354\) 0 0
\(355\) 80.2196i 0.225971i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −534.835 −1.48979 −0.744895 0.667182i \(-0.767500\pi\)
−0.744895 + 0.667182i \(0.767500\pi\)
\(360\) 0 0
\(361\) −912.713 −2.52829
\(362\) 0 0
\(363\) 17.3673i 0.0478439i
\(364\) 0 0
\(365\) 318.951 0.873839
\(366\) 0 0
\(367\) − 83.1428i − 0.226547i −0.993564 0.113274i \(-0.963866\pi\)
0.993564 0.113274i \(-0.0361336\pi\)
\(368\) 0 0
\(369\) 27.6222i 0.0748570i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −540.669 −1.44951 −0.724757 0.689004i \(-0.758048\pi\)
−0.724757 + 0.689004i \(0.758048\pi\)
\(374\) 0 0
\(375\) 194.553 0.518807
\(376\) 0 0
\(377\) 345.129i 0.915462i
\(378\) 0 0
\(379\) −74.8470 −0.197486 −0.0987428 0.995113i \(-0.531482\pi\)
−0.0987428 + 0.995113i \(0.531482\pi\)
\(380\) 0 0
\(381\) − 268.743i − 0.705363i
\(382\) 0 0
\(383\) 117.164i 0.305910i 0.988233 + 0.152955i \(0.0488790\pi\)
−0.988233 + 0.152955i \(0.951121\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 162.888 0.420899
\(388\) 0 0
\(389\) −529.607 −1.36146 −0.680729 0.732535i \(-0.738337\pi\)
−0.680729 + 0.732535i \(0.738337\pi\)
\(390\) 0 0
\(391\) − 994.399i − 2.54322i
\(392\) 0 0
\(393\) 124.071 0.315701
\(394\) 0 0
\(395\) 548.732i 1.38920i
\(396\) 0 0
\(397\) − 348.048i − 0.876696i −0.898805 0.438348i \(-0.855564\pi\)
0.898805 0.438348i \(-0.144436\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −453.288 −1.13039 −0.565197 0.824956i \(-0.691200\pi\)
−0.565197 + 0.824956i \(0.691200\pi\)
\(402\) 0 0
\(403\) 62.5766 0.155277
\(404\) 0 0
\(405\) 48.6505i 0.120125i
\(406\) 0 0
\(407\) 40.2270 0.0988378
\(408\) 0 0
\(409\) − 555.437i − 1.35804i −0.734122 0.679018i \(-0.762406\pi\)
0.734122 0.679018i \(-0.237594\pi\)
\(410\) 0 0
\(411\) − 263.696i − 0.641597i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 122.853 0.296031
\(416\) 0 0
\(417\) −206.664 −0.495598
\(418\) 0 0
\(419\) 54.3155i 0.129631i 0.997897 + 0.0648156i \(0.0206459\pi\)
−0.997897 + 0.0648156i \(0.979354\pi\)
\(420\) 0 0
\(421\) −578.890 −1.37504 −0.687518 0.726168i \(-0.741300\pi\)
−0.687518 + 0.726168i \(0.741300\pi\)
\(422\) 0 0
\(423\) − 49.6579i − 0.117395i
\(424\) 0 0
\(425\) 101.597i 0.239052i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 219.621 0.511938
\(430\) 0 0
\(431\) 533.398 1.23758 0.618791 0.785556i \(-0.287623\pi\)
0.618791 + 0.785556i \(0.287623\pi\)
\(432\) 0 0
\(433\) 110.744i 0.255760i 0.991790 + 0.127880i \(0.0408173\pi\)
−0.991790 + 0.127880i \(0.959183\pi\)
\(434\) 0 0
\(435\) −268.462 −0.617153
\(436\) 0 0
\(437\) 1474.33i 3.37376i
\(438\) 0 0
\(439\) 622.569i 1.41815i 0.705132 + 0.709076i \(0.250888\pi\)
−0.705132 + 0.709076i \(0.749112\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 422.345 0.953375 0.476688 0.879073i \(-0.341837\pi\)
0.476688 + 0.879073i \(0.341837\pi\)
\(444\) 0 0
\(445\) −616.396 −1.38516
\(446\) 0 0
\(447\) 93.7075i 0.209636i
\(448\) 0 0
\(449\) −365.850 −0.814810 −0.407405 0.913248i \(-0.633566\pi\)
−0.407405 + 0.913248i \(0.633566\pi\)
\(450\) 0 0
\(451\) 96.9943i 0.215065i
\(452\) 0 0
\(453\) 228.200i 0.503752i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.6553 −0.0714557 −0.0357279 0.999362i \(-0.511375\pi\)
−0.0357279 + 0.999362i \(0.511375\pi\)
\(458\) 0 0
\(459\) 125.079 0.272502
\(460\) 0 0
\(461\) 770.259i 1.67084i 0.549609 + 0.835422i \(0.314777\pi\)
−0.549609 + 0.835422i \(0.685223\pi\)
\(462\) 0 0
\(463\) 308.030 0.665292 0.332646 0.943052i \(-0.392059\pi\)
0.332646 + 0.943052i \(0.392059\pi\)
\(464\) 0 0
\(465\) 48.6757i 0.104679i
\(466\) 0 0
\(467\) − 93.5893i − 0.200405i −0.994967 0.100203i \(-0.968051\pi\)
0.994967 0.100203i \(-0.0319491\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −416.359 −0.883990
\(472\) 0 0
\(473\) 571.974 1.20925
\(474\) 0 0
\(475\) − 150.632i − 0.317119i
\(476\) 0 0
\(477\) −57.4993 −0.120544
\(478\) 0 0
\(479\) 76.8169i 0.160369i 0.996780 + 0.0801846i \(0.0255510\pi\)
−0.996780 + 0.0801846i \(0.974449\pi\)
\(480\) 0 0
\(481\) 45.9636i 0.0955585i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 828.859 1.70899
\(486\) 0 0
\(487\) −609.974 −1.25251 −0.626256 0.779617i \(-0.715414\pi\)
−0.626256 + 0.779617i \(0.715414\pi\)
\(488\) 0 0
\(489\) − 466.216i − 0.953407i
\(490\) 0 0
\(491\) −132.287 −0.269424 −0.134712 0.990885i \(-0.543011\pi\)
−0.134712 + 0.990885i \(0.543011\pi\)
\(492\) 0 0
\(493\) 690.204i 1.40001i
\(494\) 0 0
\(495\) 170.834i 0.345120i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 393.614 0.788806 0.394403 0.918938i \(-0.370951\pi\)
0.394403 + 0.918938i \(0.370951\pi\)
\(500\) 0 0
\(501\) 213.242 0.425634
\(502\) 0 0
\(503\) − 79.0334i − 0.157124i −0.996909 0.0785620i \(-0.974967\pi\)
0.996909 0.0785620i \(-0.0250329\pi\)
\(504\) 0 0
\(505\) 95.3618 0.188835
\(506\) 0 0
\(507\) − 41.7757i − 0.0823978i
\(508\) 0 0
\(509\) 321.769i 0.632158i 0.948733 + 0.316079i \(0.102367\pi\)
−0.948733 + 0.316079i \(0.897633\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −185.446 −0.361493
\(514\) 0 0
\(515\) 747.216 1.45091
\(516\) 0 0
\(517\) − 174.372i − 0.337276i
\(518\) 0 0
\(519\) −390.802 −0.752990
\(520\) 0 0
\(521\) − 500.533i − 0.960716i −0.877073 0.480358i \(-0.840507\pi\)
0.877073 0.480358i \(-0.159493\pi\)
\(522\) 0 0
\(523\) − 133.011i − 0.254323i −0.991882 0.127161i \(-0.959413\pi\)
0.991882 0.127161i \(-0.0405866\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 125.143 0.237463
\(528\) 0 0
\(529\) 1177.55 2.22599
\(530\) 0 0
\(531\) 37.5026i 0.0706263i
\(532\) 0 0
\(533\) −110.826 −0.207929
\(534\) 0 0
\(535\) 444.064i 0.830026i
\(536\) 0 0
\(537\) − 462.889i − 0.861990i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 899.673 1.66298 0.831491 0.555539i \(-0.187488\pi\)
0.831491 + 0.555539i \(0.187488\pi\)
\(542\) 0 0
\(543\) 111.794 0.205881
\(544\) 0 0
\(545\) 488.548i 0.896418i
\(546\) 0 0
\(547\) 59.3373 0.108478 0.0542388 0.998528i \(-0.482727\pi\)
0.0542388 + 0.998528i \(0.482727\pi\)
\(548\) 0 0
\(549\) 291.393i 0.530770i
\(550\) 0 0
\(551\) − 1023.32i − 1.85721i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −35.7532 −0.0644201
\(556\) 0 0
\(557\) 696.966 1.25129 0.625643 0.780110i \(-0.284837\pi\)
0.625643 + 0.780110i \(0.284837\pi\)
\(558\) 0 0
\(559\) 653.541i 1.16913i
\(560\) 0 0
\(561\) 439.208 0.782902
\(562\) 0 0
\(563\) − 85.7945i − 0.152388i −0.997093 0.0761940i \(-0.975723\pi\)
0.997093 0.0761940i \(-0.0242768\pi\)
\(564\) 0 0
\(565\) 1118.93i 1.98040i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −520.704 −0.915121 −0.457561 0.889178i \(-0.651277\pi\)
−0.457561 + 0.889178i \(0.651277\pi\)
\(570\) 0 0
\(571\) 180.744 0.316539 0.158270 0.987396i \(-0.449408\pi\)
0.158270 + 0.987396i \(0.449408\pi\)
\(572\) 0 0
\(573\) 257.629i 0.449614i
\(574\) 0 0
\(575\) −174.357 −0.303230
\(576\) 0 0
\(577\) − 518.343i − 0.898341i −0.893446 0.449170i \(-0.851720\pi\)
0.893446 0.449170i \(-0.148280\pi\)
\(578\) 0 0
\(579\) − 51.7244i − 0.0893340i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −201.906 −0.346323
\(584\) 0 0
\(585\) −195.196 −0.333669
\(586\) 0 0
\(587\) 1072.05i 1.82632i 0.407602 + 0.913160i \(0.366365\pi\)
−0.407602 + 0.913160i \(0.633635\pi\)
\(588\) 0 0
\(589\) −185.542 −0.315012
\(590\) 0 0
\(591\) − 332.389i − 0.562419i
\(592\) 0 0
\(593\) − 266.145i − 0.448812i −0.974496 0.224406i \(-0.927956\pi\)
0.974496 0.224406i \(-0.0720441\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −37.1929 −0.0622997
\(598\) 0 0
\(599\) 906.845 1.51393 0.756966 0.653454i \(-0.226681\pi\)
0.756966 + 0.653454i \(0.226681\pi\)
\(600\) 0 0
\(601\) − 472.642i − 0.786426i −0.919448 0.393213i \(-0.871364\pi\)
0.919448 0.393213i \(-0.128636\pi\)
\(602\) 0 0
\(603\) 2.99447 0.00496595
\(604\) 0 0
\(605\) − 54.2022i − 0.0895905i
\(606\) 0 0
\(607\) − 22.6125i − 0.0372529i −0.999827 0.0186264i \(-0.994071\pi\)
0.999827 0.0186264i \(-0.00592933\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 199.238 0.326085
\(612\) 0 0
\(613\) −4.78301 −0.00780263 −0.00390132 0.999992i \(-0.501242\pi\)
−0.00390132 + 0.999992i \(0.501242\pi\)
\(614\) 0 0
\(615\) − 86.2071i − 0.140174i
\(616\) 0 0
\(617\) −537.983 −0.871934 −0.435967 0.899963i \(-0.643594\pi\)
−0.435967 + 0.899963i \(0.643594\pi\)
\(618\) 0 0
\(619\) 419.575i 0.677827i 0.940817 + 0.338914i \(0.110059\pi\)
−0.940817 + 0.338914i \(0.889941\pi\)
\(620\) 0 0
\(621\) 214.655i 0.345661i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −712.703 −1.14032
\(626\) 0 0
\(627\) −651.186 −1.03857
\(628\) 0 0
\(629\) 91.9200i 0.146137i
\(630\) 0 0
\(631\) −346.433 −0.549022 −0.274511 0.961584i \(-0.588516\pi\)
−0.274511 + 0.961584i \(0.588516\pi\)
\(632\) 0 0
\(633\) − 311.016i − 0.491337i
\(634\) 0 0
\(635\) 838.730i 1.32083i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −44.5202 −0.0696716
\(640\) 0 0
\(641\) 826.947 1.29009 0.645044 0.764145i \(-0.276839\pi\)
0.645044 + 0.764145i \(0.276839\pi\)
\(642\) 0 0
\(643\) 1041.58i 1.61988i 0.586514 + 0.809939i \(0.300500\pi\)
−0.586514 + 0.809939i \(0.699500\pi\)
\(644\) 0 0
\(645\) −508.362 −0.788159
\(646\) 0 0
\(647\) − 536.371i − 0.829013i −0.910046 0.414507i \(-0.863954\pi\)
0.910046 0.414507i \(-0.136046\pi\)
\(648\) 0 0
\(649\) 131.689i 0.202910i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 796.821 1.22025 0.610123 0.792307i \(-0.291120\pi\)
0.610123 + 0.792307i \(0.291120\pi\)
\(654\) 0 0
\(655\) −387.216 −0.591169
\(656\) 0 0
\(657\) 177.011i 0.269423i
\(658\) 0 0
\(659\) −668.820 −1.01490 −0.507451 0.861681i \(-0.669412\pi\)
−0.507451 + 0.861681i \(0.669412\pi\)
\(660\) 0 0
\(661\) 262.603i 0.397282i 0.980072 + 0.198641i \(0.0636527\pi\)
−0.980072 + 0.198641i \(0.936347\pi\)
\(662\) 0 0
\(663\) 501.842i 0.756926i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1184.50 −1.77587
\(668\) 0 0
\(669\) −512.702 −0.766371
\(670\) 0 0
\(671\) 1023.21i 1.52491i
\(672\) 0 0
\(673\) −234.458 −0.348378 −0.174189 0.984712i \(-0.555730\pi\)
−0.174189 + 0.984712i \(0.555730\pi\)
\(674\) 0 0
\(675\) − 21.9312i − 0.0324907i
\(676\) 0 0
\(677\) − 523.889i − 0.773839i −0.922114 0.386919i \(-0.873539\pi\)
0.922114 0.386919i \(-0.126461\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −305.476 −0.448570
\(682\) 0 0
\(683\) −225.386 −0.329994 −0.164997 0.986294i \(-0.552761\pi\)
−0.164997 + 0.986294i \(0.552761\pi\)
\(684\) 0 0
\(685\) 822.978i 1.20143i
\(686\) 0 0
\(687\) 83.7724 0.121939
\(688\) 0 0
\(689\) − 230.700i − 0.334833i
\(690\) 0 0
\(691\) 558.965i 0.808922i 0.914555 + 0.404461i \(0.132541\pi\)
−0.914555 + 0.404461i \(0.867459\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 644.985 0.928037
\(696\) 0 0
\(697\) −221.635 −0.317984
\(698\) 0 0
\(699\) − 794.022i − 1.13594i
\(700\) 0 0
\(701\) −270.005 −0.385171 −0.192585 0.981280i \(-0.561687\pi\)
−0.192585 + 0.981280i \(0.561687\pi\)
\(702\) 0 0
\(703\) − 136.284i − 0.193861i
\(704\) 0 0
\(705\) 154.979i 0.219828i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1253.29 −1.76769 −0.883846 0.467778i \(-0.845055\pi\)
−0.883846 + 0.467778i \(0.845055\pi\)
\(710\) 0 0
\(711\) −304.535 −0.428319
\(712\) 0 0
\(713\) 214.766i 0.301215i
\(714\) 0 0
\(715\) −685.424 −0.958634
\(716\) 0 0
\(717\) 215.500i 0.300558i
\(718\) 0 0
\(719\) 593.147i 0.824961i 0.910966 + 0.412481i \(0.135338\pi\)
−0.910966 + 0.412481i \(0.864662\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −380.636 −0.526468
\(724\) 0 0
\(725\) 121.020 0.166924
\(726\) 0 0
\(727\) − 752.400i − 1.03494i −0.855702 0.517469i \(-0.826874\pi\)
0.855702 0.517469i \(-0.173126\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 1306.98i 1.78793i
\(732\) 0 0
\(733\) 735.085i 1.00284i 0.865203 + 0.501422i \(0.167190\pi\)
−0.865203 + 0.501422i \(0.832810\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.5149 0.0142672
\(738\) 0 0
\(739\) 68.7526 0.0930346 0.0465173 0.998917i \(-0.485188\pi\)
0.0465173 + 0.998917i \(0.485188\pi\)
\(740\) 0 0
\(741\) − 744.049i − 1.00412i
\(742\) 0 0
\(743\) −1023.37 −1.37735 −0.688674 0.725071i \(-0.741807\pi\)
−0.688674 + 0.725071i \(0.741807\pi\)
\(744\) 0 0
\(745\) − 292.455i − 0.392557i
\(746\) 0 0
\(747\) 68.1807i 0.0912727i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 73.6350 0.0980492 0.0490246 0.998798i \(-0.484389\pi\)
0.0490246 + 0.998798i \(0.484389\pi\)
\(752\) 0 0
\(753\) −120.478 −0.159998
\(754\) 0 0
\(755\) − 712.196i − 0.943307i
\(756\) 0 0
\(757\) 14.6651 0.0193727 0.00968634 0.999953i \(-0.496917\pi\)
0.00968634 + 0.999953i \(0.496917\pi\)
\(758\) 0 0
\(759\) 753.753i 0.993086i
\(760\) 0 0
\(761\) − 799.548i − 1.05065i −0.850901 0.525327i \(-0.823943\pi\)
0.850901 0.525327i \(-0.176057\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −390.362 −0.510277
\(766\) 0 0
\(767\) −150.468 −0.196178
\(768\) 0 0
\(769\) 665.988i 0.866044i 0.901383 + 0.433022i \(0.142553\pi\)
−0.901383 + 0.433022i \(0.857447\pi\)
\(770\) 0 0
\(771\) 176.318 0.228687
\(772\) 0 0
\(773\) − 54.6730i − 0.0707283i −0.999374 0.0353642i \(-0.988741\pi\)
0.999374 0.0353642i \(-0.0112591\pi\)
\(774\) 0 0
\(775\) − 21.9425i − 0.0283130i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 328.604 0.421828
\(780\) 0 0
\(781\) −156.331 −0.200167
\(782\) 0 0
\(783\) − 148.990i − 0.190281i
\(784\) 0 0
\(785\) 1299.43 1.65532
\(786\) 0 0
\(787\) − 439.045i − 0.557872i −0.960310 0.278936i \(-0.910018\pi\)
0.960310 0.278936i \(-0.0899818\pi\)
\(788\) 0 0
\(789\) − 366.458i − 0.464459i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1169.13 −1.47431
\(794\) 0 0
\(795\) 179.452 0.225725
\(796\) 0 0
\(797\) 479.187i 0.601239i 0.953744 + 0.300619i \(0.0971934\pi\)
−0.953744 + 0.300619i \(0.902807\pi\)
\(798\) 0 0
\(799\) 398.445 0.498680
\(800\) 0 0
\(801\) − 342.086i − 0.427074i
\(802\) 0 0
\(803\) 621.567i 0.774056i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 540.115 0.669287
\(808\) 0 0
\(809\) 740.232 0.914996 0.457498 0.889211i \(-0.348746\pi\)
0.457498 + 0.889211i \(0.348746\pi\)
\(810\) 0 0
\(811\) − 157.469i − 0.194166i −0.995276 0.0970831i \(-0.969049\pi\)
0.995276 0.0970831i \(-0.0309513\pi\)
\(812\) 0 0
\(813\) 444.399 0.546616
\(814\) 0 0
\(815\) 1455.03i 1.78531i
\(816\) 0 0
\(817\) − 1937.78i − 2.37182i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −833.399 −1.01510 −0.507551 0.861622i \(-0.669449\pi\)
−0.507551 + 0.861622i \(0.669449\pi\)
\(822\) 0 0
\(823\) −580.360 −0.705176 −0.352588 0.935779i \(-0.614698\pi\)
−0.352588 + 0.935779i \(0.614698\pi\)
\(824\) 0 0
\(825\) − 77.0105i − 0.0933460i
\(826\) 0 0
\(827\) −310.093 −0.374962 −0.187481 0.982268i \(-0.560032\pi\)
−0.187481 + 0.982268i \(0.560032\pi\)
\(828\) 0 0
\(829\) − 589.980i − 0.711677i −0.934548 0.355838i \(-0.884195\pi\)
0.934548 0.355838i \(-0.115805\pi\)
\(830\) 0 0
\(831\) 483.404i 0.581713i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −665.515 −0.797024
\(836\) 0 0
\(837\) −27.0140 −0.0322747
\(838\) 0 0
\(839\) 1658.50i 1.97676i 0.152018 + 0.988378i \(0.451423\pi\)
−0.152018 + 0.988378i \(0.548577\pi\)
\(840\) 0 0
\(841\) −18.8466 −0.0224098
\(842\) 0 0
\(843\) 145.782i 0.172932i
\(844\) 0 0
\(845\) 130.379i 0.154295i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −806.143 −0.949520
\(850\) 0 0
\(851\) −157.750 −0.185370
\(852\) 0 0
\(853\) − 921.244i − 1.08001i −0.841663 0.540003i \(-0.818423\pi\)
0.841663 0.540003i \(-0.181577\pi\)
\(854\) 0 0
\(855\) 578.765 0.676918
\(856\) 0 0
\(857\) − 1278.69i − 1.49206i −0.665914 0.746028i \(-0.731958\pi\)
0.665914 0.746028i \(-0.268042\pi\)
\(858\) 0 0
\(859\) − 924.393i − 1.07613i −0.842904 0.538064i \(-0.819156\pi\)
0.842904 0.538064i \(-0.180844\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1222.69 −1.41679 −0.708394 0.705817i \(-0.750580\pi\)
−0.708394 + 0.705817i \(0.750580\pi\)
\(864\) 0 0
\(865\) 1219.67 1.41002
\(866\) 0 0
\(867\) 503.043i 0.580211i
\(868\) 0 0
\(869\) −1069.36 −1.23056
\(870\) 0 0
\(871\) 12.0145i 0.0137939i
\(872\) 0 0
\(873\) 459.999i 0.526918i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1130.37 1.28891 0.644453 0.764644i \(-0.277085\pi\)
0.644453 + 0.764644i \(0.277085\pi\)
\(878\) 0 0
\(879\) −501.521 −0.570559
\(880\) 0 0
\(881\) − 37.1187i − 0.0421325i −0.999778 0.0210663i \(-0.993294\pi\)
0.999778 0.0210663i \(-0.00670609\pi\)
\(882\) 0 0
\(883\) −1517.07 −1.71809 −0.859045 0.511901i \(-0.828942\pi\)
−0.859045 + 0.511901i \(0.828942\pi\)
\(884\) 0 0
\(885\) − 117.043i − 0.132252i
\(886\) 0 0
\(887\) − 1332.36i − 1.50209i −0.660248 0.751047i \(-0.729549\pi\)
0.660248 0.751047i \(-0.270451\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −94.8093 −0.106408
\(892\) 0 0
\(893\) −590.749 −0.661533
\(894\) 0 0
\(895\) 1444.64i 1.61413i
\(896\) 0 0
\(897\) −861.243 −0.960137
\(898\) 0 0
\(899\) − 149.067i − 0.165815i
\(900\) 0 0
\(901\) − 461.363i − 0.512056i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −348.900 −0.385525
\(906\) 0 0
\(907\) −65.4828 −0.0721971 −0.0360986 0.999348i \(-0.511493\pi\)
−0.0360986 + 0.999348i \(0.511493\pi\)
\(908\) 0 0
\(909\) 52.9238i 0.0582220i
\(910\) 0 0
\(911\) 242.277 0.265946 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(912\) 0 0
\(913\) 239.414i 0.262227i
\(914\) 0 0
\(915\) − 909.418i − 0.993899i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 803.171 0.873962 0.436981 0.899471i \(-0.356048\pi\)
0.436981 + 0.899471i \(0.356048\pi\)
\(920\) 0 0
\(921\) 587.980 0.638415
\(922\) 0 0
\(923\) − 178.624i − 0.193526i
\(924\) 0 0
\(925\) 16.1172 0.0174240
\(926\) 0 0
\(927\) 414.689i 0.447345i
\(928\) 0 0
\(929\) 629.140i 0.677223i 0.940926 + 0.338611i \(0.109957\pi\)
−0.940926 + 0.338611i \(0.890043\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −171.003 −0.183283
\(934\) 0 0
\(935\) −1370.74 −1.46603
\(936\) 0 0
\(937\) 217.501i 0.232124i 0.993242 + 0.116062i \(0.0370272\pi\)
−0.993242 + 0.116062i \(0.962973\pi\)
\(938\) 0 0
\(939\) −371.734 −0.395883
\(940\) 0 0
\(941\) 1788.80i 1.90095i 0.310794 + 0.950477i \(0.399405\pi\)
−0.310794 + 0.950477i \(0.600595\pi\)
\(942\) 0 0
\(943\) − 380.362i − 0.403353i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1085.22 −1.14595 −0.572976 0.819572i \(-0.694211\pi\)
−0.572976 + 0.819572i \(0.694211\pi\)
\(948\) 0 0
\(949\) −710.207 −0.748374
\(950\) 0 0
\(951\) − 335.336i − 0.352615i
\(952\) 0 0
\(953\) 1638.91 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(954\) 0 0
\(955\) − 804.042i − 0.841929i
\(956\) 0 0
\(957\) − 523.173i − 0.546681i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 933.972 0.971875
\(962\) 0 0
\(963\) −246.446 −0.255915
\(964\) 0 0
\(965\) 161.428i 0.167283i
\(966\) 0 0
\(967\) −486.560 −0.503164 −0.251582 0.967836i \(-0.580951\pi\)
−0.251582 + 0.967836i \(0.580951\pi\)
\(968\) 0 0
\(969\) − 1487.98i − 1.53558i
\(970\) 0 0
\(971\) 349.516i 0.359955i 0.983671 + 0.179978i \(0.0576025\pi\)
−0.983671 + 0.179978i \(0.942397\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 87.9927 0.0902489
\(976\) 0 0
\(977\) −240.292 −0.245949 −0.122974 0.992410i \(-0.539243\pi\)
−0.122974 + 0.992410i \(0.539243\pi\)
\(978\) 0 0
\(979\) − 1201.22i − 1.22699i
\(980\) 0 0
\(981\) −271.134 −0.276385
\(982\) 0 0
\(983\) 601.403i 0.611804i 0.952063 + 0.305902i \(0.0989580\pi\)
−0.952063 + 0.305902i \(0.901042\pi\)
\(984\) 0 0
\(985\) 1037.36i 1.05316i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2242.99 −2.26794
\(990\) 0 0
\(991\) −451.763 −0.455866 −0.227933 0.973677i \(-0.573197\pi\)
−0.227933 + 0.973677i \(0.573197\pi\)
\(992\) 0 0
\(993\) 845.535i 0.851496i
\(994\) 0 0
\(995\) 116.077 0.116660
\(996\) 0 0
\(997\) − 511.234i − 0.512772i −0.966574 0.256386i \(-0.917468\pi\)
0.966574 0.256386i \(-0.0825319\pi\)
\(998\) 0 0
\(999\) − 19.8422i − 0.0198621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.3.f.g.97.3 8
4.3 odd 2 1176.3.f.c.97.7 8
7.4 even 3 336.3.bh.g.145.2 8
7.5 odd 6 336.3.bh.g.241.2 8
7.6 odd 2 inner 2352.3.f.g.97.6 8
12.11 even 2 3528.3.f.b.2449.3 8
21.5 even 6 1008.3.cg.p.577.3 8
21.11 odd 6 1008.3.cg.p.145.3 8
28.3 even 6 1176.3.z.c.313.3 8
28.11 odd 6 168.3.z.b.145.2 yes 8
28.19 even 6 168.3.z.b.73.2 8
28.23 odd 6 1176.3.z.c.913.3 8
28.27 even 2 1176.3.f.c.97.2 8
84.11 even 6 504.3.by.c.145.3 8
84.47 odd 6 504.3.by.c.73.3 8
84.83 odd 2 3528.3.f.b.2449.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.b.73.2 8 28.19 even 6
168.3.z.b.145.2 yes 8 28.11 odd 6
336.3.bh.g.145.2 8 7.4 even 3
336.3.bh.g.241.2 8 7.5 odd 6
504.3.by.c.73.3 8 84.47 odd 6
504.3.by.c.145.3 8 84.11 even 6
1008.3.cg.p.145.3 8 21.11 odd 6
1008.3.cg.p.577.3 8 21.5 even 6
1176.3.f.c.97.2 8 28.27 even 2
1176.3.f.c.97.7 8 4.3 odd 2
1176.3.z.c.313.3 8 28.3 even 6
1176.3.z.c.913.3 8 28.23 odd 6
2352.3.f.g.97.3 8 1.1 even 1 trivial
2352.3.f.g.97.6 8 7.6 odd 2 inner
3528.3.f.b.2449.3 8 12.11 even 2
3528.3.f.b.2449.6 8 84.83 odd 2