Properties

Label 2352.4.bt
Level 23522352
Weight 44
Character orbit 2352.bt
Rep. character χ2352(19,)\chi_{2352}(19,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 19201920
Sturm bound 17921792

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2352.bt (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 112 112
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 17921792

Dimensions

The following table gives the dimensions of various subspaces of M4(2352,[χ])M_{4}(2352, [\chi]).

Total New Old
Modular forms 5440 1920 3520
Cusp forms 5312 1920 3392
Eisenstein series 128 0 128

Trace form

1920q40q4168q8+36q10+80q11120q16+72q18+1448q221312q23+1600q2932q37+2340q40+3232q43+232q44+700q465656q502160q52++1440q99+O(q100) 1920 q - 40 q^{4} - 168 q^{8} + 36 q^{10} + 80 q^{11} - 120 q^{16} + 72 q^{18} + 1448 q^{22} - 1312 q^{23} + 1600 q^{29} - 32 q^{37} + 2340 q^{40} + 3232 q^{43} + 232 q^{44} + 700 q^{46} - 5656 q^{50} - 2160 q^{52}+ \cdots + 1440 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(2352,[χ])S_{4}^{\mathrm{new}}(2352, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(2352,[χ])S_{4}^{\mathrm{old}}(2352, [\chi]) into lower level spaces

S4old(2352,[χ]) S_{4}^{\mathrm{old}}(2352, [\chi]) \simeq S4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])4^{\oplus 4}\oplusS4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi])2^{\oplus 2}\oplusS4new(784,[χ])S_{4}^{\mathrm{new}}(784, [\chi])2^{\oplus 2}