Properties

Label 2352.4.dn
Level 23522352
Weight 44
Character orbit 2352.dn
Rep. character χ2352(115,)\chi_{2352}(115,\cdot)
Character field Q(ζ84)\Q(\zeta_{84})
Dimension 1612816128
Sturm bound 17921792

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2352.dn (of order 8484 and degree 2424)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 784 784
Character field: Q(ζ84)\Q(\zeta_{84})
Sturm bound: 17921792

Dimensions

The following table gives the dimensions of various subspaces of M4(2352,[χ])M_{4}(2352, [\chi]).

Total New Old
Modular forms 32352 16128 16224
Cusp forms 32160 16128 16032
Eisenstein series 192 0 192

Trace form

16128q168q8+36q10416q14+504q22164q28+1008q34456q35+1332q40660q42+9856q44+700q462856q502160q523080q56364q58++16576q98+O(q100) 16128 q - 168 q^{8} + 36 q^{10} - 416 q^{14} + 504 q^{22} - 164 q^{28} + 1008 q^{34} - 456 q^{35} + 1332 q^{40} - 660 q^{42} + 9856 q^{44} + 700 q^{46} - 2856 q^{50} - 2160 q^{52} - 3080 q^{56} - 364 q^{58}+ \cdots + 16576 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(2352,[χ])S_{4}^{\mathrm{new}}(2352, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(2352,[χ])S_{4}^{\mathrm{old}}(2352, [\chi]) into lower level spaces

S4old(2352,[χ]) S_{4}^{\mathrm{old}}(2352, [\chi]) \simeq S4new(784,[χ])S_{4}^{\mathrm{new}}(784, [\chi])2^{\oplus 2}