Properties

Label 2352.4.w
Level $2352$
Weight $4$
Character orbit 2352.w
Rep. character $\chi_{2352}(589,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $984$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.w (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2352, [\chi])\).

Total New Old
Modular forms 2720 984 1736
Cusp forms 2656 984 1672
Eisenstein series 64 0 64

Trace form

\( 984 q + 20 q^{4} - 84 q^{8} + 48 q^{10} + 40 q^{11} - 24 q^{12} + 120 q^{15} - 72 q^{16} + 36 q^{18} + 24 q^{19} - 80 q^{20} - 272 q^{22} + 228 q^{24} - 20 q^{26} - 400 q^{29} - 408 q^{30} + 744 q^{31}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2352, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2352, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2352, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)