Defining parameters
Level: | \( N \) | \(=\) | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2352.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1792\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2352, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2720 | 984 | 1736 |
Cusp forms | 2656 | 984 | 1672 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2352, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2352, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2352, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(784, [\chi])\)\(^{\oplus 2}\)