Properties

Label 2352.4.w
Level 23522352
Weight 44
Character orbit 2352.w
Rep. character χ2352(589,)\chi_{2352}(589,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 984984
Sturm bound 17921792

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2352.w (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 16 16
Character field: Q(i)\Q(i)
Sturm bound: 17921792

Dimensions

The following table gives the dimensions of various subspaces of M4(2352,[χ])M_{4}(2352, [\chi]).

Total New Old
Modular forms 2720 984 1736
Cusp forms 2656 984 1672
Eisenstein series 64 0 64

Trace form

984q+20q484q8+48q10+40q1124q12+120q1572q16+36q18+24q1980q20272q22+228q2420q26400q29408q30+744q31++360q99+O(q100) 984 q + 20 q^{4} - 84 q^{8} + 48 q^{10} + 40 q^{11} - 24 q^{12} + 120 q^{15} - 72 q^{16} + 36 q^{18} + 24 q^{19} - 80 q^{20} - 272 q^{22} + 228 q^{24} - 20 q^{26} - 400 q^{29} - 408 q^{30} + 744 q^{31}+ \cdots + 360 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(2352,[χ])S_{4}^{\mathrm{new}}(2352, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(2352,[χ])S_{4}^{\mathrm{old}}(2352, [\chi]) into lower level spaces

S4old(2352,[χ]) S_{4}^{\mathrm{old}}(2352, [\chi]) \simeq S4new(16,[χ])S_{4}^{\mathrm{new}}(16, [\chi])6^{\oplus 6}\oplusS4new(48,[χ])S_{4}^{\mathrm{new}}(48, [\chi])3^{\oplus 3}\oplusS4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])4^{\oplus 4}\oplusS4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi])2^{\oplus 2}\oplusS4new(784,[χ])S_{4}^{\mathrm{new}}(784, [\chi])2^{\oplus 2}