Properties

Label 2366.2.d.g.337.1
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2366,2,Mod(337,2366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2366, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2366.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.g.337.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} +4.00000i q^{5} -1.00000i q^{6} +1.00000i q^{7} +1.00000i q^{8} -2.00000 q^{9} +4.00000 q^{10} +1.00000i q^{11} -1.00000 q^{12} +1.00000 q^{14} +4.00000i q^{15} +1.00000 q^{16} -4.00000 q^{17} +2.00000i q^{18} +2.00000i q^{19} -4.00000i q^{20} +1.00000i q^{21} +1.00000 q^{22} +7.00000 q^{23} +1.00000i q^{24} -11.0000 q^{25} -5.00000 q^{27} -1.00000i q^{28} -8.00000 q^{29} +4.00000 q^{30} +3.00000i q^{31} -1.00000i q^{32} +1.00000i q^{33} +4.00000i q^{34} -4.00000 q^{35} +2.00000 q^{36} -7.00000i q^{37} +2.00000 q^{38} -4.00000 q^{40} -7.00000i q^{41} +1.00000 q^{42} +8.00000 q^{43} -1.00000i q^{44} -8.00000i q^{45} -7.00000i q^{46} -3.00000i q^{47} +1.00000 q^{48} -1.00000 q^{49} +11.0000i q^{50} -4.00000 q^{51} +5.00000i q^{54} -4.00000 q^{55} -1.00000 q^{56} +2.00000i q^{57} +8.00000i q^{58} +6.00000i q^{59} -4.00000i q^{60} -13.0000 q^{61} +3.00000 q^{62} -2.00000i q^{63} -1.00000 q^{64} +1.00000 q^{66} +7.00000i q^{67} +4.00000 q^{68} +7.00000 q^{69} +4.00000i q^{70} +4.00000i q^{71} -2.00000i q^{72} -9.00000i q^{73} -7.00000 q^{74} -11.0000 q^{75} -2.00000i q^{76} -1.00000 q^{77} -13.0000 q^{79} +4.00000i q^{80} +1.00000 q^{81} -7.00000 q^{82} -16.0000i q^{83} -1.00000i q^{84} -16.0000i q^{85} -8.00000i q^{86} -8.00000 q^{87} -1.00000 q^{88} +6.00000i q^{89} -8.00000 q^{90} -7.00000 q^{92} +3.00000i q^{93} -3.00000 q^{94} -8.00000 q^{95} -1.00000i q^{96} +11.0000i q^{97} +1.00000i q^{98} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{4} - 4 q^{9} + 8 q^{10} - 2 q^{12} + 2 q^{14} + 2 q^{16} - 8 q^{17} + 2 q^{22} + 14 q^{23} - 22 q^{25} - 10 q^{27} - 16 q^{29} + 8 q^{30} - 8 q^{35} + 4 q^{36} + 4 q^{38} - 8 q^{40}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) −1.00000 −0.500000
\(5\) 4.00000i 1.78885i 0.447214 + 0.894427i \(0.352416\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) − 1.00000i − 0.408248i
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) −2.00000 −0.666667
\(10\) 4.00000 1.26491
\(11\) 1.00000i 0.301511i 0.988571 + 0.150756i \(0.0481707\pi\)
−0.988571 + 0.150756i \(0.951829\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 4.00000i 1.03280i
\(16\) 1.00000 0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 2.00000i 0.471405i
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) − 4.00000i − 0.894427i
\(21\) 1.00000i 0.218218i
\(22\) 1.00000 0.213201
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −11.0000 −2.20000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) − 1.00000i − 0.188982i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 4.00000 0.730297
\(31\) 3.00000i 0.538816i 0.963026 + 0.269408i \(0.0868280\pi\)
−0.963026 + 0.269408i \(0.913172\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 1.00000i 0.174078i
\(34\) 4.00000i 0.685994i
\(35\) −4.00000 −0.676123
\(36\) 2.00000 0.333333
\(37\) − 7.00000i − 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(38\) 2.00000 0.324443
\(39\) 0 0
\(40\) −4.00000 −0.632456
\(41\) − 7.00000i − 1.09322i −0.837389 0.546608i \(-0.815919\pi\)
0.837389 0.546608i \(-0.184081\pi\)
\(42\) 1.00000 0.154303
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) − 1.00000i − 0.150756i
\(45\) − 8.00000i − 1.19257i
\(46\) − 7.00000i − 1.03209i
\(47\) − 3.00000i − 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) 1.00000 0.144338
\(49\) −1.00000 −0.142857
\(50\) 11.0000i 1.55563i
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 5.00000i 0.680414i
\(55\) −4.00000 −0.539360
\(56\) −1.00000 −0.133631
\(57\) 2.00000i 0.264906i
\(58\) 8.00000i 1.05045i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) − 4.00000i − 0.516398i
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 3.00000 0.381000
\(63\) − 2.00000i − 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 1.00000 0.123091
\(67\) 7.00000i 0.855186i 0.903971 + 0.427593i \(0.140638\pi\)
−0.903971 + 0.427593i \(0.859362\pi\)
\(68\) 4.00000 0.485071
\(69\) 7.00000 0.842701
\(70\) 4.00000i 0.478091i
\(71\) 4.00000i 0.474713i 0.971423 + 0.237356i \(0.0762809\pi\)
−0.971423 + 0.237356i \(0.923719\pi\)
\(72\) − 2.00000i − 0.235702i
\(73\) − 9.00000i − 1.05337i −0.850060 0.526685i \(-0.823435\pi\)
0.850060 0.526685i \(-0.176565\pi\)
\(74\) −7.00000 −0.813733
\(75\) −11.0000 −1.27017
\(76\) − 2.00000i − 0.229416i
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 4.00000i 0.447214i
\(81\) 1.00000 0.111111
\(82\) −7.00000 −0.773021
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) − 1.00000i − 0.109109i
\(85\) − 16.0000i − 1.73544i
\(86\) − 8.00000i − 0.862662i
\(87\) −8.00000 −0.857690
\(88\) −1.00000 −0.106600
\(89\) 6.00000i 0.635999i 0.948091 + 0.317999i \(0.103011\pi\)
−0.948091 + 0.317999i \(0.896989\pi\)
\(90\) −8.00000 −0.843274
\(91\) 0 0
\(92\) −7.00000 −0.729800
\(93\) 3.00000i 0.311086i
\(94\) −3.00000 −0.309426
\(95\) −8.00000 −0.820783
\(96\) − 1.00000i − 0.102062i
\(97\) 11.0000i 1.11688i 0.829545 + 0.558440i \(0.188600\pi\)
−0.829545 + 0.558440i \(0.811400\pi\)
\(98\) 1.00000i 0.101015i
\(99\) − 2.00000i − 0.201008i
\(100\) 11.0000 1.10000
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 4.00000i 0.396059i
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 5.00000 0.481125
\(109\) 14.0000i 1.34096i 0.741929 + 0.670478i \(0.233911\pi\)
−0.741929 + 0.670478i \(0.766089\pi\)
\(110\) 4.00000i 0.381385i
\(111\) − 7.00000i − 0.664411i
\(112\) 1.00000i 0.0944911i
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 2.00000 0.187317
\(115\) 28.0000i 2.61101i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) − 4.00000i − 0.366679i
\(120\) −4.00000 −0.365148
\(121\) 10.0000 0.909091
\(122\) 13.0000i 1.17696i
\(123\) − 7.00000i − 0.631169i
\(124\) − 3.00000i − 0.269408i
\(125\) − 24.0000i − 2.14663i
\(126\) −2.00000 −0.178174
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) − 1.00000i − 0.0870388i
\(133\) −2.00000 −0.173422
\(134\) 7.00000 0.604708
\(135\) − 20.0000i − 1.72133i
\(136\) − 4.00000i − 0.342997i
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) − 7.00000i − 0.595880i
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 4.00000 0.338062
\(141\) − 3.00000i − 0.252646i
\(142\) 4.00000 0.335673
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) − 32.0000i − 2.65746i
\(146\) −9.00000 −0.744845
\(147\) −1.00000 −0.0824786
\(148\) 7.00000i 0.575396i
\(149\) 15.0000i 1.22885i 0.788976 + 0.614424i \(0.210612\pi\)
−0.788976 + 0.614424i \(0.789388\pi\)
\(150\) 11.0000i 0.898146i
\(151\) 4.00000i 0.325515i 0.986666 + 0.162758i \(0.0520389\pi\)
−0.986666 + 0.162758i \(0.947961\pi\)
\(152\) −2.00000 −0.162221
\(153\) 8.00000 0.646762
\(154\) 1.00000i 0.0805823i
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 13.0000i 1.03422i
\(159\) 0 0
\(160\) 4.00000 0.316228
\(161\) 7.00000i 0.551677i
\(162\) − 1.00000i − 0.0785674i
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 7.00000i 0.546608i
\(165\) −4.00000 −0.311400
\(166\) −16.0000 −1.24184
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −1.00000 −0.0771517
\(169\) 0 0
\(170\) −16.0000 −1.22714
\(171\) − 4.00000i − 0.305888i
\(172\) −8.00000 −0.609994
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 8.00000i 0.606478i
\(175\) − 11.0000i − 0.831522i
\(176\) 1.00000i 0.0753778i
\(177\) 6.00000i 0.450988i
\(178\) 6.00000 0.449719
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 8.00000i 0.596285i
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 0 0
\(183\) −13.0000 −0.960988
\(184\) 7.00000i 0.516047i
\(185\) 28.0000 2.05860
\(186\) 3.00000 0.219971
\(187\) − 4.00000i − 0.292509i
\(188\) 3.00000i 0.218797i
\(189\) − 5.00000i − 0.363696i
\(190\) 8.00000i 0.580381i
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 11.0000 0.789754
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 3.00000i 0.213741i 0.994273 + 0.106871i \(0.0340831\pi\)
−0.994273 + 0.106871i \(0.965917\pi\)
\(198\) −2.00000 −0.142134
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) − 11.0000i − 0.777817i
\(201\) 7.00000i 0.493742i
\(202\) 9.00000i 0.633238i
\(203\) − 8.00000i − 0.561490i
\(204\) 4.00000 0.280056
\(205\) 28.0000 1.95560
\(206\) 10.0000i 0.696733i
\(207\) −14.0000 −0.973067
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 4.00000i 0.276026i
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 4.00000i 0.274075i
\(214\) − 12.0000i − 0.820303i
\(215\) 32.0000i 2.18238i
\(216\) − 5.00000i − 0.340207i
\(217\) −3.00000 −0.203653
\(218\) 14.0000 0.948200
\(219\) − 9.00000i − 0.608164i
\(220\) 4.00000 0.269680
\(221\) 0 0
\(222\) −7.00000 −0.469809
\(223\) 9.00000i 0.602685i 0.953516 + 0.301342i \(0.0974347\pi\)
−0.953516 + 0.301342i \(0.902565\pi\)
\(224\) 1.00000 0.0668153
\(225\) 22.0000 1.46667
\(226\) − 1.00000i − 0.0665190i
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) − 2.00000i − 0.132453i
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 28.0000 1.84627
\(231\) −1.00000 −0.0657952
\(232\) − 8.00000i − 0.525226i
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) − 6.00000i − 0.390567i
\(237\) −13.0000 −0.844441
\(238\) −4.00000 −0.259281
\(239\) − 6.00000i − 0.388108i −0.980991 0.194054i \(-0.937836\pi\)
0.980991 0.194054i \(-0.0621637\pi\)
\(240\) 4.00000i 0.258199i
\(241\) 10.0000i 0.644157i 0.946713 + 0.322078i \(0.104381\pi\)
−0.946713 + 0.322078i \(0.895619\pi\)
\(242\) − 10.0000i − 0.642824i
\(243\) 16.0000 1.02640
\(244\) 13.0000 0.832240
\(245\) − 4.00000i − 0.255551i
\(246\) −7.00000 −0.446304
\(247\) 0 0
\(248\) −3.00000 −0.190500
\(249\) − 16.0000i − 1.01396i
\(250\) −24.0000 −1.51789
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 7.00000i 0.440086i
\(254\) 13.0000i 0.815693i
\(255\) − 16.0000i − 1.00196i
\(256\) 1.00000 0.0625000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) − 8.00000i − 0.498058i
\(259\) 7.00000 0.434959
\(260\) 0 0
\(261\) 16.0000 0.990375
\(262\) 0 0
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 0 0
\(266\) 2.00000i 0.122628i
\(267\) 6.00000i 0.367194i
\(268\) − 7.00000i − 0.427593i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) −20.0000 −1.21716
\(271\) 3.00000i 0.182237i 0.995840 + 0.0911185i \(0.0290442\pi\)
−0.995840 + 0.0911185i \(0.970956\pi\)
\(272\) −4.00000 −0.242536
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) − 11.0000i − 0.663325i
\(276\) −7.00000 −0.421350
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 20.0000i 1.19952i
\(279\) − 6.00000i − 0.359211i
\(280\) − 4.00000i − 0.239046i
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) −3.00000 −0.178647
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) − 4.00000i − 0.237356i
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 7.00000 0.413197
\(288\) 2.00000i 0.117851i
\(289\) −1.00000 −0.0588235
\(290\) −32.0000 −1.87910
\(291\) 11.0000i 0.644831i
\(292\) 9.00000i 0.526685i
\(293\) − 14.0000i − 0.817889i −0.912559 0.408944i \(-0.865897\pi\)
0.912559 0.408944i \(-0.134103\pi\)
\(294\) 1.00000i 0.0583212i
\(295\) −24.0000 −1.39733
\(296\) 7.00000 0.406867
\(297\) − 5.00000i − 0.290129i
\(298\) 15.0000 0.868927
\(299\) 0 0
\(300\) 11.0000 0.635085
\(301\) 8.00000i 0.461112i
\(302\) 4.00000 0.230174
\(303\) −9.00000 −0.517036
\(304\) 2.00000i 0.114708i
\(305\) − 52.0000i − 2.97751i
\(306\) − 8.00000i − 0.457330i
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 1.00000 0.0569803
\(309\) −10.0000 −0.568880
\(310\) 12.0000i 0.681554i
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) − 7.00000i − 0.395033i
\(315\) 8.00000 0.450749
\(316\) 13.0000 0.731307
\(317\) − 13.0000i − 0.730153i −0.930978 0.365076i \(-0.881043\pi\)
0.930978 0.365076i \(-0.118957\pi\)
\(318\) 0 0
\(319\) − 8.00000i − 0.447914i
\(320\) − 4.00000i − 0.223607i
\(321\) 12.0000 0.669775
\(322\) 7.00000 0.390095
\(323\) − 8.00000i − 0.445132i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 14.0000i 0.774202i
\(328\) 7.00000 0.386510
\(329\) 3.00000 0.165395
\(330\) 4.00000i 0.220193i
\(331\) 15.0000i 0.824475i 0.911077 + 0.412237i \(0.135253\pi\)
−0.911077 + 0.412237i \(0.864747\pi\)
\(332\) 16.0000i 0.878114i
\(333\) 14.0000i 0.767195i
\(334\) 0 0
\(335\) −28.0000 −1.52980
\(336\) 1.00000i 0.0545545i
\(337\) −9.00000 −0.490261 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(338\) 0 0
\(339\) 1.00000 0.0543125
\(340\) 16.0000i 0.867722i
\(341\) −3.00000 −0.162459
\(342\) −4.00000 −0.216295
\(343\) − 1.00000i − 0.0539949i
\(344\) 8.00000i 0.431331i
\(345\) 28.0000i 1.50747i
\(346\) 14.0000i 0.752645i
\(347\) −32.0000 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(348\) 8.00000 0.428845
\(349\) − 2.00000i − 0.107058i −0.998566 0.0535288i \(-0.982953\pi\)
0.998566 0.0535288i \(-0.0170469\pi\)
\(350\) −11.0000 −0.587975
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) − 11.0000i − 0.585471i −0.956193 0.292735i \(-0.905434\pi\)
0.956193 0.292735i \(-0.0945655\pi\)
\(354\) 6.00000 0.318896
\(355\) −16.0000 −0.849192
\(356\) − 6.00000i − 0.317999i
\(357\) − 4.00000i − 0.211702i
\(358\) − 18.0000i − 0.951330i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 8.00000 0.421637
\(361\) 15.0000 0.789474
\(362\) 13.0000i 0.683265i
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 36.0000 1.88433
\(366\) 13.0000i 0.679521i
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 7.00000 0.364900
\(369\) 14.0000i 0.728811i
\(370\) − 28.0000i − 1.45565i
\(371\) 0 0
\(372\) − 3.00000i − 0.155543i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) −4.00000 −0.206835
\(375\) − 24.0000i − 1.23935i
\(376\) 3.00000 0.154713
\(377\) 0 0
\(378\) −5.00000 −0.257172
\(379\) − 8.00000i − 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 8.00000 0.410391
\(381\) −13.0000 −0.666010
\(382\) − 24.0000i − 1.22795i
\(383\) 21.0000i 1.07305i 0.843884 + 0.536525i \(0.180263\pi\)
−0.843884 + 0.536525i \(0.819737\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) − 4.00000i − 0.203859i
\(386\) 4.00000 0.203595
\(387\) −16.0000 −0.813326
\(388\) − 11.0000i − 0.558440i
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) − 1.00000i − 0.0505076i
\(393\) 0 0
\(394\) 3.00000 0.151138
\(395\) − 52.0000i − 2.61640i
\(396\) 2.00000i 0.100504i
\(397\) − 8.00000i − 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 16.0000i 0.802008i
\(399\) −2.00000 −0.100125
\(400\) −11.0000 −0.550000
\(401\) − 8.00000i − 0.399501i −0.979847 0.199750i \(-0.935987\pi\)
0.979847 0.199750i \(-0.0640132\pi\)
\(402\) 7.00000 0.349128
\(403\) 0 0
\(404\) 9.00000 0.447767
\(405\) 4.00000i 0.198762i
\(406\) −8.00000 −0.397033
\(407\) 7.00000 0.346977
\(408\) − 4.00000i − 0.198030i
\(409\) − 10.0000i − 0.494468i −0.968956 0.247234i \(-0.920478\pi\)
0.968956 0.247234i \(-0.0795217\pi\)
\(410\) − 28.0000i − 1.38282i
\(411\) 14.0000i 0.690569i
\(412\) 10.0000 0.492665
\(413\) −6.00000 −0.295241
\(414\) 14.0000i 0.688062i
\(415\) 64.0000 3.14164
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 2.00000i 0.0978232i
\(419\) −19.0000 −0.928211 −0.464105 0.885780i \(-0.653624\pi\)
−0.464105 + 0.885780i \(0.653624\pi\)
\(420\) 4.00000 0.195180
\(421\) − 11.0000i − 0.536107i −0.963404 0.268054i \(-0.913620\pi\)
0.963404 0.268054i \(-0.0863804\pi\)
\(422\) − 22.0000i − 1.07094i
\(423\) 6.00000i 0.291730i
\(424\) 0 0
\(425\) 44.0000 2.13431
\(426\) 4.00000 0.193801
\(427\) − 13.0000i − 0.629114i
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 32.0000 1.54318
\(431\) 2.00000i 0.0963366i 0.998839 + 0.0481683i \(0.0153384\pi\)
−0.998839 + 0.0481683i \(0.984662\pi\)
\(432\) −5.00000 −0.240563
\(433\) 18.0000 0.865025 0.432512 0.901628i \(-0.357627\pi\)
0.432512 + 0.901628i \(0.357627\pi\)
\(434\) 3.00000i 0.144005i
\(435\) − 32.0000i − 1.53428i
\(436\) − 14.0000i − 0.670478i
\(437\) 14.0000i 0.669711i
\(438\) −9.00000 −0.430037
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) − 4.00000i − 0.190693i
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 7.00000i 0.332205i
\(445\) −24.0000 −1.13771
\(446\) 9.00000 0.426162
\(447\) 15.0000i 0.709476i
\(448\) − 1.00000i − 0.0472456i
\(449\) − 6.00000i − 0.283158i −0.989927 0.141579i \(-0.954782\pi\)
0.989927 0.141579i \(-0.0452178\pi\)
\(450\) − 22.0000i − 1.03709i
\(451\) 7.00000 0.329617
\(452\) −1.00000 −0.0470360
\(453\) 4.00000i 0.187936i
\(454\) 28.0000 1.31411
\(455\) 0 0
\(456\) −2.00000 −0.0936586
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 20.0000 0.934539
\(459\) 20.0000 0.933520
\(460\) − 28.0000i − 1.30551i
\(461\) 16.0000i 0.745194i 0.927993 + 0.372597i \(0.121533\pi\)
−0.927993 + 0.372597i \(0.878467\pi\)
\(462\) 1.00000i 0.0465242i
\(463\) 12.0000i 0.557687i 0.960337 + 0.278844i \(0.0899511\pi\)
−0.960337 + 0.278844i \(0.910049\pi\)
\(464\) −8.00000 −0.371391
\(465\) −12.0000 −0.556487
\(466\) − 13.0000i − 0.602213i
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) − 12.0000i − 0.553519i
\(471\) 7.00000 0.322543
\(472\) −6.00000 −0.276172
\(473\) 8.00000i 0.367840i
\(474\) 13.0000i 0.597110i
\(475\) − 22.0000i − 1.00943i
\(476\) 4.00000i 0.183340i
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 4.00000 0.182574
\(481\) 0 0
\(482\) 10.0000 0.455488
\(483\) 7.00000i 0.318511i
\(484\) −10.0000 −0.454545
\(485\) −44.0000 −1.99794
\(486\) − 16.0000i − 0.725775i
\(487\) 26.0000i 1.17817i 0.808070 + 0.589086i \(0.200512\pi\)
−0.808070 + 0.589086i \(0.799488\pi\)
\(488\) − 13.0000i − 0.588482i
\(489\) − 12.0000i − 0.542659i
\(490\) −4.00000 −0.180702
\(491\) −40.0000 −1.80517 −0.902587 0.430507i \(-0.858335\pi\)
−0.902587 + 0.430507i \(0.858335\pi\)
\(492\) 7.00000i 0.315584i
\(493\) 32.0000 1.44121
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 3.00000i 0.134704i
\(497\) −4.00000 −0.179425
\(498\) −16.0000 −0.716977
\(499\) 37.0000i 1.65635i 0.560471 + 0.828174i \(0.310620\pi\)
−0.560471 + 0.828174i \(0.689380\pi\)
\(500\) 24.0000i 1.07331i
\(501\) 0 0
\(502\) 17.0000i 0.758747i
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 2.00000 0.0890871
\(505\) − 36.0000i − 1.60198i
\(506\) 7.00000 0.311188
\(507\) 0 0
\(508\) 13.0000 0.576782
\(509\) − 18.0000i − 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) −16.0000 −0.708492
\(511\) 9.00000 0.398137
\(512\) − 1.00000i − 0.0441942i
\(513\) − 10.0000i − 0.441511i
\(514\) − 12.0000i − 0.529297i
\(515\) − 40.0000i − 1.76261i
\(516\) −8.00000 −0.352180
\(517\) 3.00000 0.131940
\(518\) − 7.00000i − 0.307562i
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) − 16.0000i − 0.700301i
\(523\) −15.0000 −0.655904 −0.327952 0.944694i \(-0.606358\pi\)
−0.327952 + 0.944694i \(0.606358\pi\)
\(524\) 0 0
\(525\) − 11.0000i − 0.480079i
\(526\) − 16.0000i − 0.697633i
\(527\) − 12.0000i − 0.522728i
\(528\) 1.00000i 0.0435194i
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) − 12.0000i − 0.520756i
\(532\) 2.00000 0.0867110
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) 48.0000i 2.07522i
\(536\) −7.00000 −0.302354
\(537\) 18.0000 0.776757
\(538\) − 3.00000i − 0.129339i
\(539\) − 1.00000i − 0.0430730i
\(540\) 20.0000i 0.860663i
\(541\) 38.0000i 1.63375i 0.576816 + 0.816874i \(0.304295\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(542\) 3.00000 0.128861
\(543\) −13.0000 −0.557883
\(544\) 4.00000i 0.171499i
\(545\) −56.0000 −2.39878
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) − 14.0000i − 0.598050i
\(549\) 26.0000 1.10965
\(550\) −11.0000 −0.469042
\(551\) − 16.0000i − 0.681623i
\(552\) 7.00000i 0.297940i
\(553\) − 13.0000i − 0.552816i
\(554\) − 14.0000i − 0.594803i
\(555\) 28.0000 1.18853
\(556\) 20.0000 0.848189
\(557\) − 31.0000i − 1.31351i −0.754103 0.656756i \(-0.771928\pi\)
0.754103 0.656756i \(-0.228072\pi\)
\(558\) −6.00000 −0.254000
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) − 4.00000i − 0.168880i
\(562\) 20.0000 0.843649
\(563\) 31.0000 1.30649 0.653247 0.757145i \(-0.273406\pi\)
0.653247 + 0.757145i \(0.273406\pi\)
\(564\) 3.00000i 0.126323i
\(565\) 4.00000i 0.168281i
\(566\) 17.0000i 0.714563i
\(567\) 1.00000i 0.0419961i
\(568\) −4.00000 −0.167836
\(569\) −29.0000 −1.21574 −0.607872 0.794035i \(-0.707976\pi\)
−0.607872 + 0.794035i \(0.707976\pi\)
\(570\) 8.00000i 0.335083i
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) − 7.00000i − 0.292174i
\(575\) −77.0000 −3.21112
\(576\) 2.00000 0.0833333
\(577\) − 18.0000i − 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 4.00000i 0.166234i
\(580\) 32.0000i 1.32873i
\(581\) 16.0000 0.663792
\(582\) 11.0000 0.455965
\(583\) 0 0
\(584\) 9.00000 0.372423
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) − 18.0000i − 0.742940i −0.928445 0.371470i \(-0.878854\pi\)
0.928445 0.371470i \(-0.121146\pi\)
\(588\) 1.00000 0.0412393
\(589\) −6.00000 −0.247226
\(590\) 24.0000i 0.988064i
\(591\) 3.00000i 0.123404i
\(592\) − 7.00000i − 0.287698i
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) −5.00000 −0.205152
\(595\) 16.0000 0.655936
\(596\) − 15.0000i − 0.614424i
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) 27.0000 1.10319 0.551595 0.834112i \(-0.314019\pi\)
0.551595 + 0.834112i \(0.314019\pi\)
\(600\) − 11.0000i − 0.449073i
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 8.00000 0.326056
\(603\) − 14.0000i − 0.570124i
\(604\) − 4.00000i − 0.162758i
\(605\) 40.0000i 1.62623i
\(606\) 9.00000i 0.365600i
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) 2.00000 0.0811107
\(609\) − 8.00000i − 0.324176i
\(610\) −52.0000 −2.10542
\(611\) 0 0
\(612\) −8.00000 −0.323381
\(613\) 17.0000i 0.686624i 0.939222 + 0.343312i \(0.111549\pi\)
−0.939222 + 0.343312i \(0.888451\pi\)
\(614\) 12.0000 0.484281
\(615\) 28.0000 1.12907
\(616\) − 1.00000i − 0.0402911i
\(617\) − 38.0000i − 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 10.0000i 0.402259i
\(619\) − 14.0000i − 0.562708i −0.959604 0.281354i \(-0.909217\pi\)
0.959604 0.281354i \(-0.0907834\pi\)
\(620\) 12.0000 0.481932
\(621\) −35.0000 −1.40450
\(622\) − 30.0000i − 1.20289i
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) − 6.00000i − 0.239808i
\(627\) −2.00000 −0.0798723
\(628\) −7.00000 −0.279330
\(629\) 28.0000i 1.11643i
\(630\) − 8.00000i − 0.318728i
\(631\) − 22.0000i − 0.875806i −0.899022 0.437903i \(-0.855721\pi\)
0.899022 0.437903i \(-0.144279\pi\)
\(632\) − 13.0000i − 0.517112i
\(633\) 22.0000 0.874421
\(634\) −13.0000 −0.516296
\(635\) − 52.0000i − 2.06356i
\(636\) 0 0
\(637\) 0 0
\(638\) −8.00000 −0.316723
\(639\) − 8.00000i − 0.316475i
\(640\) −4.00000 −0.158114
\(641\) 25.0000 0.987441 0.493720 0.869621i \(-0.335637\pi\)
0.493720 + 0.869621i \(0.335637\pi\)
\(642\) − 12.0000i − 0.473602i
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) − 7.00000i − 0.275839i
\(645\) 32.0000i 1.26000i
\(646\) −8.00000 −0.314756
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) −3.00000 −0.117579
\(652\) 12.0000i 0.469956i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 14.0000 0.547443
\(655\) 0 0
\(656\) − 7.00000i − 0.273304i
\(657\) 18.0000i 0.702247i
\(658\) − 3.00000i − 0.116952i
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 4.00000 0.155700
\(661\) 8.00000i 0.311164i 0.987823 + 0.155582i \(0.0497253\pi\)
−0.987823 + 0.155582i \(0.950275\pi\)
\(662\) 15.0000 0.582992
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) − 8.00000i − 0.310227i
\(666\) 14.0000 0.542489
\(667\) −56.0000 −2.16833
\(668\) 0 0
\(669\) 9.00000i 0.347960i
\(670\) 28.0000i 1.08173i
\(671\) − 13.0000i − 0.501859i
\(672\) 1.00000 0.0385758
\(673\) 33.0000 1.27206 0.636028 0.771666i \(-0.280576\pi\)
0.636028 + 0.771666i \(0.280576\pi\)
\(674\) 9.00000i 0.346667i
\(675\) 55.0000 2.11695
\(676\) 0 0
\(677\) 13.0000 0.499631 0.249815 0.968294i \(-0.419630\pi\)
0.249815 + 0.968294i \(0.419630\pi\)
\(678\) − 1.00000i − 0.0384048i
\(679\) −11.0000 −0.422141
\(680\) 16.0000 0.613572
\(681\) 28.0000i 1.07296i
\(682\) 3.00000i 0.114876i
\(683\) − 31.0000i − 1.18618i −0.805135 0.593091i \(-0.797907\pi\)
0.805135 0.593091i \(-0.202093\pi\)
\(684\) 4.00000i 0.152944i
\(685\) −56.0000 −2.13965
\(686\) −1.00000 −0.0381802
\(687\) 20.0000i 0.763048i
\(688\) 8.00000 0.304997
\(689\) 0 0
\(690\) 28.0000 1.06594
\(691\) − 20.0000i − 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) 14.0000 0.532200
\(693\) 2.00000 0.0759737
\(694\) 32.0000i 1.21470i
\(695\) − 80.0000i − 3.03457i
\(696\) − 8.00000i − 0.303239i
\(697\) 28.0000i 1.06058i
\(698\) −2.00000 −0.0757011
\(699\) 13.0000 0.491705
\(700\) 11.0000i 0.415761i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) − 1.00000i − 0.0376889i
\(705\) 12.0000 0.451946
\(706\) −11.0000 −0.413990
\(707\) − 9.00000i − 0.338480i
\(708\) − 6.00000i − 0.225494i
\(709\) 51.0000i 1.91535i 0.287860 + 0.957673i \(0.407056\pi\)
−0.287860 + 0.957673i \(0.592944\pi\)
\(710\) 16.0000i 0.600469i
\(711\) 26.0000 0.975076
\(712\) −6.00000 −0.224860
\(713\) 21.0000i 0.786456i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) − 6.00000i − 0.224074i
\(718\) 0 0
\(719\) 22.0000 0.820462 0.410231 0.911982i \(-0.365448\pi\)
0.410231 + 0.911982i \(0.365448\pi\)
\(720\) − 8.00000i − 0.298142i
\(721\) − 10.0000i − 0.372419i
\(722\) − 15.0000i − 0.558242i
\(723\) 10.0000i 0.371904i
\(724\) 13.0000 0.483141
\(725\) 88.0000 3.26824
\(726\) − 10.0000i − 0.371135i
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) − 36.0000i − 1.33242i
\(731\) −32.0000 −1.18356
\(732\) 13.0000 0.480494
\(733\) − 12.0000i − 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(734\) − 12.0000i − 0.442928i
\(735\) − 4.00000i − 0.147542i
\(736\) − 7.00000i − 0.258023i
\(737\) −7.00000 −0.257848
\(738\) 14.0000 0.515347
\(739\) 8.00000i 0.294285i 0.989115 + 0.147142i \(0.0470076\pi\)
−0.989115 + 0.147142i \(0.952992\pi\)
\(740\) −28.0000 −1.02930
\(741\) 0 0
\(742\) 0 0
\(743\) − 44.0000i − 1.61420i −0.590412 0.807102i \(-0.701035\pi\)
0.590412 0.807102i \(-0.298965\pi\)
\(744\) −3.00000 −0.109985
\(745\) −60.0000 −2.19823
\(746\) 32.0000i 1.17160i
\(747\) 32.0000i 1.17082i
\(748\) 4.00000i 0.146254i
\(749\) 12.0000i 0.438470i
\(750\) −24.0000 −0.876356
\(751\) −37.0000 −1.35015 −0.675075 0.737749i \(-0.735889\pi\)
−0.675075 + 0.737749i \(0.735889\pi\)
\(752\) − 3.00000i − 0.109399i
\(753\) −17.0000 −0.619514
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 5.00000i 0.181848i
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) −8.00000 −0.290573
\(759\) 7.00000i 0.254084i
\(760\) − 8.00000i − 0.290191i
\(761\) − 1.00000i − 0.0362500i −0.999836 0.0181250i \(-0.994230\pi\)
0.999836 0.0181250i \(-0.00576968\pi\)
\(762\) 13.0000i 0.470940i
\(763\) −14.0000 −0.506834
\(764\) −24.0000 −0.868290
\(765\) 32.0000i 1.15696i
\(766\) 21.0000 0.758761
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 25.0000i 0.901523i 0.892644 + 0.450762i \(0.148848\pi\)
−0.892644 + 0.450762i \(0.851152\pi\)
\(770\) −4.00000 −0.144150
\(771\) 12.0000 0.432169
\(772\) − 4.00000i − 0.143963i
\(773\) 38.0000i 1.36677i 0.730061 + 0.683383i \(0.239492\pi\)
−0.730061 + 0.683383i \(0.760508\pi\)
\(774\) 16.0000i 0.575108i
\(775\) − 33.0000i − 1.18539i
\(776\) −11.0000 −0.394877
\(777\) 7.00000 0.251124
\(778\) 8.00000i 0.286814i
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 28.0000i 1.00128i
\(783\) 40.0000 1.42948
\(784\) −1.00000 −0.0357143
\(785\) 28.0000i 0.999363i
\(786\) 0 0
\(787\) 40.0000i 1.42585i 0.701242 + 0.712923i \(0.252629\pi\)
−0.701242 + 0.712923i \(0.747371\pi\)
\(788\) − 3.00000i − 0.106871i
\(789\) 16.0000 0.569615
\(790\) −52.0000 −1.85008
\(791\) 1.00000i 0.0355559i
\(792\) 2.00000 0.0710669
\(793\) 0 0
\(794\) −8.00000 −0.283909
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) −21.0000 −0.743858 −0.371929 0.928261i \(-0.621304\pi\)
−0.371929 + 0.928261i \(0.621304\pi\)
\(798\) 2.00000i 0.0707992i
\(799\) 12.0000i 0.424529i
\(800\) 11.0000i 0.388909i
\(801\) − 12.0000i − 0.423999i
\(802\) −8.00000 −0.282490
\(803\) 9.00000 0.317603
\(804\) − 7.00000i − 0.246871i
\(805\) −28.0000 −0.986870
\(806\) 0 0
\(807\) 3.00000 0.105605
\(808\) − 9.00000i − 0.316619i
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 4.00000 0.140546
\(811\) 20.0000i 0.702295i 0.936320 + 0.351147i \(0.114208\pi\)
−0.936320 + 0.351147i \(0.885792\pi\)
\(812\) 8.00000i 0.280745i
\(813\) 3.00000i 0.105215i
\(814\) − 7.00000i − 0.245350i
\(815\) 48.0000 1.68137
\(816\) −4.00000 −0.140028
\(817\) 16.0000i 0.559769i
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) −28.0000 −0.977802
\(821\) 46.0000i 1.60541i 0.596376 + 0.802706i \(0.296607\pi\)
−0.596376 + 0.802706i \(0.703393\pi\)
\(822\) 14.0000 0.488306
\(823\) 35.0000 1.22002 0.610012 0.792392i \(-0.291165\pi\)
0.610012 + 0.792392i \(0.291165\pi\)
\(824\) − 10.0000i − 0.348367i
\(825\) − 11.0000i − 0.382971i
\(826\) 6.00000i 0.208767i
\(827\) − 4.00000i − 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 14.0000 0.486534
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) − 64.0000i − 2.22147i
\(831\) 14.0000 0.485655
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 20.0000i 0.692543i
\(835\) 0 0
\(836\) 2.00000 0.0691714
\(837\) − 15.0000i − 0.518476i
\(838\) 19.0000i 0.656344i
\(839\) − 21.0000i − 0.725001i −0.931984 0.362500i \(-0.881923\pi\)
0.931984 0.362500i \(-0.118077\pi\)
\(840\) − 4.00000i − 0.138013i
\(841\) 35.0000 1.20690
\(842\) −11.0000 −0.379085
\(843\) 20.0000i 0.688837i
\(844\) −22.0000 −0.757271
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 10.0000i 0.343604i
\(848\) 0 0
\(849\) −17.0000 −0.583438
\(850\) − 44.0000i − 1.50919i
\(851\) − 49.0000i − 1.67970i
\(852\) − 4.00000i − 0.137038i
\(853\) 44.0000i 1.50653i 0.657716 + 0.753266i \(0.271523\pi\)
−0.657716 + 0.753266i \(0.728477\pi\)
\(854\) −13.0000 −0.444851
\(855\) 16.0000 0.547188
\(856\) 12.0000i 0.410152i
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) − 32.0000i − 1.09119i
\(861\) 7.00000 0.238559
\(862\) 2.00000 0.0681203
\(863\) − 24.0000i − 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 5.00000i 0.170103i
\(865\) − 56.0000i − 1.90406i
\(866\) − 18.0000i − 0.611665i
\(867\) −1.00000 −0.0339618
\(868\) 3.00000 0.101827
\(869\) − 13.0000i − 0.440995i
\(870\) −32.0000 −1.08490
\(871\) 0 0
\(872\) −14.0000 −0.474100
\(873\) − 22.0000i − 0.744587i
\(874\) 14.0000 0.473557
\(875\) 24.0000 0.811348
\(876\) 9.00000i 0.304082i
\(877\) 29.0000i 0.979260i 0.871930 + 0.489630i \(0.162868\pi\)
−0.871930 + 0.489630i \(0.837132\pi\)
\(878\) − 2.00000i − 0.0674967i
\(879\) − 14.0000i − 0.472208i
\(880\) −4.00000 −0.134840
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) − 2.00000i − 0.0673435i
\(883\) 34.0000 1.14419 0.572096 0.820187i \(-0.306131\pi\)
0.572096 + 0.820187i \(0.306131\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 14.0000 0.470074 0.235037 0.971986i \(-0.424479\pi\)
0.235037 + 0.971986i \(0.424479\pi\)
\(888\) 7.00000 0.234905
\(889\) − 13.0000i − 0.436006i
\(890\) 24.0000i 0.804482i
\(891\) 1.00000i 0.0335013i
\(892\) − 9.00000i − 0.301342i
\(893\) 6.00000 0.200782
\(894\) 15.0000 0.501675
\(895\) 72.0000i 2.40669i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) − 24.0000i − 0.800445i
\(900\) −22.0000 −0.733333
\(901\) 0 0
\(902\) − 7.00000i − 0.233075i
\(903\) 8.00000i 0.266223i
\(904\) 1.00000i 0.0332595i
\(905\) − 52.0000i − 1.72854i
\(906\) 4.00000 0.132891
\(907\) −54.0000 −1.79304 −0.896520 0.443003i \(-0.853913\pi\)
−0.896520 + 0.443003i \(0.853913\pi\)
\(908\) − 28.0000i − 0.929213i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 2.00000i 0.0662266i
\(913\) 16.0000 0.529523
\(914\) 18.0000 0.595387
\(915\) − 52.0000i − 1.71907i
\(916\) − 20.0000i − 0.660819i
\(917\) 0 0
\(918\) − 20.0000i − 0.660098i
\(919\) −37.0000 −1.22052 −0.610259 0.792202i \(-0.708935\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(920\) −28.0000 −0.923133
\(921\) 12.0000i 0.395413i
\(922\) 16.0000 0.526932
\(923\) 0 0
\(924\) 1.00000 0.0328976
\(925\) 77.0000i 2.53174i
\(926\) 12.0000 0.394344
\(927\) 20.0000 0.656886
\(928\) 8.00000i 0.262613i
\(929\) − 27.0000i − 0.885841i −0.896561 0.442921i \(-0.853942\pi\)
0.896561 0.442921i \(-0.146058\pi\)
\(930\) 12.0000i 0.393496i
\(931\) − 2.00000i − 0.0655474i
\(932\) −13.0000 −0.425829
\(933\) 30.0000 0.982156
\(934\) − 20.0000i − 0.654420i
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) −48.0000 −1.56809 −0.784046 0.620703i \(-0.786847\pi\)
−0.784046 + 0.620703i \(0.786847\pi\)
\(938\) 7.00000i 0.228558i
\(939\) 6.00000 0.195803
\(940\) −12.0000 −0.391397
\(941\) 14.0000i 0.456387i 0.973616 + 0.228193i \(0.0732819\pi\)
−0.973616 + 0.228193i \(0.926718\pi\)
\(942\) − 7.00000i − 0.228072i
\(943\) − 49.0000i − 1.59566i
\(944\) 6.00000i 0.195283i
\(945\) 20.0000 0.650600
\(946\) 8.00000 0.260102
\(947\) 8.00000i 0.259965i 0.991516 + 0.129983i \(0.0414921\pi\)
−0.991516 + 0.129983i \(0.958508\pi\)
\(948\) 13.0000 0.422220
\(949\) 0 0
\(950\) −22.0000 −0.713774
\(951\) − 13.0000i − 0.421554i
\(952\) 4.00000 0.129641
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) 96.0000i 3.10649i
\(956\) 6.00000i 0.194054i
\(957\) − 8.00000i − 0.258603i
\(958\) 0 0
\(959\) −14.0000 −0.452084
\(960\) − 4.00000i − 0.129099i
\(961\) 22.0000 0.709677
\(962\) 0 0
\(963\) −24.0000 −0.773389
\(964\) − 10.0000i − 0.322078i
\(965\) −16.0000 −0.515058
\(966\) 7.00000 0.225221
\(967\) 18.0000i 0.578841i 0.957202 + 0.289420i \(0.0934626\pi\)
−0.957202 + 0.289420i \(0.906537\pi\)
\(968\) 10.0000i 0.321412i
\(969\) − 8.00000i − 0.256997i
\(970\) 44.0000i 1.41275i
\(971\) −45.0000 −1.44412 −0.722059 0.691831i \(-0.756804\pi\)
−0.722059 + 0.691831i \(0.756804\pi\)
\(972\) −16.0000 −0.513200
\(973\) − 20.0000i − 0.641171i
\(974\) 26.0000 0.833094
\(975\) 0 0
\(976\) −13.0000 −0.416120
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) −12.0000 −0.383718
\(979\) −6.00000 −0.191761
\(980\) 4.00000i 0.127775i
\(981\) − 28.0000i − 0.893971i
\(982\) 40.0000i 1.27645i
\(983\) − 32.0000i − 1.02064i −0.859984 0.510321i \(-0.829527\pi\)
0.859984 0.510321i \(-0.170473\pi\)
\(984\) 7.00000 0.223152
\(985\) −12.0000 −0.382352
\(986\) − 32.0000i − 1.01909i
\(987\) 3.00000 0.0954911
\(988\) 0 0
\(989\) 56.0000 1.78070
\(990\) − 8.00000i − 0.254257i
\(991\) −33.0000 −1.04828 −0.524140 0.851632i \(-0.675613\pi\)
−0.524140 + 0.851632i \(0.675613\pi\)
\(992\) 3.00000 0.0952501
\(993\) 15.0000i 0.476011i
\(994\) 4.00000i 0.126872i
\(995\) − 64.0000i − 2.02894i
\(996\) 16.0000i 0.506979i
\(997\) 31.0000 0.981780 0.490890 0.871222i \(-0.336672\pi\)
0.490890 + 0.871222i \(0.336672\pi\)
\(998\) 37.0000 1.17121
\(999\) 35.0000i 1.10735i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.g.337.1 2
13.5 odd 4 182.2.a.a.1.1 1
13.8 odd 4 2366.2.a.m.1.1 1
13.12 even 2 inner 2366.2.d.g.337.2 2
39.5 even 4 1638.2.a.k.1.1 1
52.31 even 4 1456.2.a.e.1.1 1
65.44 odd 4 4550.2.a.t.1.1 1
91.5 even 12 1274.2.f.t.1145.1 2
91.18 odd 12 1274.2.f.n.79.1 2
91.31 even 12 1274.2.f.t.79.1 2
91.44 odd 12 1274.2.f.n.1145.1 2
91.83 even 4 1274.2.a.b.1.1 1
104.5 odd 4 5824.2.a.g.1.1 1
104.83 even 4 5824.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.a.a.1.1 1 13.5 odd 4
1274.2.a.b.1.1 1 91.83 even 4
1274.2.f.n.79.1 2 91.18 odd 12
1274.2.f.n.1145.1 2 91.44 odd 12
1274.2.f.t.79.1 2 91.31 even 12
1274.2.f.t.1145.1 2 91.5 even 12
1456.2.a.e.1.1 1 52.31 even 4
1638.2.a.k.1.1 1 39.5 even 4
2366.2.a.m.1.1 1 13.8 odd 4
2366.2.d.g.337.1 2 1.1 even 1 trivial
2366.2.d.g.337.2 2 13.12 even 2 inner
4550.2.a.t.1.1 1 65.44 odd 4
5824.2.a.g.1.1 1 104.5 odd 4
5824.2.a.w.1.1 1 104.83 even 4