Properties

Label 2366.2.d.i
Level $2366$
Weight $2$
Character orbit 2366.d
Analytic conductor $18.893$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2366,2,Mod(337,2366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2366, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2366.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} + 3 q^{3} - q^{4} - 3 i q^{6} - i q^{7} + i q^{8} + 6 q^{9} + 5 i q^{11} - 3 q^{12} - q^{14} + q^{16} + 4 q^{17} - 6 i q^{18} + 2 i q^{19} - 3 i q^{21} + 5 q^{22} - 5 q^{23} + 3 i q^{24} + \cdots + 30 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 2 q^{4} + 12 q^{9} - 6 q^{12} - 2 q^{14} + 2 q^{16} + 8 q^{17} + 10 q^{22} - 10 q^{23} + 10 q^{25} + 18 q^{27} + 8 q^{29} - 12 q^{36} + 4 q^{38} - 6 q^{42} + 24 q^{43} + 6 q^{48} - 2 q^{49}+ \cdots + 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
1.00000i 3.00000 −1.00000 0 3.00000i 1.00000i 1.00000i 6.00000 0
337.2 1.00000i 3.00000 −1.00000 0 3.00000i 1.00000i 1.00000i 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.d.i 2
13.b even 2 1 inner 2366.2.d.i 2
13.d odd 4 1 182.2.a.b 1
13.d odd 4 1 2366.2.a.o 1
39.f even 4 1 1638.2.a.q 1
52.f even 4 1 1456.2.a.b 1
65.g odd 4 1 4550.2.a.o 1
91.i even 4 1 1274.2.a.a 1
91.z odd 12 2 1274.2.f.m 2
91.bb even 12 2 1274.2.f.u 2
104.j odd 4 1 5824.2.a.a 1
104.m even 4 1 5824.2.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.b 1 13.d odd 4 1
1274.2.a.a 1 91.i even 4 1
1274.2.f.m 2 91.z odd 12 2
1274.2.f.u 2 91.bb even 12 2
1456.2.a.b 1 52.f even 4 1
1638.2.a.q 1 39.f even 4 1
2366.2.a.o 1 13.d odd 4 1
2366.2.d.i 2 1.a even 1 1 trivial
2366.2.d.i 2 13.b even 2 1 inner
4550.2.a.o 1 65.g odd 4 1
5824.2.a.a 1 104.j odd 4 1
5824.2.a.be 1 104.m even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2366, [\chi])\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 25 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T + 5)^{2} \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 49 \) Copy content Toggle raw display
$41$ \( T^{2} + 81 \) Copy content Toggle raw display
$43$ \( (T - 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 49 \) Copy content Toggle raw display
$53$ \( (T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( (T - 13)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 121 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T + 17)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( T^{2} + 196 \) Copy content Toggle raw display
$97$ \( T^{2} + 25 \) Copy content Toggle raw display
show more
show less