Properties

Label 2368.2.a.bf.1.2
Level $2368$
Weight $2$
Character 2368.1
Self dual yes
Analytic conductor $18.909$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2225.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.820249\) of defining polynomial
Character \(\chi\) \(=\) 2368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.82025 q^{3} -4.05632 q^{5} +0.493058 q^{7} +0.313307 q^{9} -0.908877 q^{11} +5.79933 q^{13} +7.38351 q^{15} -2.00000 q^{17} -5.01388 q^{19} -0.897489 q^{21} +8.81321 q^{23} +11.4537 q^{25} +4.89045 q^{27} -2.70058 q^{29} +3.58418 q^{31} +1.65438 q^{33} -2.00000 q^{35} -1.00000 q^{37} -10.5562 q^{39} -7.23856 q^{41} +11.3936 q^{43} -1.27087 q^{45} -0.965194 q^{47} -6.75689 q^{49} +3.64050 q^{51} -3.72913 q^{53} +3.68669 q^{55} +9.12652 q^{57} -10.1126 q^{59} +9.36508 q^{61} +0.154479 q^{63} -23.5239 q^{65} +1.87407 q^{67} -16.0422 q^{69} +11.6196 q^{71} -5.96769 q^{73} -20.8486 q^{75} -0.448129 q^{77} -7.46759 q^{79} -9.84176 q^{81} +5.89421 q^{83} +8.11263 q^{85} +4.91572 q^{87} -0.444368 q^{89} +2.85941 q^{91} -6.52410 q^{93} +20.3379 q^{95} -3.52786 q^{97} -0.284758 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} - 3 q^{5} + 6 q^{7} + q^{9} - 3 q^{11} - 3 q^{13} + 8 q^{15} - 8 q^{17} - 12 q^{19} - 8 q^{21} + q^{23} + 3 q^{25} - 6 q^{27} - 3 q^{29} + 19 q^{31} - 10 q^{33} - 8 q^{35} - 4 q^{37} + 5 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.82025 −1.05092 −0.525461 0.850818i \(-0.676107\pi\)
−0.525461 + 0.850818i \(0.676107\pi\)
\(4\) 0 0
\(5\) −4.05632 −1.81404 −0.907020 0.421087i \(-0.861649\pi\)
−0.907020 + 0.421087i \(0.861649\pi\)
\(6\) 0 0
\(7\) 0.493058 0.186358 0.0931792 0.995649i \(-0.470297\pi\)
0.0931792 + 0.995649i \(0.470297\pi\)
\(8\) 0 0
\(9\) 0.313307 0.104436
\(10\) 0 0
\(11\) −0.908877 −0.274037 −0.137018 0.990569i \(-0.543752\pi\)
−0.137018 + 0.990569i \(0.543752\pi\)
\(12\) 0 0
\(13\) 5.79933 1.60844 0.804222 0.594329i \(-0.202582\pi\)
0.804222 + 0.594329i \(0.202582\pi\)
\(14\) 0 0
\(15\) 7.38351 1.90641
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −5.01388 −1.15026 −0.575132 0.818061i \(-0.695049\pi\)
−0.575132 + 0.818061i \(0.695049\pi\)
\(20\) 0 0
\(21\) −0.897489 −0.195848
\(22\) 0 0
\(23\) 8.81321 1.83768 0.918841 0.394629i \(-0.129127\pi\)
0.918841 + 0.394629i \(0.129127\pi\)
\(24\) 0 0
\(25\) 11.4537 2.29074
\(26\) 0 0
\(27\) 4.89045 0.941168
\(28\) 0 0
\(29\) −2.70058 −0.501484 −0.250742 0.968054i \(-0.580675\pi\)
−0.250742 + 0.968054i \(0.580675\pi\)
\(30\) 0 0
\(31\) 3.58418 0.643738 0.321869 0.946784i \(-0.395689\pi\)
0.321869 + 0.946784i \(0.395689\pi\)
\(32\) 0 0
\(33\) 1.65438 0.287991
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) −10.5562 −1.69035
\(40\) 0 0
\(41\) −7.23856 −1.13047 −0.565237 0.824929i \(-0.691215\pi\)
−0.565237 + 0.824929i \(0.691215\pi\)
\(42\) 0 0
\(43\) 11.3936 1.73751 0.868756 0.495240i \(-0.164920\pi\)
0.868756 + 0.495240i \(0.164920\pi\)
\(44\) 0 0
\(45\) −1.27087 −0.189451
\(46\) 0 0
\(47\) −0.965194 −0.140788 −0.0703940 0.997519i \(-0.522426\pi\)
−0.0703940 + 0.997519i \(0.522426\pi\)
\(48\) 0 0
\(49\) −6.75689 −0.965271
\(50\) 0 0
\(51\) 3.64050 0.509772
\(52\) 0 0
\(53\) −3.72913 −0.512235 −0.256117 0.966646i \(-0.582443\pi\)
−0.256117 + 0.966646i \(0.582443\pi\)
\(54\) 0 0
\(55\) 3.68669 0.497114
\(56\) 0 0
\(57\) 9.12652 1.20884
\(58\) 0 0
\(59\) −10.1126 −1.31655 −0.658276 0.752776i \(-0.728714\pi\)
−0.658276 + 0.752776i \(0.728714\pi\)
\(60\) 0 0
\(61\) 9.36508 1.19908 0.599538 0.800346i \(-0.295351\pi\)
0.599538 + 0.800346i \(0.295351\pi\)
\(62\) 0 0
\(63\) 0.154479 0.0194625
\(64\) 0 0
\(65\) −23.5239 −2.91778
\(66\) 0 0
\(67\) 1.87407 0.228954 0.114477 0.993426i \(-0.463481\pi\)
0.114477 + 0.993426i \(0.463481\pi\)
\(68\) 0 0
\(69\) −16.0422 −1.93126
\(70\) 0 0
\(71\) 11.6196 1.37899 0.689495 0.724290i \(-0.257833\pi\)
0.689495 + 0.724290i \(0.257833\pi\)
\(72\) 0 0
\(73\) −5.96769 −0.698465 −0.349233 0.937036i \(-0.613558\pi\)
−0.349233 + 0.937036i \(0.613558\pi\)
\(74\) 0 0
\(75\) −20.8486 −2.40739
\(76\) 0 0
\(77\) −0.448129 −0.0510690
\(78\) 0 0
\(79\) −7.46759 −0.840170 −0.420085 0.907485i \(-0.638000\pi\)
−0.420085 + 0.907485i \(0.638000\pi\)
\(80\) 0 0
\(81\) −9.84176 −1.09353
\(82\) 0 0
\(83\) 5.89421 0.646974 0.323487 0.946233i \(-0.395145\pi\)
0.323487 + 0.946233i \(0.395145\pi\)
\(84\) 0 0
\(85\) 8.11263 0.879939
\(86\) 0 0
\(87\) 4.91572 0.527021
\(88\) 0 0
\(89\) −0.444368 −0.0471029 −0.0235515 0.999723i \(-0.507497\pi\)
−0.0235515 + 0.999723i \(0.507497\pi\)
\(90\) 0 0
\(91\) 2.85941 0.299747
\(92\) 0 0
\(93\) −6.52410 −0.676518
\(94\) 0 0
\(95\) 20.3379 2.08662
\(96\) 0 0
\(97\) −3.52786 −0.358200 −0.179100 0.983831i \(-0.557319\pi\)
−0.179100 + 0.983831i \(0.557319\pi\)
\(98\) 0 0
\(99\) −0.284758 −0.0286192
\(100\) 0 0
\(101\) −7.18738 −0.715171 −0.357585 0.933880i \(-0.616400\pi\)
−0.357585 + 0.933880i \(0.616400\pi\)
\(102\) 0 0
\(103\) −10.9778 −1.08168 −0.540838 0.841127i \(-0.681893\pi\)
−0.540838 + 0.841127i \(0.681893\pi\)
\(104\) 0 0
\(105\) 3.64050 0.355276
\(106\) 0 0
\(107\) 9.91196 0.958225 0.479113 0.877753i \(-0.340958\pi\)
0.479113 + 0.877753i \(0.340958\pi\)
\(108\) 0 0
\(109\) −14.3226 −1.37186 −0.685930 0.727667i \(-0.740605\pi\)
−0.685930 + 0.727667i \(0.740605\pi\)
\(110\) 0 0
\(111\) 1.82025 0.172770
\(112\) 0 0
\(113\) −15.2114 −1.43097 −0.715483 0.698630i \(-0.753793\pi\)
−0.715483 + 0.698630i \(0.753793\pi\)
\(114\) 0 0
\(115\) −35.7492 −3.33363
\(116\) 0 0
\(117\) 1.81697 0.167979
\(118\) 0 0
\(119\) −0.986116 −0.0903971
\(120\) 0 0
\(121\) −10.1739 −0.924904
\(122\) 0 0
\(123\) 13.1760 1.18804
\(124\) 0 0
\(125\) −26.1783 −2.34146
\(126\) 0 0
\(127\) 2.31081 0.205051 0.102526 0.994730i \(-0.467308\pi\)
0.102526 + 0.994730i \(0.467308\pi\)
\(128\) 0 0
\(129\) −20.7392 −1.82599
\(130\) 0 0
\(131\) −18.6125 −1.62619 −0.813093 0.582135i \(-0.802218\pi\)
−0.813093 + 0.582135i \(0.802218\pi\)
\(132\) 0 0
\(133\) −2.47214 −0.214361
\(134\) 0 0
\(135\) −19.8372 −1.70732
\(136\) 0 0
\(137\) −6.62084 −0.565657 −0.282828 0.959171i \(-0.591273\pi\)
−0.282828 + 0.959171i \(0.591273\pi\)
\(138\) 0 0
\(139\) 3.25758 0.276304 0.138152 0.990411i \(-0.455884\pi\)
0.138152 + 0.990411i \(0.455884\pi\)
\(140\) 0 0
\(141\) 1.75689 0.147957
\(142\) 0 0
\(143\) −5.27087 −0.440773
\(144\) 0 0
\(145\) 10.9544 0.909713
\(146\) 0 0
\(147\) 12.2992 1.01442
\(148\) 0 0
\(149\) 17.1505 1.40503 0.702513 0.711671i \(-0.252061\pi\)
0.702513 + 0.711671i \(0.252061\pi\)
\(150\) 0 0
\(151\) 10.1404 0.825214 0.412607 0.910909i \(-0.364618\pi\)
0.412607 + 0.910909i \(0.364618\pi\)
\(152\) 0 0
\(153\) −0.626615 −0.0506588
\(154\) 0 0
\(155\) −14.5386 −1.16777
\(156\) 0 0
\(157\) −3.90638 −0.311763 −0.155882 0.987776i \(-0.549822\pi\)
−0.155882 + 0.987776i \(0.549822\pi\)
\(158\) 0 0
\(159\) 6.78794 0.538319
\(160\) 0 0
\(161\) 4.34542 0.342467
\(162\) 0 0
\(163\) 4.74677 0.371796 0.185898 0.982569i \(-0.440481\pi\)
0.185898 + 0.982569i \(0.440481\pi\)
\(164\) 0 0
\(165\) −6.71070 −0.522427
\(166\) 0 0
\(167\) −13.4499 −1.04079 −0.520394 0.853926i \(-0.674215\pi\)
−0.520394 + 0.853926i \(0.674215\pi\)
\(168\) 0 0
\(169\) 20.6322 1.58709
\(170\) 0 0
\(171\) −1.57089 −0.120129
\(172\) 0 0
\(173\) −13.0379 −0.991252 −0.495626 0.868536i \(-0.665061\pi\)
−0.495626 + 0.868536i \(0.665061\pi\)
\(174\) 0 0
\(175\) 5.64734 0.426899
\(176\) 0 0
\(177\) 18.4075 1.38359
\(178\) 0 0
\(179\) 6.41504 0.479482 0.239741 0.970837i \(-0.422937\pi\)
0.239741 + 0.970837i \(0.422937\pi\)
\(180\) 0 0
\(181\) 19.9266 1.48113 0.740567 0.671982i \(-0.234557\pi\)
0.740567 + 0.671982i \(0.234557\pi\)
\(182\) 0 0
\(183\) −17.0468 −1.26013
\(184\) 0 0
\(185\) 4.05632 0.298226
\(186\) 0 0
\(187\) 1.81775 0.132927
\(188\) 0 0
\(189\) 2.41128 0.175395
\(190\) 0 0
\(191\) −22.0716 −1.59704 −0.798521 0.601966i \(-0.794384\pi\)
−0.798521 + 0.601966i \(0.794384\pi\)
\(192\) 0 0
\(193\) −4.67716 −0.336669 −0.168335 0.985730i \(-0.553839\pi\)
−0.168335 + 0.985730i \(0.553839\pi\)
\(194\) 0 0
\(195\) 42.8194 3.06636
\(196\) 0 0
\(197\) 1.39240 0.0992045 0.0496022 0.998769i \(-0.484205\pi\)
0.0496022 + 0.998769i \(0.484205\pi\)
\(198\) 0 0
\(199\) 14.6974 1.04187 0.520936 0.853596i \(-0.325583\pi\)
0.520936 + 0.853596i \(0.325583\pi\)
\(200\) 0 0
\(201\) −3.41128 −0.240613
\(202\) 0 0
\(203\) −1.33154 −0.0934559
\(204\) 0 0
\(205\) 29.3619 2.05072
\(206\) 0 0
\(207\) 2.76124 0.191920
\(208\) 0 0
\(209\) 4.55700 0.315214
\(210\) 0 0
\(211\) −13.7405 −0.945936 −0.472968 0.881080i \(-0.656817\pi\)
−0.472968 + 0.881080i \(0.656817\pi\)
\(212\) 0 0
\(213\) −21.1505 −1.44921
\(214\) 0 0
\(215\) −46.2162 −3.15192
\(216\) 0 0
\(217\) 1.76721 0.119966
\(218\) 0 0
\(219\) 10.8627 0.734032
\(220\) 0 0
\(221\) −11.5987 −0.780210
\(222\) 0 0
\(223\) 28.2043 1.88870 0.944351 0.328938i \(-0.106691\pi\)
0.944351 + 0.328938i \(0.106691\pi\)
\(224\) 0 0
\(225\) 3.58853 0.239235
\(226\) 0 0
\(227\) −8.47713 −0.562647 −0.281323 0.959613i \(-0.590773\pi\)
−0.281323 + 0.959613i \(0.590773\pi\)
\(228\) 0 0
\(229\) −16.4038 −1.08399 −0.541995 0.840382i \(-0.682331\pi\)
−0.541995 + 0.840382i \(0.682331\pi\)
\(230\) 0 0
\(231\) 0.815707 0.0536696
\(232\) 0 0
\(233\) 13.7347 0.899791 0.449895 0.893081i \(-0.351461\pi\)
0.449895 + 0.893081i \(0.351461\pi\)
\(234\) 0 0
\(235\) 3.91513 0.255395
\(236\) 0 0
\(237\) 13.5929 0.882953
\(238\) 0 0
\(239\) −18.8880 −1.22176 −0.610880 0.791723i \(-0.709184\pi\)
−0.610880 + 0.791723i \(0.709184\pi\)
\(240\) 0 0
\(241\) 23.4719 1.51196 0.755980 0.654594i \(-0.227161\pi\)
0.755980 + 0.654594i \(0.227161\pi\)
\(242\) 0 0
\(243\) 3.24311 0.208045
\(244\) 0 0
\(245\) 27.4081 1.75104
\(246\) 0 0
\(247\) −29.0772 −1.85013
\(248\) 0 0
\(249\) −10.7289 −0.679919
\(250\) 0 0
\(251\) 5.12153 0.323268 0.161634 0.986851i \(-0.448324\pi\)
0.161634 + 0.986851i \(0.448324\pi\)
\(252\) 0 0
\(253\) −8.01012 −0.503592
\(254\) 0 0
\(255\) −14.7670 −0.924746
\(256\) 0 0
\(257\) 15.0897 0.941267 0.470634 0.882329i \(-0.344025\pi\)
0.470634 + 0.882329i \(0.344025\pi\)
\(258\) 0 0
\(259\) −0.493058 −0.0306371
\(260\) 0 0
\(261\) −0.846110 −0.0523729
\(262\) 0 0
\(263\) −23.0485 −1.42123 −0.710616 0.703580i \(-0.751583\pi\)
−0.710616 + 0.703580i \(0.751583\pi\)
\(264\) 0 0
\(265\) 15.1265 0.929215
\(266\) 0 0
\(267\) 0.808861 0.0495015
\(268\) 0 0
\(269\) 3.10374 0.189238 0.0946192 0.995514i \(-0.469837\pi\)
0.0946192 + 0.995514i \(0.469837\pi\)
\(270\) 0 0
\(271\) −29.6257 −1.79964 −0.899818 0.436266i \(-0.856301\pi\)
−0.899818 + 0.436266i \(0.856301\pi\)
\(272\) 0 0
\(273\) −5.20483 −0.315011
\(274\) 0 0
\(275\) −10.4100 −0.627747
\(276\) 0 0
\(277\) −7.84474 −0.471345 −0.235672 0.971833i \(-0.575729\pi\)
−0.235672 + 0.971833i \(0.575729\pi\)
\(278\) 0 0
\(279\) 1.12295 0.0672293
\(280\) 0 0
\(281\) 0.719003 0.0428921 0.0214461 0.999770i \(-0.493173\pi\)
0.0214461 + 0.999770i \(0.493173\pi\)
\(282\) 0 0
\(283\) 2.26212 0.134469 0.0672346 0.997737i \(-0.478582\pi\)
0.0672346 + 0.997737i \(0.478582\pi\)
\(284\) 0 0
\(285\) −37.0201 −2.19288
\(286\) 0 0
\(287\) −3.56903 −0.210673
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 6.42159 0.376440
\(292\) 0 0
\(293\) 7.62642 0.445540 0.222770 0.974871i \(-0.428490\pi\)
0.222770 + 0.974871i \(0.428490\pi\)
\(294\) 0 0
\(295\) 41.0201 2.38828
\(296\) 0 0
\(297\) −4.44482 −0.257914
\(298\) 0 0
\(299\) 51.1107 2.95581
\(300\) 0 0
\(301\) 5.61772 0.323800
\(302\) 0 0
\(303\) 13.0828 0.751588
\(304\) 0 0
\(305\) −37.9877 −2.17517
\(306\) 0 0
\(307\) −16.4328 −0.937869 −0.468934 0.883233i \(-0.655362\pi\)
−0.468934 + 0.883233i \(0.655362\pi\)
\(308\) 0 0
\(309\) 19.9824 1.13676
\(310\) 0 0
\(311\) 13.2157 0.749396 0.374698 0.927147i \(-0.377746\pi\)
0.374698 + 0.927147i \(0.377746\pi\)
\(312\) 0 0
\(313\) −22.1606 −1.25259 −0.626297 0.779585i \(-0.715430\pi\)
−0.626297 + 0.779585i \(0.715430\pi\)
\(314\) 0 0
\(315\) −0.626615 −0.0353057
\(316\) 0 0
\(317\) −5.79498 −0.325478 −0.162739 0.986669i \(-0.552033\pi\)
−0.162739 + 0.986669i \(0.552033\pi\)
\(318\) 0 0
\(319\) 2.45449 0.137425
\(320\) 0 0
\(321\) −18.0422 −1.00702
\(322\) 0 0
\(323\) 10.0278 0.557960
\(324\) 0 0
\(325\) 66.4238 3.68453
\(326\) 0 0
\(327\) 26.0708 1.44172
\(328\) 0 0
\(329\) −0.475897 −0.0262370
\(330\) 0 0
\(331\) 17.6314 0.969110 0.484555 0.874761i \(-0.338982\pi\)
0.484555 + 0.874761i \(0.338982\pi\)
\(332\) 0 0
\(333\) −0.313307 −0.0171691
\(334\) 0 0
\(335\) −7.60183 −0.415332
\(336\) 0 0
\(337\) 6.97658 0.380039 0.190019 0.981780i \(-0.439145\pi\)
0.190019 + 0.981780i \(0.439145\pi\)
\(338\) 0 0
\(339\) 27.6885 1.50383
\(340\) 0 0
\(341\) −3.25758 −0.176408
\(342\) 0 0
\(343\) −6.78295 −0.366245
\(344\) 0 0
\(345\) 65.0724 3.50338
\(346\) 0 0
\(347\) −33.4276 −1.79449 −0.897243 0.441537i \(-0.854433\pi\)
−0.897243 + 0.441537i \(0.854433\pi\)
\(348\) 0 0
\(349\) −20.8797 −1.11766 −0.558831 0.829282i \(-0.688750\pi\)
−0.558831 + 0.829282i \(0.688750\pi\)
\(350\) 0 0
\(351\) 28.3613 1.51382
\(352\) 0 0
\(353\) 5.23416 0.278586 0.139293 0.990251i \(-0.455517\pi\)
0.139293 + 0.990251i \(0.455517\pi\)
\(354\) 0 0
\(355\) −47.1327 −2.50154
\(356\) 0 0
\(357\) 1.79498 0.0950003
\(358\) 0 0
\(359\) 28.6194 1.51047 0.755237 0.655452i \(-0.227522\pi\)
0.755237 + 0.655452i \(0.227522\pi\)
\(360\) 0 0
\(361\) 6.13903 0.323107
\(362\) 0 0
\(363\) 18.5191 0.972001
\(364\) 0 0
\(365\) 24.2068 1.26704
\(366\) 0 0
\(367\) 9.87984 0.515724 0.257862 0.966182i \(-0.416982\pi\)
0.257862 + 0.966182i \(0.416982\pi\)
\(368\) 0 0
\(369\) −2.26790 −0.118062
\(370\) 0 0
\(371\) −1.83868 −0.0954593
\(372\) 0 0
\(373\) 26.2063 1.35691 0.678454 0.734643i \(-0.262650\pi\)
0.678454 + 0.734643i \(0.262650\pi\)
\(374\) 0 0
\(375\) 47.6510 2.46069
\(376\) 0 0
\(377\) −15.6615 −0.806610
\(378\) 0 0
\(379\) −27.3493 −1.40484 −0.702419 0.711763i \(-0.747897\pi\)
−0.702419 + 0.711763i \(0.747897\pi\)
\(380\) 0 0
\(381\) −4.20625 −0.215493
\(382\) 0 0
\(383\) −7.46577 −0.381483 −0.190742 0.981640i \(-0.561089\pi\)
−0.190742 + 0.981640i \(0.561089\pi\)
\(384\) 0 0
\(385\) 1.81775 0.0926413
\(386\) 0 0
\(387\) 3.56971 0.181458
\(388\) 0 0
\(389\) −1.70694 −0.0865452 −0.0432726 0.999063i \(-0.513778\pi\)
−0.0432726 + 0.999063i \(0.513778\pi\)
\(390\) 0 0
\(391\) −17.6264 −0.891406
\(392\) 0 0
\(393\) 33.8795 1.70899
\(394\) 0 0
\(395\) 30.2909 1.52410
\(396\) 0 0
\(397\) −30.7960 −1.54561 −0.772804 0.634645i \(-0.781146\pi\)
−0.772804 + 0.634645i \(0.781146\pi\)
\(398\) 0 0
\(399\) 4.49990 0.225277
\(400\) 0 0
\(401\) 11.9076 0.594638 0.297319 0.954778i \(-0.403908\pi\)
0.297319 + 0.954778i \(0.403908\pi\)
\(402\) 0 0
\(403\) 20.7858 1.03542
\(404\) 0 0
\(405\) 39.9213 1.98371
\(406\) 0 0
\(407\) 0.908877 0.0450514
\(408\) 0 0
\(409\) −12.6050 −0.623278 −0.311639 0.950201i \(-0.600878\pi\)
−0.311639 + 0.950201i \(0.600878\pi\)
\(410\) 0 0
\(411\) 12.0516 0.594461
\(412\) 0 0
\(413\) −4.98612 −0.245351
\(414\) 0 0
\(415\) −23.9088 −1.17364
\(416\) 0 0
\(417\) −5.92961 −0.290374
\(418\) 0 0
\(419\) 6.85691 0.334982 0.167491 0.985874i \(-0.446433\pi\)
0.167491 + 0.985874i \(0.446433\pi\)
\(420\) 0 0
\(421\) 17.4473 0.850332 0.425166 0.905115i \(-0.360216\pi\)
0.425166 + 0.905115i \(0.360216\pi\)
\(422\) 0 0
\(423\) −0.302402 −0.0147033
\(424\) 0 0
\(425\) −22.9074 −1.11117
\(426\) 0 0
\(427\) 4.61753 0.223458
\(428\) 0 0
\(429\) 9.59430 0.463217
\(430\) 0 0
\(431\) −2.19750 −0.105850 −0.0529250 0.998598i \(-0.516854\pi\)
−0.0529250 + 0.998598i \(0.516854\pi\)
\(432\) 0 0
\(433\) −14.2399 −0.684328 −0.342164 0.939640i \(-0.611160\pi\)
−0.342164 + 0.939640i \(0.611160\pi\)
\(434\) 0 0
\(435\) −19.9397 −0.956037
\(436\) 0 0
\(437\) −44.1884 −2.11382
\(438\) 0 0
\(439\) 24.6778 1.17781 0.588904 0.808203i \(-0.299560\pi\)
0.588904 + 0.808203i \(0.299560\pi\)
\(440\) 0 0
\(441\) −2.11698 −0.100809
\(442\) 0 0
\(443\) 11.4709 0.544998 0.272499 0.962156i \(-0.412150\pi\)
0.272499 + 0.962156i \(0.412150\pi\)
\(444\) 0 0
\(445\) 1.80250 0.0854466
\(446\) 0 0
\(447\) −31.2182 −1.47657
\(448\) 0 0
\(449\) −36.2112 −1.70891 −0.854456 0.519524i \(-0.826109\pi\)
−0.854456 + 0.519524i \(0.826109\pi\)
\(450\) 0 0
\(451\) 6.57896 0.309791
\(452\) 0 0
\(453\) −18.4581 −0.867235
\(454\) 0 0
\(455\) −11.5987 −0.543753
\(456\) 0 0
\(457\) 13.3593 0.624922 0.312461 0.949931i \(-0.398847\pi\)
0.312461 + 0.949931i \(0.398847\pi\)
\(458\) 0 0
\(459\) −9.78090 −0.456533
\(460\) 0 0
\(461\) 20.6100 0.959904 0.479952 0.877295i \(-0.340654\pi\)
0.479952 + 0.877295i \(0.340654\pi\)
\(462\) 0 0
\(463\) 12.0462 0.559834 0.279917 0.960024i \(-0.409693\pi\)
0.279917 + 0.960024i \(0.409693\pi\)
\(464\) 0 0
\(465\) 26.4638 1.22723
\(466\) 0 0
\(467\) 2.64939 0.122599 0.0612996 0.998119i \(-0.480475\pi\)
0.0612996 + 0.998119i \(0.480475\pi\)
\(468\) 0 0
\(469\) 0.924026 0.0426675
\(470\) 0 0
\(471\) 7.11059 0.327639
\(472\) 0 0
\(473\) −10.3554 −0.476142
\(474\) 0 0
\(475\) −57.4276 −2.63496
\(476\) 0 0
\(477\) −1.16836 −0.0534956
\(478\) 0 0
\(479\) −32.4412 −1.48228 −0.741138 0.671353i \(-0.765714\pi\)
−0.741138 + 0.671353i \(0.765714\pi\)
\(480\) 0 0
\(481\) −5.79933 −0.264427
\(482\) 0 0
\(483\) −7.90976 −0.359906
\(484\) 0 0
\(485\) 14.3101 0.649790
\(486\) 0 0
\(487\) 2.60384 0.117991 0.0589956 0.998258i \(-0.481210\pi\)
0.0589956 + 0.998258i \(0.481210\pi\)
\(488\) 0 0
\(489\) −8.64031 −0.390728
\(490\) 0 0
\(491\) 8.15630 0.368089 0.184044 0.982918i \(-0.441081\pi\)
0.184044 + 0.982918i \(0.441081\pi\)
\(492\) 0 0
\(493\) 5.40115 0.243256
\(494\) 0 0
\(495\) 1.15507 0.0519164
\(496\) 0 0
\(497\) 5.72913 0.256986
\(498\) 0 0
\(499\) 30.3859 1.36026 0.680130 0.733091i \(-0.261923\pi\)
0.680130 + 0.733091i \(0.261923\pi\)
\(500\) 0 0
\(501\) 24.4823 1.09379
\(502\) 0 0
\(503\) −19.5904 −0.873491 −0.436745 0.899585i \(-0.643869\pi\)
−0.436745 + 0.899585i \(0.643869\pi\)
\(504\) 0 0
\(505\) 29.1543 1.29735
\(506\) 0 0
\(507\) −37.5557 −1.66791
\(508\) 0 0
\(509\) −32.0115 −1.41888 −0.709442 0.704764i \(-0.751053\pi\)
−0.709442 + 0.704764i \(0.751053\pi\)
\(510\) 0 0
\(511\) −2.94242 −0.130165
\(512\) 0 0
\(513\) −24.5201 −1.08259
\(514\) 0 0
\(515\) 44.5295 1.96220
\(516\) 0 0
\(517\) 0.877242 0.0385811
\(518\) 0 0
\(519\) 23.7322 1.04173
\(520\) 0 0
\(521\) −43.8252 −1.92001 −0.960007 0.279975i \(-0.909674\pi\)
−0.960007 + 0.279975i \(0.909674\pi\)
\(522\) 0 0
\(523\) −24.1404 −1.05559 −0.527793 0.849373i \(-0.676980\pi\)
−0.527793 + 0.849373i \(0.676980\pi\)
\(524\) 0 0
\(525\) −10.2796 −0.448637
\(526\) 0 0
\(527\) −7.16836 −0.312259
\(528\) 0 0
\(529\) 54.6727 2.37707
\(530\) 0 0
\(531\) −3.16836 −0.137495
\(532\) 0 0
\(533\) −41.9788 −1.81830
\(534\) 0 0
\(535\) −40.2061 −1.73826
\(536\) 0 0
\(537\) −11.6770 −0.503898
\(538\) 0 0
\(539\) 6.14118 0.264520
\(540\) 0 0
\(541\) −40.5471 −1.74326 −0.871629 0.490167i \(-0.836936\pi\)
−0.871629 + 0.490167i \(0.836936\pi\)
\(542\) 0 0
\(543\) −36.2714 −1.55656
\(544\) 0 0
\(545\) 58.0972 2.48861
\(546\) 0 0
\(547\) −23.0291 −0.984655 −0.492327 0.870410i \(-0.663854\pi\)
−0.492327 + 0.870410i \(0.663854\pi\)
\(548\) 0 0
\(549\) 2.93415 0.125226
\(550\) 0 0
\(551\) 13.5404 0.576839
\(552\) 0 0
\(553\) −3.68196 −0.156573
\(554\) 0 0
\(555\) −7.38351 −0.313412
\(556\) 0 0
\(557\) −46.0181 −1.94985 −0.974925 0.222534i \(-0.928567\pi\)
−0.974925 + 0.222534i \(0.928567\pi\)
\(558\) 0 0
\(559\) 66.0754 2.79469
\(560\) 0 0
\(561\) −3.30876 −0.139696
\(562\) 0 0
\(563\) 16.7392 0.705475 0.352738 0.935722i \(-0.385251\pi\)
0.352738 + 0.935722i \(0.385251\pi\)
\(564\) 0 0
\(565\) 61.7022 2.59583
\(566\) 0 0
\(567\) −4.85256 −0.203788
\(568\) 0 0
\(569\) 32.1379 1.34729 0.673645 0.739055i \(-0.264728\pi\)
0.673645 + 0.739055i \(0.264728\pi\)
\(570\) 0 0
\(571\) −8.25435 −0.345434 −0.172717 0.984971i \(-0.555255\pi\)
−0.172717 + 0.984971i \(0.555255\pi\)
\(572\) 0 0
\(573\) 40.1758 1.67837
\(574\) 0 0
\(575\) 100.944 4.20965
\(576\) 0 0
\(577\) −18.2556 −0.759989 −0.379995 0.924989i \(-0.624074\pi\)
−0.379995 + 0.924989i \(0.624074\pi\)
\(578\) 0 0
\(579\) 8.51359 0.353813
\(580\) 0 0
\(581\) 2.90619 0.120569
\(582\) 0 0
\(583\) 3.38932 0.140371
\(584\) 0 0
\(585\) −7.37021 −0.304721
\(586\) 0 0
\(587\) −6.63161 −0.273716 −0.136858 0.990591i \(-0.543700\pi\)
−0.136858 + 0.990591i \(0.543700\pi\)
\(588\) 0 0
\(589\) −17.9707 −0.740468
\(590\) 0 0
\(591\) −2.53452 −0.104256
\(592\) 0 0
\(593\) 26.3686 1.08283 0.541415 0.840755i \(-0.317889\pi\)
0.541415 + 0.840755i \(0.317889\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 0 0
\(597\) −26.7529 −1.09492
\(598\) 0 0
\(599\) 0.832313 0.0340074 0.0170037 0.999855i \(-0.494587\pi\)
0.0170037 + 0.999855i \(0.494587\pi\)
\(600\) 0 0
\(601\) 12.1259 0.494627 0.247313 0.968936i \(-0.420452\pi\)
0.247313 + 0.968936i \(0.420452\pi\)
\(602\) 0 0
\(603\) 0.587160 0.0239110
\(604\) 0 0
\(605\) 41.2687 1.67781
\(606\) 0 0
\(607\) −24.9168 −1.01134 −0.505670 0.862727i \(-0.668755\pi\)
−0.505670 + 0.862727i \(0.668755\pi\)
\(608\) 0 0
\(609\) 2.42374 0.0982148
\(610\) 0 0
\(611\) −5.59748 −0.226450
\(612\) 0 0
\(613\) 0.596053 0.0240743 0.0120372 0.999928i \(-0.496168\pi\)
0.0120372 + 0.999928i \(0.496168\pi\)
\(614\) 0 0
\(615\) −53.4460 −2.15515
\(616\) 0 0
\(617\) 22.1182 0.890446 0.445223 0.895420i \(-0.353124\pi\)
0.445223 + 0.895420i \(0.353124\pi\)
\(618\) 0 0
\(619\) −45.2757 −1.81979 −0.909893 0.414844i \(-0.863836\pi\)
−0.909893 + 0.414844i \(0.863836\pi\)
\(620\) 0 0
\(621\) 43.1006 1.72957
\(622\) 0 0
\(623\) −0.219099 −0.00877803
\(624\) 0 0
\(625\) 48.9189 1.95676
\(626\) 0 0
\(627\) −8.29488 −0.331266
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 40.1422 1.59804 0.799018 0.601307i \(-0.205353\pi\)
0.799018 + 0.601307i \(0.205353\pi\)
\(632\) 0 0
\(633\) 25.0112 0.994104
\(634\) 0 0
\(635\) −9.37339 −0.371971
\(636\) 0 0
\(637\) −39.1854 −1.55258
\(638\) 0 0
\(639\) 3.64050 0.144016
\(640\) 0 0
\(641\) 2.43469 0.0961646 0.0480823 0.998843i \(-0.484689\pi\)
0.0480823 + 0.998843i \(0.484689\pi\)
\(642\) 0 0
\(643\) 32.4631 1.28022 0.640109 0.768284i \(-0.278889\pi\)
0.640109 + 0.768284i \(0.278889\pi\)
\(644\) 0 0
\(645\) 84.1250 3.31242
\(646\) 0 0
\(647\) 35.6373 1.40105 0.700524 0.713629i \(-0.252950\pi\)
0.700524 + 0.713629i \(0.252950\pi\)
\(648\) 0 0
\(649\) 9.19114 0.360784
\(650\) 0 0
\(651\) −3.21676 −0.126075
\(652\) 0 0
\(653\) 28.2677 1.10620 0.553099 0.833115i \(-0.313445\pi\)
0.553099 + 0.833115i \(0.313445\pi\)
\(654\) 0 0
\(655\) 75.4984 2.94996
\(656\) 0 0
\(657\) −1.86972 −0.0729448
\(658\) 0 0
\(659\) 0.553329 0.0215546 0.0107773 0.999942i \(-0.496569\pi\)
0.0107773 + 0.999942i \(0.496569\pi\)
\(660\) 0 0
\(661\) 19.5893 0.761936 0.380968 0.924588i \(-0.375591\pi\)
0.380968 + 0.924588i \(0.375591\pi\)
\(662\) 0 0
\(663\) 21.1124 0.819939
\(664\) 0 0
\(665\) 10.0278 0.388860
\(666\) 0 0
\(667\) −23.8008 −0.921569
\(668\) 0 0
\(669\) −51.3389 −1.98488
\(670\) 0 0
\(671\) −8.51171 −0.328591
\(672\) 0 0
\(673\) −29.5471 −1.13896 −0.569479 0.822006i \(-0.692855\pi\)
−0.569479 + 0.822006i \(0.692855\pi\)
\(674\) 0 0
\(675\) 56.0138 2.15597
\(676\) 0 0
\(677\) −9.28975 −0.357034 −0.178517 0.983937i \(-0.557130\pi\)
−0.178517 + 0.983937i \(0.557130\pi\)
\(678\) 0 0
\(679\) −1.73944 −0.0667537
\(680\) 0 0
\(681\) 15.4305 0.591297
\(682\) 0 0
\(683\) −1.58957 −0.0608232 −0.0304116 0.999537i \(-0.509682\pi\)
−0.0304116 + 0.999537i \(0.509682\pi\)
\(684\) 0 0
\(685\) 26.8562 1.02612
\(686\) 0 0
\(687\) 29.8589 1.13919
\(688\) 0 0
\(689\) −21.6264 −0.823901
\(690\) 0 0
\(691\) −49.1795 −1.87088 −0.935439 0.353489i \(-0.884995\pi\)
−0.935439 + 0.353489i \(0.884995\pi\)
\(692\) 0 0
\(693\) −0.140402 −0.00533344
\(694\) 0 0
\(695\) −13.2138 −0.501227
\(696\) 0 0
\(697\) 14.4771 0.548360
\(698\) 0 0
\(699\) −25.0006 −0.945609
\(700\) 0 0
\(701\) 13.9159 0.525597 0.262798 0.964851i \(-0.415355\pi\)
0.262798 + 0.964851i \(0.415355\pi\)
\(702\) 0 0
\(703\) 5.01388 0.189102
\(704\) 0 0
\(705\) −7.12652 −0.268400
\(706\) 0 0
\(707\) −3.54379 −0.133278
\(708\) 0 0
\(709\) −39.1167 −1.46906 −0.734528 0.678578i \(-0.762597\pi\)
−0.734528 + 0.678578i \(0.762597\pi\)
\(710\) 0 0
\(711\) −2.33965 −0.0877438
\(712\) 0 0
\(713\) 31.5881 1.18299
\(714\) 0 0
\(715\) 21.3803 0.799579
\(716\) 0 0
\(717\) 34.3808 1.28397
\(718\) 0 0
\(719\) −48.6801 −1.81546 −0.907731 0.419552i \(-0.862187\pi\)
−0.907731 + 0.419552i \(0.862187\pi\)
\(720\) 0 0
\(721\) −5.41270 −0.201579
\(722\) 0 0
\(723\) −42.7248 −1.58895
\(724\) 0 0
\(725\) −30.9316 −1.14877
\(726\) 0 0
\(727\) 3.78421 0.140349 0.0701743 0.997535i \(-0.477644\pi\)
0.0701743 + 0.997535i \(0.477644\pi\)
\(728\) 0 0
\(729\) 23.6220 0.874890
\(730\) 0 0
\(731\) −22.7873 −0.842817
\(732\) 0 0
\(733\) −26.3847 −0.974541 −0.487270 0.873251i \(-0.662007\pi\)
−0.487270 + 0.873251i \(0.662007\pi\)
\(734\) 0 0
\(735\) −49.8896 −1.84020
\(736\) 0 0
\(737\) −1.70330 −0.0627418
\(738\) 0 0
\(739\) −45.5997 −1.67741 −0.838707 0.544584i \(-0.816688\pi\)
−0.838707 + 0.544584i \(0.816688\pi\)
\(740\) 0 0
\(741\) 52.9277 1.94435
\(742\) 0 0
\(743\) −37.6979 −1.38300 −0.691501 0.722376i \(-0.743050\pi\)
−0.691501 + 0.722376i \(0.743050\pi\)
\(744\) 0 0
\(745\) −69.5680 −2.54877
\(746\) 0 0
\(747\) 1.84670 0.0675672
\(748\) 0 0
\(749\) 4.88717 0.178573
\(750\) 0 0
\(751\) 3.56404 0.130054 0.0650269 0.997884i \(-0.479287\pi\)
0.0650269 + 0.997884i \(0.479287\pi\)
\(752\) 0 0
\(753\) −9.32246 −0.339729
\(754\) 0 0
\(755\) −41.1327 −1.49697
\(756\) 0 0
\(757\) 42.6648 1.55068 0.775339 0.631546i \(-0.217579\pi\)
0.775339 + 0.631546i \(0.217579\pi\)
\(758\) 0 0
\(759\) 14.5804 0.529236
\(760\) 0 0
\(761\) −24.6877 −0.894930 −0.447465 0.894302i \(-0.647673\pi\)
−0.447465 + 0.894302i \(0.647673\pi\)
\(762\) 0 0
\(763\) −7.06190 −0.255658
\(764\) 0 0
\(765\) 2.54175 0.0918971
\(766\) 0 0
\(767\) −58.6465 −2.11760
\(768\) 0 0
\(769\) 12.3404 0.445007 0.222504 0.974932i \(-0.428577\pi\)
0.222504 + 0.974932i \(0.428577\pi\)
\(770\) 0 0
\(771\) −27.4670 −0.989198
\(772\) 0 0
\(773\) −32.3922 −1.16507 −0.582533 0.812807i \(-0.697938\pi\)
−0.582533 + 0.812807i \(0.697938\pi\)
\(774\) 0 0
\(775\) 41.0522 1.47464
\(776\) 0 0
\(777\) 0.897489 0.0321972
\(778\) 0 0
\(779\) 36.2933 1.30034
\(780\) 0 0
\(781\) −10.5608 −0.377894
\(782\) 0 0
\(783\) −13.2070 −0.471981
\(784\) 0 0
\(785\) 15.8455 0.565551
\(786\) 0 0
\(787\) −48.9623 −1.74532 −0.872658 0.488331i \(-0.837606\pi\)
−0.872658 + 0.488331i \(0.837606\pi\)
\(788\) 0 0
\(789\) 41.9540 1.49360
\(790\) 0 0
\(791\) −7.50010 −0.266673
\(792\) 0 0
\(793\) 54.3112 1.92865
\(794\) 0 0
\(795\) −27.5340 −0.976532
\(796\) 0 0
\(797\) 46.7891 1.65735 0.828677 0.559727i \(-0.189094\pi\)
0.828677 + 0.559727i \(0.189094\pi\)
\(798\) 0 0
\(799\) 1.93039 0.0682922
\(800\) 0 0
\(801\) −0.139224 −0.00491923
\(802\) 0 0
\(803\) 5.42389 0.191405
\(804\) 0 0
\(805\) −17.6264 −0.621250
\(806\) 0 0
\(807\) −5.64958 −0.198875
\(808\) 0 0
\(809\) 47.2085 1.65976 0.829881 0.557941i \(-0.188408\pi\)
0.829881 + 0.557941i \(0.188408\pi\)
\(810\) 0 0
\(811\) −25.0199 −0.878569 −0.439285 0.898348i \(-0.644768\pi\)
−0.439285 + 0.898348i \(0.644768\pi\)
\(812\) 0 0
\(813\) 53.9262 1.89128
\(814\) 0 0
\(815\) −19.2544 −0.674452
\(816\) 0 0
\(817\) −57.1263 −1.99860
\(818\) 0 0
\(819\) 0.895873 0.0313043
\(820\) 0 0
\(821\) −6.59009 −0.229996 −0.114998 0.993366i \(-0.536686\pi\)
−0.114998 + 0.993366i \(0.536686\pi\)
\(822\) 0 0
\(823\) −29.6633 −1.03400 −0.516998 0.855986i \(-0.672951\pi\)
−0.516998 + 0.855986i \(0.672951\pi\)
\(824\) 0 0
\(825\) 18.9488 0.659713
\(826\) 0 0
\(827\) −8.39999 −0.292096 −0.146048 0.989277i \(-0.546655\pi\)
−0.146048 + 0.989277i \(0.546655\pi\)
\(828\) 0 0
\(829\) 6.52332 0.226564 0.113282 0.993563i \(-0.463864\pi\)
0.113282 + 0.993563i \(0.463864\pi\)
\(830\) 0 0
\(831\) 14.2794 0.495346
\(832\) 0 0
\(833\) 13.5138 0.468225
\(834\) 0 0
\(835\) 54.5573 1.88803
\(836\) 0 0
\(837\) 17.5283 0.605865
\(838\) 0 0
\(839\) 29.9556 1.03418 0.517092 0.855930i \(-0.327015\pi\)
0.517092 + 0.855930i \(0.327015\pi\)
\(840\) 0 0
\(841\) −21.7069 −0.748513
\(842\) 0 0
\(843\) −1.30876 −0.0450762
\(844\) 0 0
\(845\) −83.6907 −2.87905
\(846\) 0 0
\(847\) −5.01634 −0.172364
\(848\) 0 0
\(849\) −4.11763 −0.141317
\(850\) 0 0
\(851\) −8.81321 −0.302113
\(852\) 0 0
\(853\) 3.72458 0.127527 0.0637637 0.997965i \(-0.479690\pi\)
0.0637637 + 0.997965i \(0.479690\pi\)
\(854\) 0 0
\(855\) 6.37201 0.217918
\(856\) 0 0
\(857\) −13.8758 −0.473989 −0.236994 0.971511i \(-0.576162\pi\)
−0.236994 + 0.971511i \(0.576162\pi\)
\(858\) 0 0
\(859\) 34.4567 1.17565 0.587824 0.808989i \(-0.299985\pi\)
0.587824 + 0.808989i \(0.299985\pi\)
\(860\) 0 0
\(861\) 6.49653 0.221401
\(862\) 0 0
\(863\) 32.3668 1.10178 0.550890 0.834578i \(-0.314288\pi\)
0.550890 + 0.834578i \(0.314288\pi\)
\(864\) 0 0
\(865\) 52.8858 1.79817
\(866\) 0 0
\(867\) 23.6632 0.803646
\(868\) 0 0
\(869\) 6.78712 0.230237
\(870\) 0 0
\(871\) 10.8683 0.368260
\(872\) 0 0
\(873\) −1.10531 −0.0374089
\(874\) 0 0
\(875\) −12.9074 −0.436350
\(876\) 0 0
\(877\) −38.0305 −1.28420 −0.642100 0.766621i \(-0.721936\pi\)
−0.642100 + 0.766621i \(0.721936\pi\)
\(878\) 0 0
\(879\) −13.8820 −0.468228
\(880\) 0 0
\(881\) −37.9308 −1.27792 −0.638960 0.769240i \(-0.720635\pi\)
−0.638960 + 0.769240i \(0.720635\pi\)
\(882\) 0 0
\(883\) 55.3009 1.86102 0.930511 0.366264i \(-0.119363\pi\)
0.930511 + 0.366264i \(0.119363\pi\)
\(884\) 0 0
\(885\) −74.6667 −2.50989
\(886\) 0 0
\(887\) 26.0118 0.873392 0.436696 0.899609i \(-0.356149\pi\)
0.436696 + 0.899609i \(0.356149\pi\)
\(888\) 0 0
\(889\) 1.13936 0.0382131
\(890\) 0 0
\(891\) 8.94495 0.299667
\(892\) 0 0
\(893\) 4.83937 0.161943
\(894\) 0 0
\(895\) −26.0214 −0.869800
\(896\) 0 0
\(897\) −93.0342 −3.10632
\(898\) 0 0
\(899\) −9.67936 −0.322825
\(900\) 0 0
\(901\) 7.45825 0.248470
\(902\) 0 0
\(903\) −10.2257 −0.340288
\(904\) 0 0
\(905\) −80.8287 −2.68684
\(906\) 0 0
\(907\) −30.6353 −1.01723 −0.508614 0.860994i \(-0.669842\pi\)
−0.508614 + 0.860994i \(0.669842\pi\)
\(908\) 0 0
\(909\) −2.25186 −0.0746894
\(910\) 0 0
\(911\) −9.02796 −0.299110 −0.149555 0.988753i \(-0.547784\pi\)
−0.149555 + 0.988753i \(0.547784\pi\)
\(912\) 0 0
\(913\) −5.35711 −0.177295
\(914\) 0 0
\(915\) 69.1472 2.28593
\(916\) 0 0
\(917\) −9.17706 −0.303053
\(918\) 0 0
\(919\) −9.18704 −0.303053 −0.151526 0.988453i \(-0.548419\pi\)
−0.151526 + 0.988453i \(0.548419\pi\)
\(920\) 0 0
\(921\) 29.9118 0.985626
\(922\) 0 0
\(923\) 67.3857 2.21803
\(924\) 0 0
\(925\) −11.4537 −0.376596
\(926\) 0 0
\(927\) −3.43943 −0.112966
\(928\) 0 0
\(929\) −37.6500 −1.23526 −0.617628 0.786470i \(-0.711906\pi\)
−0.617628 + 0.786470i \(0.711906\pi\)
\(930\) 0 0
\(931\) 33.8783 1.11032
\(932\) 0 0
\(933\) −24.0559 −0.787556
\(934\) 0 0
\(935\) −7.37339 −0.241135
\(936\) 0 0
\(937\) 29.6145 0.967463 0.483732 0.875216i \(-0.339281\pi\)
0.483732 + 0.875216i \(0.339281\pi\)
\(938\) 0 0
\(939\) 40.3379 1.31638
\(940\) 0 0
\(941\) −0.709918 −0.0231427 −0.0115713 0.999933i \(-0.503683\pi\)
−0.0115713 + 0.999933i \(0.503683\pi\)
\(942\) 0 0
\(943\) −63.7950 −2.07745
\(944\) 0 0
\(945\) −9.78090 −0.318173
\(946\) 0 0
\(947\) 0.274635 0.00892443 0.00446221 0.999990i \(-0.498580\pi\)
0.00446221 + 0.999990i \(0.498580\pi\)
\(948\) 0 0
\(949\) −34.6086 −1.12344
\(950\) 0 0
\(951\) 10.5483 0.342052
\(952\) 0 0
\(953\) −38.7902 −1.25654 −0.628270 0.777996i \(-0.716237\pi\)
−0.628270 + 0.777996i \(0.716237\pi\)
\(954\) 0 0
\(955\) 89.5293 2.89710
\(956\) 0 0
\(957\) −4.46779 −0.144423
\(958\) 0 0
\(959\) −3.26446 −0.105415
\(960\) 0 0
\(961\) −18.1536 −0.585601
\(962\) 0 0
\(963\) 3.10549 0.100073
\(964\) 0 0
\(965\) 18.9720 0.610732
\(966\) 0 0
\(967\) −17.9742 −0.578011 −0.289006 0.957327i \(-0.593325\pi\)
−0.289006 + 0.957327i \(0.593325\pi\)
\(968\) 0 0
\(969\) −18.2530 −0.586372
\(970\) 0 0
\(971\) −14.1830 −0.455155 −0.227578 0.973760i \(-0.573081\pi\)
−0.227578 + 0.973760i \(0.573081\pi\)
\(972\) 0 0
\(973\) 1.60618 0.0514916
\(974\) 0 0
\(975\) −120.908 −3.87215
\(976\) 0 0
\(977\) −14.6833 −0.469761 −0.234881 0.972024i \(-0.575470\pi\)
−0.234881 + 0.972024i \(0.575470\pi\)
\(978\) 0 0
\(979\) 0.403876 0.0129079
\(980\) 0 0
\(981\) −4.48739 −0.143271
\(982\) 0 0
\(983\) −8.93996 −0.285140 −0.142570 0.989785i \(-0.545537\pi\)
−0.142570 + 0.989785i \(0.545537\pi\)
\(984\) 0 0
\(985\) −5.64802 −0.179961
\(986\) 0 0
\(987\) 0.866251 0.0275731
\(988\) 0 0
\(989\) 100.414 3.19299
\(990\) 0 0
\(991\) 27.8751 0.885482 0.442741 0.896650i \(-0.354006\pi\)
0.442741 + 0.896650i \(0.354006\pi\)
\(992\) 0 0
\(993\) −32.0936 −1.01846
\(994\) 0 0
\(995\) −59.6173 −1.89000
\(996\) 0 0
\(997\) −48.1557 −1.52510 −0.762552 0.646926i \(-0.776054\pi\)
−0.762552 + 0.646926i \(0.776054\pi\)
\(998\) 0 0
\(999\) −4.89045 −0.154727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.a.bf.1.2 4
4.3 odd 2 2368.2.a.bi.1.3 4
8.3 odd 2 1184.2.a.n.1.2 4
8.5 even 2 1184.2.a.o.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.a.n.1.2 4 8.3 odd 2
1184.2.a.o.1.3 yes 4 8.5 even 2
2368.2.a.bf.1.2 4 1.1 even 1 trivial
2368.2.a.bi.1.3 4 4.3 odd 2