Properties

Label 2368.2.a.c.1.1
Level $2368$
Weight $2$
Character 2368.1
Self dual yes
Analytic conductor $18.909$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +4.00000 q^{5} +1.00000 q^{7} +6.00000 q^{9} +3.00000 q^{11} -2.00000 q^{13} -12.0000 q^{15} +8.00000 q^{17} -2.00000 q^{19} -3.00000 q^{21} +6.00000 q^{23} +11.0000 q^{25} -9.00000 q^{27} +8.00000 q^{31} -9.00000 q^{33} +4.00000 q^{35} +1.00000 q^{37} +6.00000 q^{39} -5.00000 q^{41} -2.00000 q^{43} +24.0000 q^{45} -11.0000 q^{47} -6.00000 q^{49} -24.0000 q^{51} -9.00000 q^{53} +12.0000 q^{55} +6.00000 q^{57} -6.00000 q^{59} +6.00000 q^{61} +6.00000 q^{63} -8.00000 q^{65} +4.00000 q^{67} -18.0000 q^{69} -5.00000 q^{71} +11.0000 q^{73} -33.0000 q^{75} +3.00000 q^{77} -8.00000 q^{79} +9.00000 q^{81} +5.00000 q^{83} +32.0000 q^{85} -18.0000 q^{89} -2.00000 q^{91} -24.0000 q^{93} -8.00000 q^{95} -2.00000 q^{97} +18.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −12.0000 −3.09839
\(16\) 0 0
\(17\) 8.00000 1.94029 0.970143 0.242536i \(-0.0779791\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −9.00000 −1.56670
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 24.0000 3.57771
\(46\) 0 0
\(47\) −11.0000 −1.60451 −0.802257 0.596978i \(-0.796368\pi\)
−0.802257 + 0.596978i \(0.796368\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −24.0000 −3.36067
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 12.0000 1.61808
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) −18.0000 −2.16695
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) −33.0000 −3.81051
\(76\) 0 0
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 5.00000 0.548821 0.274411 0.961613i \(-0.411517\pi\)
0.274411 + 0.961613i \(0.411517\pi\)
\(84\) 0 0
\(85\) 32.0000 3.47089
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −24.0000 −2.48868
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 18.0000 1.80907
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 18.0000 1.77359 0.886796 0.462160i \(-0.152926\pi\)
0.886796 + 0.462160i \(0.152926\pi\)
\(104\) 0 0
\(105\) −12.0000 −1.17108
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 24.0000 2.23801
\(116\) 0 0
\(117\) −12.0000 −1.10940
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 15.0000 1.35250
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 0 0
\(135\) −36.0000 −3.09839
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 33.0000 2.77910
\(142\) 0 0
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 18.0000 1.48461
\(148\) 0 0
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 48.0000 3.88057
\(154\) 0 0
\(155\) 32.0000 2.57030
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 0 0
\(159\) 27.0000 2.14124
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) −36.0000 −2.80260
\(166\) 0 0
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) 7.00000 0.532200 0.266100 0.963945i \(-0.414265\pi\)
0.266100 + 0.963945i \(0.414265\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 18.0000 1.35296
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 23.0000 1.70958 0.854788 0.518977i \(-0.173687\pi\)
0.854788 + 0.518977i \(0.173687\pi\)
\(182\) 0 0
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) 0 0
\(189\) −9.00000 −0.654654
\(190\) 0 0
\(191\) 2.00000 0.144715 0.0723575 0.997379i \(-0.476948\pi\)
0.0723575 + 0.997379i \(0.476948\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) 24.0000 1.71868
\(196\) 0 0
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −20.0000 −1.39686
\(206\) 0 0
\(207\) 36.0000 2.50217
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −17.0000 −1.17033 −0.585164 0.810915i \(-0.698970\pi\)
−0.585164 + 0.810915i \(0.698970\pi\)
\(212\) 0 0
\(213\) 15.0000 1.02778
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) −33.0000 −2.22993
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 0 0
\(223\) 5.00000 0.334825 0.167412 0.985887i \(-0.446459\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 66.0000 4.40000
\(226\) 0 0
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 0 0
\(231\) −9.00000 −0.592157
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) −44.0000 −2.87024
\(236\) 0 0
\(237\) 24.0000 1.55897
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −20.0000 −1.28831 −0.644157 0.764894i \(-0.722792\pi\)
−0.644157 + 0.764894i \(0.722792\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.0000 −1.53330
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −15.0000 −0.950586
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) −96.0000 −6.01175
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.0000 1.54157 0.770783 0.637098i \(-0.219865\pi\)
0.770783 + 0.637098i \(0.219865\pi\)
\(264\) 0 0
\(265\) −36.0000 −2.21146
\(266\) 0 0
\(267\) 54.0000 3.30475
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −25.0000 −1.51864 −0.759321 0.650716i \(-0.774469\pi\)
−0.759321 + 0.650716i \(0.774469\pi\)
\(272\) 0 0
\(273\) 6.00000 0.363137
\(274\) 0 0
\(275\) 33.0000 1.98997
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 0 0
\(279\) 48.0000 2.87368
\(280\) 0 0
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) 10.0000 0.594438 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(284\) 0 0
\(285\) 24.0000 1.42164
\(286\) 0 0
\(287\) −5.00000 −0.295141
\(288\) 0 0
\(289\) 47.0000 2.76471
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) −27.0000 −1.56670
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 0 0
\(303\) −27.0000 −1.55111
\(304\) 0 0
\(305\) 24.0000 1.37424
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) −54.0000 −3.07195
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 24.0000 1.35225
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −36.0000 −2.00932
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) −22.0000 −1.22034
\(326\) 0 0
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) −11.0000 −0.606450
\(330\) 0 0
\(331\) 14.0000 0.769510 0.384755 0.923019i \(-0.374286\pi\)
0.384755 + 0.923019i \(0.374286\pi\)
\(332\) 0 0
\(333\) 6.00000 0.328798
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 0 0
\(339\) 24.0000 1.30350
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −72.0000 −3.87635
\(346\) 0 0
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 18.0000 0.960769
\(352\) 0 0
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 0 0
\(357\) −24.0000 −1.27021
\(358\) 0 0
\(359\) −9.00000 −0.475002 −0.237501 0.971387i \(-0.576328\pi\)
−0.237501 + 0.971387i \(0.576328\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) 44.0000 2.30307
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) −30.0000 −1.56174
\(370\) 0 0
\(371\) −9.00000 −0.467257
\(372\) 0 0
\(373\) 11.0000 0.569558 0.284779 0.958593i \(-0.408080\pi\)
0.284779 + 0.958593i \(0.408080\pi\)
\(374\) 0 0
\(375\) −72.0000 −3.71806
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 27.0000 1.38690 0.693448 0.720506i \(-0.256091\pi\)
0.693448 + 0.720506i \(0.256091\pi\)
\(380\) 0 0
\(381\) −33.0000 −1.69064
\(382\) 0 0
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 12.0000 0.611577
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 36.0000 1.82527 0.912636 0.408773i \(-0.134043\pi\)
0.912636 + 0.408773i \(0.134043\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 0 0
\(393\) −36.0000 −1.81596
\(394\) 0 0
\(395\) −32.0000 −1.61009
\(396\) 0 0
\(397\) 17.0000 0.853206 0.426603 0.904439i \(-0.359710\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) 0 0
\(405\) 36.0000 1.78885
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) 60.0000 2.93821
\(418\) 0 0
\(419\) −17.0000 −0.830504 −0.415252 0.909706i \(-0.636307\pi\)
−0.415252 + 0.909706i \(0.636307\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) 0 0
\(423\) −66.0000 −3.20903
\(424\) 0 0
\(425\) 88.0000 4.26863
\(426\) 0 0
\(427\) 6.00000 0.290360
\(428\) 0 0
\(429\) 18.0000 0.869048
\(430\) 0 0
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) 0 0
\(433\) −15.0000 −0.720854 −0.360427 0.932787i \(-0.617369\pi\)
−0.360427 + 0.932787i \(0.617369\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) 5.00000 0.237557 0.118779 0.992921i \(-0.462102\pi\)
0.118779 + 0.992921i \(0.462102\pi\)
\(444\) 0 0
\(445\) −72.0000 −3.41313
\(446\) 0 0
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −15.0000 −0.706322
\(452\) 0 0
\(453\) −24.0000 −1.12762
\(454\) 0 0
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −12.0000 −0.561336 −0.280668 0.959805i \(-0.590556\pi\)
−0.280668 + 0.959805i \(0.590556\pi\)
\(458\) 0 0
\(459\) −72.0000 −3.36067
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) −96.0000 −4.45189
\(466\) 0 0
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −3.00000 −0.138233
\(472\) 0 0
\(473\) −6.00000 −0.275880
\(474\) 0 0
\(475\) −22.0000 −1.00943
\(476\) 0 0
\(477\) −54.0000 −2.47249
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) −18.0000 −0.819028
\(484\) 0 0
\(485\) −8.00000 −0.363261
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 48.0000 2.17064
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 72.0000 3.23616
\(496\) 0 0
\(497\) −5.00000 −0.224281
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) −42.0000 −1.87642
\(502\) 0 0
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 0 0
\(507\) 27.0000 1.19911
\(508\) 0 0
\(509\) −29.0000 −1.28540 −0.642701 0.766117i \(-0.722186\pi\)
−0.642701 + 0.766117i \(0.722186\pi\)
\(510\) 0 0
\(511\) 11.0000 0.486611
\(512\) 0 0
\(513\) 18.0000 0.794719
\(514\) 0 0
\(515\) 72.0000 3.17270
\(516\) 0 0
\(517\) −33.0000 −1.45134
\(518\) 0 0
\(519\) −21.0000 −0.921798
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) −33.0000 −1.44024
\(526\) 0 0
\(527\) 64.0000 2.78788
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −36.0000 −1.56227
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 48.0000 2.07522
\(536\) 0 0
\(537\) −36.0000 −1.55351
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) −69.0000 −2.96107
\(544\) 0 0
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 36.0000 1.53644
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) −12.0000 −0.509372
\(556\) 0 0
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) −72.0000 −3.03984
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) −32.0000 −1.34625
\(566\) 0 0
\(567\) 9.00000 0.377964
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 31.0000 1.29731 0.648655 0.761083i \(-0.275332\pi\)
0.648655 + 0.761083i \(0.275332\pi\)
\(572\) 0 0
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) 5.00000 0.207435
\(582\) 0 0
\(583\) −27.0000 −1.11823
\(584\) 0 0
\(585\) −48.0000 −1.98456
\(586\) 0 0
\(587\) −6.00000 −0.247647 −0.123823 0.992304i \(-0.539516\pi\)
−0.123823 + 0.992304i \(0.539516\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 45.0000 1.85105
\(592\) 0 0
\(593\) 43.0000 1.76580 0.882899 0.469563i \(-0.155588\pi\)
0.882899 + 0.469563i \(0.155588\pi\)
\(594\) 0 0
\(595\) 32.0000 1.31187
\(596\) 0 0
\(597\) −12.0000 −0.491127
\(598\) 0 0
\(599\) −21.0000 −0.858037 −0.429018 0.903296i \(-0.641140\pi\)
−0.429018 + 0.903296i \(0.641140\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 24.0000 0.977356
\(604\) 0 0
\(605\) −8.00000 −0.325246
\(606\) 0 0
\(607\) 18.0000 0.730597 0.365299 0.930890i \(-0.380967\pi\)
0.365299 + 0.930890i \(0.380967\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.0000 0.890025
\(612\) 0 0
\(613\) 9.00000 0.363507 0.181753 0.983344i \(-0.441823\pi\)
0.181753 + 0.983344i \(0.441823\pi\)
\(614\) 0 0
\(615\) 60.0000 2.41943
\(616\) 0 0
\(617\) 29.0000 1.16750 0.583748 0.811935i \(-0.301586\pi\)
0.583748 + 0.811935i \(0.301586\pi\)
\(618\) 0 0
\(619\) 11.0000 0.442127 0.221064 0.975259i \(-0.429047\pi\)
0.221064 + 0.975259i \(0.429047\pi\)
\(620\) 0 0
\(621\) −54.0000 −2.16695
\(622\) 0 0
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) 18.0000 0.718851
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 22.0000 0.875806 0.437903 0.899022i \(-0.355721\pi\)
0.437903 + 0.899022i \(0.355721\pi\)
\(632\) 0 0
\(633\) 51.0000 2.02707
\(634\) 0 0
\(635\) 44.0000 1.74609
\(636\) 0 0
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) −30.0000 −1.18678
\(640\) 0 0
\(641\) −45.0000 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 24.0000 0.944999
\(646\) 0 0
\(647\) −4.00000 −0.157256 −0.0786281 0.996904i \(-0.525054\pi\)
−0.0786281 + 0.996904i \(0.525054\pi\)
\(648\) 0 0
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) −24.0000 −0.940634
\(652\) 0 0
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) 0 0
\(655\) 48.0000 1.87552
\(656\) 0 0
\(657\) 66.0000 2.57491
\(658\) 0 0
\(659\) −43.0000 −1.67504 −0.837521 0.546405i \(-0.815996\pi\)
−0.837521 + 0.546405i \(0.815996\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) 0 0
\(663\) 48.0000 1.86417
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −15.0000 −0.579934
\(670\) 0 0
\(671\) 18.0000 0.694882
\(672\) 0 0
\(673\) −21.0000 −0.809491 −0.404745 0.914429i \(-0.632640\pi\)
−0.404745 + 0.914429i \(0.632640\pi\)
\(674\) 0 0
\(675\) −99.0000 −3.81051
\(676\) 0 0
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 84.0000 3.21889
\(682\) 0 0
\(683\) 2.00000 0.0765279 0.0382639 0.999268i \(-0.487817\pi\)
0.0382639 + 0.999268i \(0.487817\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) 0 0
\(687\) −15.0000 −0.572286
\(688\) 0 0
\(689\) 18.0000 0.685745
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 0 0
\(693\) 18.0000 0.683763
\(694\) 0 0
\(695\) −80.0000 −3.03457
\(696\) 0 0
\(697\) −40.0000 −1.51511
\(698\) 0 0
\(699\) 66.0000 2.49635
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 132.000 4.97141
\(706\) 0 0
\(707\) 9.00000 0.338480
\(708\) 0 0
\(709\) −16.0000 −0.600893 −0.300446 0.953799i \(-0.597136\pi\)
−0.300446 + 0.953799i \(0.597136\pi\)
\(710\) 0 0
\(711\) −48.0000 −1.80014
\(712\) 0 0
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) 0 0
\(717\) 60.0000 2.24074
\(718\) 0 0
\(719\) 29.0000 1.08152 0.540759 0.841178i \(-0.318137\pi\)
0.540759 + 0.841178i \(0.318137\pi\)
\(720\) 0 0
\(721\) 18.0000 0.670355
\(722\) 0 0
\(723\) 60.0000 2.23142
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) 0 0
\(733\) 5.00000 0.184679 0.0923396 0.995728i \(-0.470565\pi\)
0.0923396 + 0.995728i \(0.470565\pi\)
\(734\) 0 0
\(735\) 72.0000 2.65576
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) 11.0000 0.404642 0.202321 0.979319i \(-0.435152\pi\)
0.202321 + 0.979319i \(0.435152\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) −9.00000 −0.330178 −0.165089 0.986279i \(-0.552791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 30.0000 1.09764
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 19.0000 0.693320 0.346660 0.937991i \(-0.387316\pi\)
0.346660 + 0.937991i \(0.387316\pi\)
\(752\) 0 0
\(753\) −48.0000 −1.74922
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) −32.0000 −1.16306 −0.581530 0.813525i \(-0.697546\pi\)
−0.581530 + 0.813525i \(0.697546\pi\)
\(758\) 0 0
\(759\) −54.0000 −1.96008
\(760\) 0 0
\(761\) 13.0000 0.471250 0.235625 0.971844i \(-0.424286\pi\)
0.235625 + 0.971844i \(0.424286\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) 192.000 6.94177
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) 20.0000 0.721218 0.360609 0.932717i \(-0.382569\pi\)
0.360609 + 0.932717i \(0.382569\pi\)
\(770\) 0 0
\(771\) −54.0000 −1.94476
\(772\) 0 0
\(773\) −3.00000 −0.107903 −0.0539513 0.998544i \(-0.517182\pi\)
−0.0539513 + 0.998544i \(0.517182\pi\)
\(774\) 0 0
\(775\) 88.0000 3.16105
\(776\) 0 0
\(777\) −3.00000 −0.107624
\(778\) 0 0
\(779\) 10.0000 0.358287
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) 23.0000 0.819861 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(788\) 0 0
\(789\) −75.0000 −2.67007
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) 108.000 3.83037
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) −88.0000 −3.11322
\(800\) 0 0
\(801\) −108.000 −3.81599
\(802\) 0 0
\(803\) 33.0000 1.16454
\(804\) 0 0
\(805\) 24.0000 0.845889
\(806\) 0 0
\(807\) 30.0000 1.05605
\(808\) 0 0
\(809\) 2.00000 0.0703163 0.0351581 0.999382i \(-0.488807\pi\)
0.0351581 + 0.999382i \(0.488807\pi\)
\(810\) 0 0
\(811\) −9.00000 −0.316033 −0.158016 0.987436i \(-0.550510\pi\)
−0.158016 + 0.987436i \(0.550510\pi\)
\(812\) 0 0
\(813\) 75.0000 2.63036
\(814\) 0 0
\(815\) −64.0000 −2.24182
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 23.0000 0.802706 0.401353 0.915924i \(-0.368540\pi\)
0.401353 + 0.915924i \(0.368540\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) −99.0000 −3.44674
\(826\) 0 0
\(827\) −54.0000 −1.87776 −0.938882 0.344239i \(-0.888137\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 24.0000 0.832551
\(832\) 0 0
\(833\) −48.0000 −1.66310
\(834\) 0 0
\(835\) 56.0000 1.93796
\(836\) 0 0
\(837\) −72.0000 −2.48868
\(838\) 0 0
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −48.0000 −1.65321
\(844\) 0 0
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) −30.0000 −1.02960
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) 18.0000 0.616308 0.308154 0.951336i \(-0.400289\pi\)
0.308154 + 0.951336i \(0.400289\pi\)
\(854\) 0 0
\(855\) −48.0000 −1.64157
\(856\) 0 0
\(857\) 36.0000 1.22974 0.614868 0.788630i \(-0.289209\pi\)
0.614868 + 0.788630i \(0.289209\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 15.0000 0.511199
\(862\) 0 0
\(863\) −8.00000 −0.272323 −0.136162 0.990687i \(-0.543477\pi\)
−0.136162 + 0.990687i \(0.543477\pi\)
\(864\) 0 0
\(865\) 28.0000 0.952029
\(866\) 0 0
\(867\) −141.000 −4.78861
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) −12.0000 −0.406138
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) −30.0000 −1.01187
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 6.00000 0.201916 0.100958 0.994891i \(-0.467809\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(884\) 0 0
\(885\) 72.0000 2.42025
\(886\) 0 0
\(887\) 43.0000 1.44380 0.721899 0.691998i \(-0.243269\pi\)
0.721899 + 0.691998i \(0.243269\pi\)
\(888\) 0 0
\(889\) 11.0000 0.368928
\(890\) 0 0
\(891\) 27.0000 0.904534
\(892\) 0 0
\(893\) 22.0000 0.736202
\(894\) 0 0
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 36.0000 1.20201
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −72.0000 −2.39867
\(902\) 0 0
\(903\) 6.00000 0.199667
\(904\) 0 0
\(905\) 92.0000 3.05818
\(906\) 0 0
\(907\) 34.0000 1.12895 0.564476 0.825450i \(-0.309078\pi\)
0.564476 + 0.825450i \(0.309078\pi\)
\(908\) 0 0
\(909\) 54.0000 1.79107
\(910\) 0 0
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) 0 0
\(913\) 15.0000 0.496428
\(914\) 0 0
\(915\) −72.0000 −2.38025
\(916\) 0 0
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −33.0000 −1.08739
\(922\) 0 0
\(923\) 10.0000 0.329154
\(924\) 0 0
\(925\) 11.0000 0.361678
\(926\) 0 0
\(927\) 108.000 3.54719
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 0 0
\(933\) −54.0000 −1.76788
\(934\) 0 0
\(935\) 96.0000 3.13954
\(936\) 0 0
\(937\) −23.0000 −0.751377 −0.375689 0.926746i \(-0.622594\pi\)
−0.375689 + 0.926746i \(0.622594\pi\)
\(938\) 0 0
\(939\) 30.0000 0.979013
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) −30.0000 −0.976934
\(944\) 0 0
\(945\) −36.0000 −1.17108
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) −22.0000 −0.714150
\(950\) 0 0
\(951\) −54.0000 −1.75107
\(952\) 0 0
\(953\) 13.0000 0.421111 0.210556 0.977582i \(-0.432473\pi\)
0.210556 + 0.977582i \(0.432473\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 72.0000 2.32017
\(964\) 0 0
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 0 0
\(969\) 48.0000 1.54198
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) −20.0000 −0.641171
\(974\) 0 0
\(975\) 66.0000 2.11369
\(976\) 0 0
\(977\) 16.0000 0.511885 0.255943 0.966692i \(-0.417614\pi\)
0.255943 + 0.966692i \(0.417614\pi\)
\(978\) 0 0
\(979\) −54.0000 −1.72585
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) 0 0
\(983\) 47.0000 1.49907 0.749534 0.661966i \(-0.230278\pi\)
0.749534 + 0.661966i \(0.230278\pi\)
\(984\) 0 0
\(985\) −60.0000 −1.91176
\(986\) 0 0
\(987\) 33.0000 1.05040
\(988\) 0 0
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) −42.0000 −1.33283
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −24.0000 −0.760088 −0.380044 0.924968i \(-0.624091\pi\)
−0.380044 + 0.924968i \(0.624091\pi\)
\(998\) 0 0
\(999\) −9.00000 −0.284747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.a.c.1.1 1
4.3 odd 2 2368.2.a.r.1.1 1
8.3 odd 2 1184.2.a.a.1.1 1
8.5 even 2 1184.2.a.g.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.a.a.1.1 1 8.3 odd 2
1184.2.a.g.1.1 yes 1 8.5 even 2
2368.2.a.c.1.1 1 1.1 even 1 trivial
2368.2.a.r.1.1 1 4.3 odd 2