Properties

Label 2368.2.a.e.1.1
Level $2368$
Weight $2$
Character 2368.1
Self dual yes
Analytic conductor $18.909$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{7} -2.00000 q^{9} +1.00000 q^{11} +2.00000 q^{13} -4.00000 q^{17} +6.00000 q^{19} +1.00000 q^{21} +2.00000 q^{23} -5.00000 q^{25} +5.00000 q^{27} +8.00000 q^{31} -1.00000 q^{33} +1.00000 q^{37} -2.00000 q^{39} -5.00000 q^{41} -10.0000 q^{43} -13.0000 q^{47} -6.00000 q^{49} +4.00000 q^{51} -5.00000 q^{53} -6.00000 q^{57} -2.00000 q^{59} +6.00000 q^{61} +2.00000 q^{63} -4.00000 q^{67} -2.00000 q^{69} +13.0000 q^{71} -5.00000 q^{73} +5.00000 q^{75} -1.00000 q^{77} +4.00000 q^{79} +1.00000 q^{81} -1.00000 q^{83} -14.0000 q^{89} -2.00000 q^{91} -8.00000 q^{93} -2.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −5.00000 −0.780869 −0.390434 0.920631i \(-0.627675\pi\)
−0.390434 + 0.920631i \(0.627675\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −13.0000 −1.89624 −0.948122 0.317905i \(-0.897021\pi\)
−0.948122 + 0.317905i \(0.897021\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 13.0000 1.54282 0.771408 0.636341i \(-0.219553\pi\)
0.771408 + 0.636341i \(0.219553\pi\)
\(72\) 0 0
\(73\) −5.00000 −0.585206 −0.292603 0.956234i \(-0.594521\pi\)
−0.292603 + 0.956234i \(0.594521\pi\)
\(74\) 0 0
\(75\) 5.00000 0.577350
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.00000 −0.109764 −0.0548821 0.998493i \(-0.517478\pi\)
−0.0548821 + 0.998493i \(0.517478\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 5.00000 0.450835
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.0000 −0.976092 −0.488046 0.872818i \(-0.662290\pi\)
−0.488046 + 0.872818i \(0.662290\pi\)
\(128\) 0 0
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 13.0000 1.09480
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) −23.0000 −1.88423 −0.942117 0.335285i \(-0.891167\pi\)
−0.942117 + 0.335285i \(0.891167\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) 0 0
\(159\) 5.00000 0.396526
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 0 0
\(177\) 2.00000 0.150329
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 0 0
\(213\) −13.0000 −0.890745
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 5.00000 0.337869
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −13.0000 −0.870544 −0.435272 0.900299i \(-0.643348\pi\)
−0.435272 + 0.900299i \(0.643348\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 1.00000 0.0633724
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14.0000 0.856786
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 25.0000 1.51864 0.759321 0.650716i \(-0.225531\pi\)
0.759321 + 0.650716i \(0.225531\pi\)
\(272\) 0 0
\(273\) 2.00000 0.121046
\(274\) 0 0
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) −16.0000 −0.957895
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) 22.0000 1.30776 0.653882 0.756596i \(-0.273139\pi\)
0.653882 + 0.756596i \(0.273139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.00000 0.295141
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 10.0000 0.576390
\(302\) 0 0
\(303\) 3.00000 0.172345
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −23.0000 −1.31268 −0.656340 0.754466i \(-0.727896\pi\)
−0.656340 + 0.754466i \(0.727896\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) 13.0000 0.716713
\(330\) 0 0
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.0000 0.599208 0.299604 0.954064i \(-0.403145\pi\)
0.299604 + 0.954064i \(0.403145\pi\)
\(338\) 0 0
\(339\) 8.00000 0.434500
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −15.0000 −0.791670 −0.395835 0.918322i \(-0.629545\pi\)
−0.395835 + 0.918322i \(0.629545\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) 5.00000 0.259587
\(372\) 0 0
\(373\) 7.00000 0.362446 0.181223 0.983442i \(-0.441994\pi\)
0.181223 + 0.983442i \(0.441994\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 33.0000 1.69510 0.847548 0.530719i \(-0.178078\pi\)
0.847548 + 0.530719i \(0.178078\pi\)
\(380\) 0 0
\(381\) 11.0000 0.563547
\(382\) 0 0
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20.0000 1.01666
\(388\) 0 0
\(389\) −28.0000 −1.41966 −0.709828 0.704375i \(-0.751227\pi\)
−0.709828 + 0.704375i \(0.751227\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 37.0000 1.85698 0.928488 0.371361i \(-0.121109\pi\)
0.928488 + 0.371361i \(0.121109\pi\)
\(398\) 0 0
\(399\) 6.00000 0.300376
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000 0.0495682
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 2.00000 0.0984136
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) −3.00000 −0.146560 −0.0732798 0.997311i \(-0.523347\pi\)
−0.0732798 + 0.997311i \(0.523347\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 26.0000 1.26416
\(424\) 0 0
\(425\) 20.0000 0.970143
\(426\) 0 0
\(427\) −6.00000 −0.290360
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 0 0
\(433\) 33.0000 1.58588 0.792939 0.609301i \(-0.208550\pi\)
0.792939 + 0.609301i \(0.208550\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −33.0000 −1.56788 −0.783939 0.620838i \(-0.786792\pi\)
−0.783939 + 0.620838i \(0.786792\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 23.0000 1.08786
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −5.00000 −0.235441
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −24.0000 −1.12267 −0.561336 0.827588i \(-0.689713\pi\)
−0.561336 + 0.827588i \(0.689713\pi\)
\(458\) 0 0
\(459\) −20.0000 −0.933520
\(460\) 0 0
\(461\) 34.0000 1.58354 0.791769 0.610821i \(-0.209160\pi\)
0.791769 + 0.610821i \(0.209160\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.0000 1.57333 0.786666 0.617379i \(-0.211805\pi\)
0.786666 + 0.617379i \(0.211805\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) −30.0000 −1.37649
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 2.00000 0.0910032
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.0000 −0.583130
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) −14.0000 −0.625474
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 5.00000 0.221187
\(512\) 0 0
\(513\) 30.0000 1.32453
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −13.0000 −0.571739
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) −5.00000 −0.218218
\(526\) 0 0
\(527\) −32.0000 −1.39394
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −10.0000 −0.433148
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 40.0000 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(542\) 0 0
\(543\) 5.00000 0.214571
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) −12.0000 −0.512148
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −34.0000 −1.43293 −0.716465 0.697623i \(-0.754241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 37.0000 1.54840 0.774201 0.632940i \(-0.218152\pi\)
0.774201 + 0.632940i \(0.218152\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) −10.0000 −0.417029
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 0 0
\(579\) −16.0000 −0.664937
\(580\) 0 0
\(581\) 1.00000 0.0414870
\(582\) 0 0
\(583\) −5.00000 −0.207079
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.0000 −0.577842 −0.288921 0.957353i \(-0.593296\pi\)
−0.288921 + 0.957353i \(0.593296\pi\)
\(588\) 0 0
\(589\) 48.0000 1.97781
\(590\) 0 0
\(591\) 3.00000 0.123404
\(592\) 0 0
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −11.0000 −0.449448 −0.224724 0.974422i \(-0.572148\pi\)
−0.224724 + 0.974422i \(0.572148\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.00000 −0.243532 −0.121766 0.992559i \(-0.538856\pi\)
−0.121766 + 0.992559i \(0.538856\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.0000 −1.05185
\(612\) 0 0
\(613\) 21.0000 0.848182 0.424091 0.905620i \(-0.360594\pi\)
0.424091 + 0.905620i \(0.360594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 −0.120775 −0.0603877 0.998175i \(-0.519234\pi\)
−0.0603877 + 0.998175i \(0.519234\pi\)
\(618\) 0 0
\(619\) −7.00000 −0.281354 −0.140677 0.990056i \(-0.544928\pi\)
−0.140677 + 0.990056i \(0.544928\pi\)
\(620\) 0 0
\(621\) 10.0000 0.401286
\(622\) 0 0
\(623\) 14.0000 0.560898
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 0 0
\(633\) 19.0000 0.755182
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 0 0
\(639\) −26.0000 −1.02854
\(640\) 0 0
\(641\) −5.00000 −0.197488 −0.0987441 0.995113i \(-0.531483\pi\)
−0.0987441 + 0.995113i \(0.531483\pi\)
\(642\) 0 0
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) −12.0000 −0.469596 −0.234798 0.972044i \(-0.575443\pi\)
−0.234798 + 0.972044i \(0.575443\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) −1.00000 −0.0389545 −0.0194772 0.999810i \(-0.506200\pi\)
−0.0194772 + 0.999810i \(0.506200\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 13.0000 0.502609
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 0 0
\(675\) −25.0000 −0.962250
\(676\) 0 0
\(677\) −13.0000 −0.499631 −0.249815 0.968294i \(-0.580370\pi\)
−0.249815 + 0.968294i \(0.580370\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 34.0000 1.30097 0.650487 0.759517i \(-0.274565\pi\)
0.650487 + 0.759517i \(0.274565\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.00000 0.267067
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) 0 0
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.00000 0.112827
\(708\) 0 0
\(709\) 20.0000 0.751116 0.375558 0.926799i \(-0.377451\pi\)
0.375558 + 0.926799i \(0.377451\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.00000 0.149383
\(718\) 0 0
\(719\) 11.0000 0.410231 0.205115 0.978738i \(-0.434243\pi\)
0.205115 + 0.978738i \(0.434243\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 0 0
\(723\) −4.00000 −0.148762
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −20.0000 −0.741759 −0.370879 0.928681i \(-0.620944\pi\)
−0.370879 + 0.928681i \(0.620944\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 40.0000 1.47945
\(732\) 0 0
\(733\) 41.0000 1.51437 0.757185 0.653201i \(-0.226574\pi\)
0.757185 + 0.653201i \(0.226574\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 9.00000 0.331070 0.165535 0.986204i \(-0.447065\pi\)
0.165535 + 0.986204i \(0.447065\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) −15.0000 −0.550297 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.00000 0.0731762
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 37.0000 1.35015 0.675075 0.737749i \(-0.264111\pi\)
0.675075 + 0.737749i \(0.264111\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 32.0000 1.16306 0.581530 0.813525i \(-0.302454\pi\)
0.581530 + 0.813525i \(0.302454\pi\)
\(758\) 0 0
\(759\) −2.00000 −0.0725954
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) −4.00000 −0.144244 −0.0721218 0.997396i \(-0.522977\pi\)
−0.0721218 + 0.997396i \(0.522977\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −39.0000 −1.40273 −0.701366 0.712801i \(-0.747426\pi\)
−0.701366 + 0.712801i \(0.747426\pi\)
\(774\) 0 0
\(775\) −40.0000 −1.43684
\(776\) 0 0
\(777\) 1.00000 0.0358748
\(778\) 0 0
\(779\) −30.0000 −1.07486
\(780\) 0 0
\(781\) 13.0000 0.465177
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.0000 −1.24762 −0.623808 0.781578i \(-0.714415\pi\)
−0.623808 + 0.781578i \(0.714415\pi\)
\(788\) 0 0
\(789\) 9.00000 0.320408
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 12.0000 0.426132
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 52.0000 1.83963
\(800\) 0 0
\(801\) 28.0000 0.989331
\(802\) 0 0
\(803\) −5.00000 −0.176446
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −51.0000 −1.79085 −0.895426 0.445210i \(-0.853129\pi\)
−0.895426 + 0.445210i \(0.853129\pi\)
\(812\) 0 0
\(813\) −25.0000 −0.876788
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −60.0000 −2.09913
\(818\) 0 0
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) −21.0000 −0.732905 −0.366453 0.930437i \(-0.619428\pi\)
−0.366453 + 0.930437i \(0.619428\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 0 0
\(825\) 5.00000 0.174078
\(826\) 0 0
\(827\) −2.00000 −0.0695468 −0.0347734 0.999395i \(-0.511071\pi\)
−0.0347734 + 0.999395i \(0.511071\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 24.0000 0.831551
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 40.0000 1.38260
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −8.00000 −0.275535
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) −22.0000 −0.755038
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) −5.00000 −0.170400
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 4.00000 0.135691
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −46.0000 −1.54978 −0.774890 0.632096i \(-0.782195\pi\)
−0.774890 + 0.632096i \(0.782195\pi\)
\(882\) 0 0
\(883\) 18.0000 0.605748 0.302874 0.953031i \(-0.402054\pi\)
0.302874 + 0.953031i \(0.402054\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −51.0000 −1.71241 −0.856206 0.516634i \(-0.827185\pi\)
−0.856206 + 0.516634i \(0.827185\pi\)
\(888\) 0 0
\(889\) 11.0000 0.368928
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) −78.0000 −2.61017
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4.00000 −0.133556
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 20.0000 0.666297
\(902\) 0 0
\(903\) −10.0000 −0.332779
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −10.0000 −0.332045 −0.166022 0.986122i \(-0.553092\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 46.0000 1.52405 0.762024 0.647549i \(-0.224206\pi\)
0.762024 + 0.647549i \(0.224206\pi\)
\(912\) 0 0
\(913\) −1.00000 −0.0330952
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) 23.0000 0.757876
\(922\) 0 0
\(923\) 26.0000 0.855800
\(924\) 0 0
\(925\) −5.00000 −0.164399
\(926\) 0 0
\(927\) 12.0000 0.394132
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 0 0
\(933\) −18.0000 −0.589294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) −50.0000 −1.62995 −0.814977 0.579494i \(-0.803250\pi\)
−0.814977 + 0.579494i \(0.803250\pi\)
\(942\) 0 0
\(943\) −10.0000 −0.325645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000 0.974869 0.487435 0.873160i \(-0.337933\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) 0 0
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) 14.0000 0.453981
\(952\) 0 0
\(953\) 21.0000 0.680257 0.340128 0.940379i \(-0.389529\pi\)
0.340128 + 0.940379i \(0.389529\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 24.0000 0.773389
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −40.0000 −1.28366 −0.641831 0.766846i \(-0.721825\pi\)
−0.641831 + 0.766846i \(0.721825\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 10.0000 0.320256
\(976\) 0 0
\(977\) −48.0000 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(978\) 0 0
\(979\) −14.0000 −0.447442
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) 49.0000 1.56286 0.781429 0.623995i \(-0.214491\pi\)
0.781429 + 0.623995i \(0.214491\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −13.0000 −0.413795
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) 22.0000 0.698149
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −48.0000 −1.52018 −0.760088 0.649821i \(-0.774844\pi\)
−0.760088 + 0.649821i \(0.774844\pi\)
\(998\) 0 0
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.a.e.1.1 1
4.3 odd 2 2368.2.a.l.1.1 1
8.3 odd 2 1184.2.a.c.1.1 1
8.5 even 2 1184.2.a.f.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.a.c.1.1 1 8.3 odd 2
1184.2.a.f.1.1 yes 1 8.5 even 2
2368.2.a.e.1.1 1 1.1 even 1 trivial
2368.2.a.l.1.1 1 4.3 odd 2