Properties

Label 2368.2.a.k.1.1
Level $2368$
Weight $2$
Character 2368.1
Self dual yes
Analytic conductor $18.909$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 296)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.00000 q^{7} -2.00000 q^{9} +3.00000 q^{11} +2.00000 q^{17} +2.00000 q^{19} -3.00000 q^{21} -6.00000 q^{23} -5.00000 q^{25} -5.00000 q^{27} +2.00000 q^{29} -4.00000 q^{31} +3.00000 q^{33} -1.00000 q^{37} +7.00000 q^{41} -4.00000 q^{43} +1.00000 q^{47} +2.00000 q^{49} +2.00000 q^{51} -9.00000 q^{53} +2.00000 q^{57} -8.00000 q^{59} +4.00000 q^{61} +6.00000 q^{63} -12.0000 q^{67} -6.00000 q^{69} -5.00000 q^{71} -13.0000 q^{73} -5.00000 q^{75} -9.00000 q^{77} -10.0000 q^{79} +1.00000 q^{81} +1.00000 q^{83} +2.00000 q^{87} -2.00000 q^{89} -4.00000 q^{93} -12.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.00000 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000 0.145865 0.0729325 0.997337i \(-0.476764\pi\)
0.0729325 + 0.997337i \(0.476764\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.00000 0.109764 0.0548821 0.998493i \(-0.482522\pi\)
0.0548821 + 0.998493i \(0.482522\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 7.00000 0.631169
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 1.00000 0.0842152
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 21.0000 1.72039 0.860194 0.509968i \(-0.170343\pi\)
0.860194 + 0.509968i \(0.170343\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) −9.00000 −0.713746
\(160\) 0 0
\(161\) 18.0000 1.41860
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 19.0000 1.44454 0.722272 0.691609i \(-0.243098\pi\)
0.722272 + 0.691609i \(0.243098\pi\)
\(174\) 0 0
\(175\) 15.0000 1.13389
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) 0 0
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.0000 0.834058
\(208\) 0 0
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) −5.00000 −0.342594
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) −13.0000 −0.878459
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.00000 0.334825 0.167412 0.985887i \(-0.446459\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) −9.00000 −0.592157
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.00000 0.0633724
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) −18.0000 −1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.0000 1.74659 0.873296 0.487190i \(-0.161978\pi\)
0.873296 + 0.487190i \(0.161978\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −19.0000 −1.17159 −0.585795 0.810459i \(-0.699218\pi\)
−0.585795 + 0.810459i \(0.699218\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 15.0000 0.911185 0.455593 0.890188i \(-0.349427\pi\)
0.455593 + 0.890188i \(0.349427\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.0000 −0.904534
\(276\) 0 0
\(277\) −24.0000 −1.44202 −0.721010 0.692925i \(-0.756322\pi\)
−0.721010 + 0.692925i \(0.756322\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 32.0000 1.90896 0.954480 0.298275i \(-0.0964112\pi\)
0.954480 + 0.298275i \(0.0964112\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −21.0000 −1.23959
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 0 0
\(293\) −22.0000 −1.28525 −0.642627 0.766179i \(-0.722155\pi\)
−0.642627 + 0.766179i \(0.722155\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 9.00000 0.517036
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.0000 0.774202
\(328\) 0 0
\(329\) −3.00000 −0.165395
\(330\) 0 0
\(331\) 22.0000 1.20923 0.604615 0.796518i \(-0.293327\pi\)
0.604615 + 0.796518i \(0.293327\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000 0.817102 0.408551 0.912735i \(-0.366034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.0000 0.536828 0.268414 0.963304i \(-0.413500\pi\)
0.268414 + 0.963304i \(0.413500\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 −0.317554
\(358\) 0 0
\(359\) 15.0000 0.791670 0.395835 0.918322i \(-0.370455\pi\)
0.395835 + 0.918322i \(0.370455\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 0 0
\(369\) −14.0000 −0.728811
\(370\) 0 0
\(371\) 27.0000 1.40177
\(372\) 0 0
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 11.0000 0.563547
\(382\) 0 0
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) −10.0000 −0.504433
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) 28.0000 1.39825 0.699127 0.714998i \(-0.253572\pi\)
0.699127 + 0.714998i \(0.253572\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 −0.148704
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 10.0000 0.493264
\(412\) 0 0
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) −2.00000 −0.0972433
\(424\) 0 0
\(425\) −10.0000 −0.485071
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 21.0000 1.00920 0.504598 0.863355i \(-0.331641\pi\)
0.504598 + 0.863355i \(0.331641\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) −4.00000 −0.190476
\(442\) 0 0
\(443\) 41.0000 1.94797 0.973984 0.226615i \(-0.0727659\pi\)
0.973984 + 0.226615i \(0.0727659\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21.0000 0.993266
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 21.0000 0.988851
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 0 0
\(459\) −10.0000 −0.466760
\(460\) 0 0
\(461\) 8.00000 0.372597 0.186299 0.982493i \(-0.440351\pi\)
0.186299 + 0.982493i \(0.440351\pi\)
\(462\) 0 0
\(463\) 38.0000 1.76601 0.883005 0.469364i \(-0.155517\pi\)
0.883005 + 0.469364i \(0.155517\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) 36.0000 1.66233
\(470\) 0 0
\(471\) 17.0000 0.783319
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) −10.0000 −0.458831
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 0 0
\(479\) −38.0000 −1.73626 −0.868132 0.496333i \(-0.834679\pi\)
−0.868132 + 0.496333i \(0.834679\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 18.0000 0.819028
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.0000 0.672842
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −2.00000 −0.0893534
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 39.0000 1.72526
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.00000 0.131940
\(518\) 0 0
\(519\) 19.0000 0.834007
\(520\) 0 0
\(521\) −29.0000 −1.27051 −0.635257 0.772301i \(-0.719106\pi\)
−0.635257 + 0.772301i \(0.719106\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 15.0000 0.654654
\(526\) 0 0
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 16.0000 0.694341
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 36.0000 1.54776 0.773880 0.633332i \(-0.218313\pi\)
0.773880 + 0.633332i \(0.218313\pi\)
\(542\) 0 0
\(543\) −5.00000 −0.214571
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 30.0000 1.27573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 15.0000 0.627730 0.313865 0.949468i \(-0.398376\pi\)
0.313865 + 0.949468i \(0.398376\pi\)
\(572\) 0 0
\(573\) −20.0000 −0.835512
\(574\) 0 0
\(575\) 30.0000 1.25109
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) −3.00000 −0.124461
\(582\) 0 0
\(583\) −27.0000 −1.11823
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −42.0000 −1.73353 −0.866763 0.498721i \(-0.833803\pi\)
−0.866763 + 0.498721i \(0.833803\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −11.0000 −0.452480
\(592\) 0 0
\(593\) 11.0000 0.451716 0.225858 0.974160i \(-0.427481\pi\)
0.225858 + 0.974160i \(0.427481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.0000 −0.572982
\(598\) 0 0
\(599\) 23.0000 0.939755 0.469877 0.882732i \(-0.344298\pi\)
0.469877 + 0.882732i \(0.344298\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 24.0000 0.977356
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.0000 1.38002 0.690009 0.723801i \(-0.257607\pi\)
0.690009 + 0.723801i \(0.257607\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −43.0000 −1.73675 −0.868377 0.495905i \(-0.834836\pi\)
−0.868377 + 0.495905i \(0.834836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.0000 −0.925945 −0.462973 0.886373i \(-0.653217\pi\)
−0.462973 + 0.886373i \(0.653217\pi\)
\(618\) 0 0
\(619\) −37.0000 −1.48716 −0.743578 0.668649i \(-0.766873\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(620\) 0 0
\(621\) 30.0000 1.20386
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 6.00000 0.239617
\(628\) 0 0
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 0 0
\(633\) −13.0000 −0.516704
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.0000 0.395594
\(640\) 0 0
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.0000 −1.80845 −0.904223 0.427060i \(-0.859549\pi\)
−0.904223 + 0.427060i \(0.859549\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) −4.00000 −0.156532 −0.0782660 0.996933i \(-0.524938\pi\)
−0.0782660 + 0.996933i \(0.524938\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26.0000 1.01436
\(658\) 0 0
\(659\) −35.0000 −1.36341 −0.681703 0.731629i \(-0.738760\pi\)
−0.681703 + 0.731629i \(0.738760\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 5.00000 0.193311
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −41.0000 −1.58043 −0.790217 0.612827i \(-0.790032\pi\)
−0.790217 + 0.612827i \(0.790032\pi\)
\(674\) 0 0
\(675\) 25.0000 0.962250
\(676\) 0 0
\(677\) 31.0000 1.19143 0.595713 0.803197i \(-0.296869\pi\)
0.595713 + 0.803197i \(0.296869\pi\)
\(678\) 0 0
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 13.0000 0.495981
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 18.0000 0.683763
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) 0 0
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −28.0000 −1.05755 −0.528773 0.848763i \(-0.677348\pi\)
−0.528773 + 0.848763i \(0.677348\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −27.0000 −1.01544
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) 20.0000 0.750059
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) 13.0000 0.484818 0.242409 0.970174i \(-0.422062\pi\)
0.242409 + 0.970174i \(0.422062\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 0 0
\(723\) 18.0000 0.669427
\(724\) 0 0
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −26.0000 −0.964287 −0.482143 0.876092i \(-0.660142\pi\)
−0.482143 + 0.876092i \(0.660142\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −31.0000 −1.14501 −0.572506 0.819901i \(-0.694029\pi\)
−0.572506 + 0.819901i \(0.694029\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.0000 1.13728 0.568640 0.822587i \(-0.307470\pi\)
0.568640 + 0.822587i \(0.307470\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2.00000 −0.0731762
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 3.00000 0.109472 0.0547358 0.998501i \(-0.482568\pi\)
0.0547358 + 0.998501i \(0.482568\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −18.0000 −0.653359
\(760\) 0 0
\(761\) 17.0000 0.616250 0.308125 0.951346i \(-0.400299\pi\)
0.308125 + 0.951346i \(0.400299\pi\)
\(762\) 0 0
\(763\) −42.0000 −1.52050
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 28.0000 1.00840
\(772\) 0 0
\(773\) 33.0000 1.18693 0.593464 0.804861i \(-0.297760\pi\)
0.593464 + 0.804861i \(0.297760\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 0 0
\(777\) 3.00000 0.107624
\(778\) 0 0
\(779\) 14.0000 0.501602
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) −10.0000 −0.357371
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 39.0000 1.39020 0.695100 0.718913i \(-0.255360\pi\)
0.695100 + 0.718913i \(0.255360\pi\)
\(788\) 0 0
\(789\) −19.0000 −0.676418
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.0000 −0.566749 −0.283375 0.959009i \(-0.591454\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(798\) 0 0
\(799\) 2.00000 0.0707549
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 0 0
\(803\) −39.0000 −1.37628
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.0000 −0.492823
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) 27.0000 0.948098 0.474049 0.880498i \(-0.342792\pi\)
0.474049 + 0.880498i \(0.342792\pi\)
\(812\) 0 0
\(813\) 15.0000 0.526073
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) 0 0
\(823\) −48.0000 −1.67317 −0.836587 0.547833i \(-0.815453\pi\)
−0.836587 + 0.547833i \(0.815453\pi\)
\(824\) 0 0
\(825\) −15.0000 −0.522233
\(826\) 0 0
\(827\) 38.0000 1.32139 0.660695 0.750655i \(-0.270262\pi\)
0.660695 + 0.750655i \(0.270262\pi\)
\(828\) 0 0
\(829\) 56.0000 1.94496 0.972480 0.232986i \(-0.0748495\pi\)
0.972480 + 0.232986i \(0.0748495\pi\)
\(830\) 0 0
\(831\) −24.0000 −0.832551
\(832\) 0 0
\(833\) 4.00000 0.138592
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) 8.00000 0.276191 0.138095 0.990419i \(-0.455902\pi\)
0.138095 + 0.990419i \(0.455902\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 32.0000 1.10214
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −34.0000 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 34.0000 1.16007 0.580033 0.814593i \(-0.303040\pi\)
0.580033 + 0.814593i \(0.303040\pi\)
\(860\) 0 0
\(861\) −21.0000 −0.715678
\(862\) 0 0
\(863\) −48.0000 −1.63394 −0.816970 0.576681i \(-0.804348\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 24.0000 0.812277
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) −22.0000 −0.742042
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.00000 −0.302190 −0.151095 0.988519i \(-0.548280\pi\)
−0.151095 + 0.988519i \(0.548280\pi\)
\(888\) 0 0
\(889\) −33.0000 −1.10678
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 2.00000 0.0669274
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −4.00000 −0.132526 −0.0662630 0.997802i \(-0.521108\pi\)
−0.0662630 + 0.997802i \(0.521108\pi\)
\(912\) 0 0
\(913\) 3.00000 0.0992855
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.0000 0.990687
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) 7.00000 0.230658
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 5.00000 0.164399
\(926\) 0 0
\(927\) 16.0000 0.525509
\(928\) 0 0
\(929\) −10.0000 −0.328089 −0.164045 0.986453i \(-0.552454\pi\)
−0.164045 + 0.986453i \(0.552454\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) 30.0000 0.982156
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.0000 0.555366 0.277683 0.960673i \(-0.410434\pi\)
0.277683 + 0.960673i \(0.410434\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 0 0
\(943\) −42.0000 −1.36771
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.00000 0.0649913 0.0324956 0.999472i \(-0.489654\pi\)
0.0324956 + 0.999472i \(0.489654\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −6.00000 −0.194563
\(952\) 0 0
\(953\) 45.0000 1.45769 0.728846 0.684677i \(-0.240057\pi\)
0.728846 + 0.684677i \(0.240057\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.00000 0.193952
\(958\) 0 0
\(959\) −30.0000 −0.968751
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 24.0000 0.773389
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) −60.0000 −1.92351
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.00000 0.127971 0.0639857 0.997951i \(-0.479619\pi\)
0.0639857 + 0.997951i \(0.479619\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) −28.0000 −0.893971
\(982\) 0 0
\(983\) −33.0000 −1.05254 −0.526268 0.850319i \(-0.676409\pi\)
−0.526268 + 0.850319i \(0.676409\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3.00000 −0.0954911
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) 44.0000 1.39771 0.698853 0.715265i \(-0.253694\pi\)
0.698853 + 0.715265i \(0.253694\pi\)
\(992\) 0 0
\(993\) 22.0000 0.698149
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −18.0000 −0.570066 −0.285033 0.958518i \(-0.592005\pi\)
−0.285033 + 0.958518i \(0.592005\pi\)
\(998\) 0 0
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.a.k.1.1 1
4.3 odd 2 2368.2.a.f.1.1 1
8.3 odd 2 592.2.a.d.1.1 1
8.5 even 2 296.2.a.b.1.1 1
24.5 odd 2 2664.2.a.c.1.1 1
24.11 even 2 5328.2.a.m.1.1 1
40.29 even 2 7400.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.a.b.1.1 1 8.5 even 2
592.2.a.d.1.1 1 8.3 odd 2
2368.2.a.f.1.1 1 4.3 odd 2
2368.2.a.k.1.1 1 1.1 even 1 trivial
2664.2.a.c.1.1 1 24.5 odd 2
5328.2.a.m.1.1 1 24.11 even 2
7400.2.a.g.1.1 1 40.29 even 2