Properties

Label 2368.2.a.v
Level $2368$
Weight $2$
Character orbit 2368.a
Self dual yes
Analytic conductor $18.909$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2368,2,Mod(1,2368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.9085751986\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + (\beta - 1) q^{5} + 2 \beta q^{7} + \beta q^{9} + ( - \beta + 3) q^{11} - \beta q^{13} - 3 q^{15} + ( - 4 \beta + 2) q^{17} - 6 q^{19} + ( - 2 \beta - 6) q^{21} + (\beta + 6) q^{23} + ( - \beta - 1) q^{25} + \cdots + (2 \beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{5} + 2 q^{7} + q^{9} + 5 q^{11} - q^{13} - 6 q^{15} - 12 q^{19} - 14 q^{21} + 13 q^{23} - 3 q^{25} - 4 q^{27} - 17 q^{29} - 7 q^{31} + 4 q^{33} + 12 q^{35} + 2 q^{37} + 7 q^{39} - 3 q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
0 −2.30278 0 1.30278 0 4.60555 0 2.30278 0
1.2 0 1.30278 0 −2.30278 0 −2.60555 0 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2368.2.a.v 2
4.b odd 2 1 2368.2.a.z 2
8.b even 2 1 1184.2.a.k yes 2
8.d odd 2 1 1184.2.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1184.2.a.i 2 8.d odd 2 1
1184.2.a.k yes 2 8.b even 2 1
2368.2.a.v 2 1.a even 1 1 trivial
2368.2.a.z 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2368))\):

\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{5}^{2} + T_{5} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 12 \) Copy content Toggle raw display
\( T_{11}^{2} - 5T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$5$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 3 \) Copy content Toggle raw display
$13$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$17$ \( T^{2} - 52 \) Copy content Toggle raw display
$19$ \( (T + 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 13T + 39 \) Copy content Toggle raw display
$29$ \( T^{2} + 17T + 69 \) Copy content Toggle raw display
$31$ \( T^{2} + 7T + 9 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3T - 1 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 12 \) Copy content Toggle raw display
$47$ \( T^{2} + 14T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} - 52 \) Copy content Toggle raw display
$59$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$61$ \( T^{2} + 23T + 129 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 3 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 5T + 3 \) Copy content Toggle raw display
$79$ \( T^{2} - 13T + 39 \) Copy content Toggle raw display
$83$ \( T^{2} + 20T + 48 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 16 \) Copy content Toggle raw display
$97$ \( T^{2} - 16T + 12 \) Copy content Toggle raw display
show more
show less