Properties

Label 2385.1
Level 2385
Weight 1
Dimension 72
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 404352
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(404352\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2385))\).

Total New Old
Modular forms 3532 1448 2084
Cusp forms 204 72 132
Eisenstein series 3328 1376 1952

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 72 0 0 0

Trace form

\( 72 q + O(q^{10}) \) \( 72 q - 20 q^{16} - 20 q^{40} + 20 q^{52} + 20 q^{70} - 20 q^{82} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2385))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2385.1.b \(\chi_{2385}(2384, \cdot)\) None 0 1
2385.1.d \(\chi_{2385}(1061, \cdot)\) None 0 1
2385.1.f \(\chi_{2385}(584, \cdot)\) None 0 1
2385.1.h \(\chi_{2385}(476, \cdot)\) None 0 1
2385.1.k \(\chi_{2385}(1673, \cdot)\) None 0 2
2385.1.l \(\chi_{2385}(136, \cdot)\) None 0 2
2385.1.p \(\chi_{2385}(478, \cdot)\) None 0 2
2385.1.q \(\chi_{2385}(847, \cdot)\) 2385.1.q.a 4 2
2385.1.q.b 16
2385.1.r \(\chi_{2385}(1189, \cdot)\) 2385.1.r.a 4 2
2385.1.u \(\chi_{2385}(242, \cdot)\) None 0 2
2385.1.v \(\chi_{2385}(1271, \cdot)\) None 0 2
2385.1.x \(\chi_{2385}(1379, \cdot)\) None 0 2
2385.1.z \(\chi_{2385}(266, \cdot)\) None 0 2
2385.1.bb \(\chi_{2385}(794, \cdot)\) None 0 2
2385.1.bc \(\chi_{2385}(23, \cdot)\) None 0 4
2385.1.bf \(\chi_{2385}(394, \cdot)\) None 0 4
2385.1.bg \(\chi_{2385}(52, \cdot)\) None 0 4
2385.1.bh \(\chi_{2385}(637, \cdot)\) None 0 4
2385.1.bl \(\chi_{2385}(76, \cdot)\) None 0 4
2385.1.bm \(\chi_{2385}(83, \cdot)\) None 0 4
2385.1.bp \(\chi_{2385}(431, \cdot)\) None 0 12
2385.1.br \(\chi_{2385}(44, \cdot)\) None 0 12
2385.1.bt \(\chi_{2385}(116, \cdot)\) None 0 12
2385.1.bv \(\chi_{2385}(269, \cdot)\) None 0 12
2385.1.bx \(\chi_{2385}(8, \cdot)\) None 0 24
2385.1.ca \(\chi_{2385}(19, \cdot)\) 2385.1.ca.a 48 24
2385.1.cb \(\chi_{2385}(37, \cdot)\) None 0 24
2385.1.cc \(\chi_{2385}(28, \cdot)\) None 0 24
2385.1.cg \(\chi_{2385}(181, \cdot)\) None 0 24
2385.1.ch \(\chi_{2385}(98, \cdot)\) None 0 24
2385.1.cj \(\chi_{2385}(29, \cdot)\) None 0 24
2385.1.cl \(\chi_{2385}(236, \cdot)\) None 0 24
2385.1.cn \(\chi_{2385}(119, \cdot)\) None 0 24
2385.1.cp \(\chi_{2385}(11, \cdot)\) None 0 24
2385.1.cr \(\chi_{2385}(167, \cdot)\) None 0 48
2385.1.cs \(\chi_{2385}(31, \cdot)\) None 0 48
2385.1.cw \(\chi_{2385}(13, \cdot)\) None 0 48
2385.1.cx \(\chi_{2385}(7, \cdot)\) None 0 48
2385.1.cy \(\chi_{2385}(34, \cdot)\) None 0 48
2385.1.db \(\chi_{2385}(2, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2385))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2385)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(159))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(265))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(477))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(795))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2385))\)\(^{\oplus 1}\)