Defining parameters
Level: | \( N \) | \(=\) | \( 2385 = 3^{2} \cdot 5 \cdot 53 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2385.br (of order \(26\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 795 \) |
Character field: | \(\Q(\zeta_{26})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2385, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 0 | 144 |
Cusp forms | 48 | 0 | 48 |
Eisenstein series | 96 | 0 | 96 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(2385, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2385, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(795, [\chi])\)\(^{\oplus 2}\)