Properties

Label 2385.1.br
Level $2385$
Weight $1$
Character orbit 2385.br
Rep. character $\chi_{2385}(44,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $0$
Newform subspaces $0$
Sturm bound $324$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2385.br (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 795 \)
Character field: \(\Q(\zeta_{26})\)
Newform subspaces: \( 0 \)
Sturm bound: \(324\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2385, [\chi])\).

Total New Old
Modular forms 144 0 144
Cusp forms 48 0 48
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(2385, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2385, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(795, [\chi])\)\(^{\oplus 2}\)