Properties

Label 24.22.a.a
Level $24$
Weight $22$
Character orbit 24.a
Self dual yes
Analytic conductor $67.075$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [24,22,Mod(1,24)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(24, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("24.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.0745626289\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{537541}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 134385 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4032\sqrt{537541}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 59049 q^{3} + ( - 5 \beta + 10974310) q^{5} + ( - 233 \beta - 329725704) q^{7} + 3486784401 q^{9} + (41046 \beta - 14955448436) q^{11} + (133514 \beta + 2234433406) q^{13} + ( - 295245 \beta + 648022031190) q^{15}+ \cdots + (143118552523446 \beta - 52\!\cdots\!36) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 118098 q^{3} + 21948620 q^{5} - 659451408 q^{7} + 6973568802 q^{9} - 29910896872 q^{11} + 4468866812 q^{13} + 1296044062380 q^{15} - 17665404721820 q^{17} - 22467979297496 q^{19} - 38939946190992 q^{21}+ \cdots - 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
367.086
−366.086
0 59049.0 0 −3.80644e6 0 −1.01851e9 0 3.48678e9 0
1.2 0 59049.0 0 2.57551e7 0 3.59057e8 0 3.48678e9 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 24.22.a.a 2
3.b odd 2 1 72.22.a.a 2
4.b odd 2 1 48.22.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.22.a.a 2 1.a even 1 1 trivial
48.22.a.h 2 4.b odd 2 1
72.22.a.a 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 21948620T_{5} - 98034943473500 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(24))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 59049)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 98034943473500 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 36\!\cdots\!60 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 14\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 15\!\cdots\!28 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 51\!\cdots\!64 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 11\!\cdots\!88 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 18\!\cdots\!80 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 24\!\cdots\!64 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 70\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 40\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 13\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 29\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 91\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 26\!\cdots\!20 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 12\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 43\!\cdots\!92 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 32\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 16\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 86\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 28\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 21\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 66\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 26\!\cdots\!16 \) Copy content Toggle raw display
show more
show less