Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [240,2,Mod(173,240)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(240, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("240.173");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.bb (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.91640964851\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(44\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
173.1 | −1.41280 | − | 0.0631697i | −1.53551 | + | 0.801371i | 1.99202 | + | 0.178492i | 1.97816 | + | 1.04254i | 2.22000 | − | 1.03518i | −0.592869 | − | 0.592869i | −2.80305 | − | 0.378010i | 1.71561 | − | 2.46103i | −2.72889 | − | 1.59786i |
173.2 | −1.38946 | − | 0.263452i | 0.0477618 | + | 1.73139i | 1.86119 | + | 0.732110i | −1.29291 | − | 1.82438i | 0.389775 | − | 2.41828i | −2.39784 | − | 2.39784i | −2.39316 | − | 1.50757i | −2.99544 | + | 0.165389i | 1.31581 | + | 2.87553i |
173.3 | −1.37825 | + | 0.316900i | 1.69498 | + | 0.356415i | 1.79915 | − | 0.873536i | 1.08277 | − | 1.95643i | −2.44906 | + | 0.0459120i | 2.05875 | + | 2.05875i | −2.20285 | + | 1.77410i | 2.74594 | + | 1.20823i | −0.872339 | + | 3.03958i |
173.4 | −1.32357 | − | 0.498160i | 1.72946 | + | 0.0947166i | 1.50367 | + | 1.31870i | −1.85549 | + | 1.24786i | −2.24188 | − | 0.986912i | 0.907692 | + | 0.907692i | −1.33329 | − | 2.49446i | 2.98206 | + | 0.327617i | 3.07751 | − | 0.727289i |
173.5 | −1.30258 | + | 0.550725i | −1.13657 | − | 1.30699i | 1.39340 | − | 1.43472i | 0.583249 | − | 2.15866i | 2.20026 | + | 1.07651i | −2.32976 | − | 2.32976i | −1.02487 | + | 2.63622i | −0.416423 | + | 2.97096i | 0.429103 | + | 3.13303i |
173.6 | −1.29035 | + | 0.578793i | 0.856888 | − | 1.50524i | 1.33000 | − | 1.49369i | 1.41205 | + | 1.73381i | −0.234463 | + | 2.43824i | 1.42263 | + | 1.42263i | −0.851625 | + | 2.69717i | −1.53149 | − | 2.57964i | −2.82556 | − | 1.41993i |
173.7 | −1.28747 | − | 0.585178i | −0.349092 | − | 1.69651i | 1.31513 | + | 1.50679i | −0.111699 | + | 2.23328i | −0.543315 | + | 2.38847i | −1.82036 | − | 1.82036i | −0.811448 | − | 2.70953i | −2.75627 | + | 1.18447i | 1.45067 | − | 2.80990i |
173.8 | −1.23701 | + | 0.685419i | 0.117548 | + | 1.72806i | 1.06040 | − | 1.69575i | −1.15738 | + | 1.91324i | −1.32985 | − | 2.05706i | 0.912923 | + | 0.912923i | −0.149432 | + | 2.82448i | −2.97237 | + | 0.406258i | 0.120323 | − | 3.15999i |
173.9 | −1.18598 | − | 0.770357i | −1.09486 | − | 1.34211i | 0.813100 | + | 1.82726i | 1.71343 | − | 1.43671i | 0.264580 | + | 2.43516i | 3.11495 | + | 3.11495i | 0.443321 | − | 2.79347i | −0.602544 | + | 2.93887i | −3.13888 | + | 0.383960i |
173.10 | −1.06890 | − | 0.925990i | 0.847085 | + | 1.51078i | 0.285084 | + | 1.97958i | 2.22651 | + | 0.206476i | 0.493518 | − | 2.39926i | 0.209149 | + | 0.209149i | 1.52834 | − | 2.37995i | −1.56489 | + | 2.55951i | −2.18872 | − | 2.28243i |
173.11 | −0.984242 | + | 1.01551i | 1.54229 | − | 0.788258i | −0.0625351 | − | 1.99902i | −2.21092 | − | 0.334403i | −0.717498 | + | 2.34205i | −2.87827 | − | 2.87827i | 2.09158 | + | 1.90402i | 1.75730 | − | 2.43144i | 2.51567 | − | 1.91609i |
173.12 | −0.917499 | + | 1.07619i | −1.42603 | + | 0.983076i | −0.316391 | − | 1.97482i | −0.322899 | − | 2.21263i | 0.250400 | − | 2.43666i | 1.41445 | + | 1.41445i | 2.41558 | + | 1.47139i | 1.06712 | − | 2.80379i | 2.67748 | + | 1.68258i |
173.13 | −0.898057 | − | 1.09247i | −1.70651 | − | 0.296326i | −0.386989 | + | 1.96220i | −2.17873 | − | 0.503115i | 1.20882 | + | 2.13044i | −2.12944 | − | 2.12944i | 2.49119 | − | 1.33939i | 2.82438 | + | 1.01137i | 1.40699 | + | 2.83203i |
173.14 | −0.772133 | − | 1.18483i | 1.05053 | − | 1.37710i | −0.807621 | + | 1.82969i | −0.966676 | − | 2.01632i | −2.44276 | − | 0.181389i | 0.166503 | + | 0.166503i | 2.79145 | − | 0.455871i | −0.792787 | − | 2.89335i | −1.64258 | + | 2.70221i |
173.15 | −0.755591 | + | 1.19544i | 1.16822 | + | 1.27877i | −0.858166 | − | 1.80653i | 2.22526 | − | 0.219616i | −2.41140 | + | 0.430317i | −1.05780 | − | 1.05780i | 2.80803 | + | 0.339109i | −0.270509 | + | 2.98778i | −1.41885 | + | 2.82611i |
173.16 | −0.585912 | + | 1.28713i | −0.720802 | − | 1.57494i | −1.31341 | − | 1.50829i | −2.13443 | + | 0.666497i | 2.44948 | − | 0.00498857i | 2.25736 | + | 2.25736i | 2.71091 | − | 0.806809i | −1.96089 | + | 2.27044i | 0.392719 | − | 3.13780i |
173.17 | −0.490564 | − | 1.32640i | 1.66945 | − | 0.461441i | −1.51869 | + | 1.30137i | 1.37523 | + | 1.76316i | −1.43103 | − | 1.98800i | −0.367568 | − | 0.367568i | 2.47116 | + | 1.37599i | 2.57414 | − | 1.54071i | 1.66403 | − | 2.68905i |
173.18 | −0.418005 | + | 1.35103i | −1.65521 | + | 0.510164i | −1.65054 | − | 1.12947i | −0.369196 | + | 2.20538i | 0.00264245 | − | 2.44949i | −2.84513 | − | 2.84513i | 2.21588 | − | 1.75780i | 2.47947 | − | 1.68886i | −2.82520 | − | 1.42065i |
173.19 | −0.372166 | − | 1.36437i | −1.33164 | + | 1.10758i | −1.72298 | + | 1.01554i | 1.55623 | − | 1.60566i | 2.00674 | + | 1.40464i | −0.854868 | − | 0.854868i | 2.02681 | + | 1.97283i | 0.546521 | − | 2.94980i | −2.76989 | − | 1.52569i |
173.20 | −0.269844 | + | 1.38823i | 0.147625 | − | 1.72575i | −1.85437 | − | 0.749211i | 2.12868 | − | 0.684619i | 2.35590 | + | 0.670621i | −1.09901 | − | 1.09901i | 1.54047 | − | 2.37212i | −2.95641 | − | 0.509529i | 0.375997 | + | 3.13984i |
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
80.i | odd | 4 | 1 | inner |
240.bb | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 240.2.bb.a | ✓ | 88 |
3.b | odd | 2 | 1 | inner | 240.2.bb.a | ✓ | 88 |
4.b | odd | 2 | 1 | 960.2.bb.a | 88 | ||
5.c | odd | 4 | 1 | 240.2.bf.a | yes | 88 | |
12.b | even | 2 | 1 | 960.2.bb.a | 88 | ||
15.e | even | 4 | 1 | 240.2.bf.a | yes | 88 | |
16.e | even | 4 | 1 | 240.2.bf.a | yes | 88 | |
16.f | odd | 4 | 1 | 960.2.bf.a | 88 | ||
20.e | even | 4 | 1 | 960.2.bf.a | 88 | ||
48.i | odd | 4 | 1 | 240.2.bf.a | yes | 88 | |
48.k | even | 4 | 1 | 960.2.bf.a | 88 | ||
60.l | odd | 4 | 1 | 960.2.bf.a | 88 | ||
80.i | odd | 4 | 1 | inner | 240.2.bb.a | ✓ | 88 |
80.s | even | 4 | 1 | 960.2.bb.a | 88 | ||
240.z | odd | 4 | 1 | 960.2.bb.a | 88 | ||
240.bb | even | 4 | 1 | inner | 240.2.bb.a | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
240.2.bb.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
240.2.bb.a | ✓ | 88 | 3.b | odd | 2 | 1 | inner |
240.2.bb.a | ✓ | 88 | 80.i | odd | 4 | 1 | inner |
240.2.bb.a | ✓ | 88 | 240.bb | even | 4 | 1 | inner |
240.2.bf.a | yes | 88 | 5.c | odd | 4 | 1 | |
240.2.bf.a | yes | 88 | 15.e | even | 4 | 1 | |
240.2.bf.a | yes | 88 | 16.e | even | 4 | 1 | |
240.2.bf.a | yes | 88 | 48.i | odd | 4 | 1 | |
960.2.bb.a | 88 | 4.b | odd | 2 | 1 | ||
960.2.bb.a | 88 | 12.b | even | 2 | 1 | ||
960.2.bb.a | 88 | 80.s | even | 4 | 1 | ||
960.2.bb.a | 88 | 240.z | odd | 4 | 1 | ||
960.2.bf.a | 88 | 16.f | odd | 4 | 1 | ||
960.2.bf.a | 88 | 20.e | even | 4 | 1 | ||
960.2.bf.a | 88 | 48.k | even | 4 | 1 | ||
960.2.bf.a | 88 | 60.l | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(240, [\chi])\).