Properties

Label 240.3.c.e
Level 240240
Weight 33
Character orbit 240.c
Analytic conductor 6.5406.540
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,3,Mod(209,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.209");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 240=2435 240 = 2^{4} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 240.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.539526344656.53952634465
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+34x10+305x8+616x6+305x4+34x2+1 x^{12} + 34x^{10} + 305x^{8} + 616x^{6} + 305x^{4} + 34x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 21532 2^{15}\cdot 3^{2}
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+β7q5β9q7+(β4+1)q9+(β4β3)q11+(β11β10+β1)q13+(β10β8+β4+1)q15++(4β11+4β10++46)q99+O(q100) q + \beta_1 q^{3} + \beta_{7} q^{5} - \beta_{9} q^{7} + ( - \beta_{4} + 1) q^{9} + (\beta_{4} - \beta_{3}) q^{11} + ( - \beta_{11} - \beta_{10} + \cdots - \beta_1) q^{13} + ( - \beta_{10} - \beta_{8} + \beta_{4} + \cdots - 1) q^{15}+ \cdots + ( - 4 \beta_{11} + 4 \beta_{10} + \cdots + 46) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+8q916q15+4q21+36q25+48q31+128q3968q45252q4948q51+48q55+144q61+268q69304q75432q79188q81+336q85++560q99+O(q100) 12 q + 8 q^{9} - 16 q^{15} + 4 q^{21} + 36 q^{25} + 48 q^{31} + 128 q^{39} - 68 q^{45} - 252 q^{49} - 48 q^{51} + 48 q^{55} + 144 q^{61} + 268 q^{69} - 304 q^{75} - 432 q^{79} - 188 q^{81} + 336 q^{85}+ \cdots + 560 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+34x10+305x8+616x6+305x4+34x2+1 x^{12} + 34x^{10} + 305x^{8} + 616x^{6} + 305x^{4} + 34x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν11ν10+35ν935ν8+340ν7340ν6+956ν5956ν4+647)/216 ( \nu^{11} - \nu^{10} + 35 \nu^{9} - 35 \nu^{8} + 340 \nu^{7} - 340 \nu^{6} + 956 \nu^{5} - 956 \nu^{4} + \cdots - 647 ) / 216 Copy content Toggle raw display
β2\beta_{2}== (ν11ν1035ν935ν8340ν7340ν6956ν5956ν4+647)/72 ( - \nu^{11} - \nu^{10} - 35 \nu^{9} - 35 \nu^{8} - 340 \nu^{7} - 340 \nu^{6} - 956 \nu^{5} - 956 \nu^{4} + \cdots - 647 ) / 72 Copy content Toggle raw display
β3\beta_{3}== (ν114ν10+25ν9138ν8+4ν71288ν61964ν53072ν4+282)/36 ( \nu^{11} - 4 \nu^{10} + 25 \nu^{9} - 138 \nu^{8} + 4 \nu^{7} - 1288 \nu^{6} - 1964 \nu^{5} - 3072 \nu^{4} + \cdots - 282 ) / 36 Copy content Toggle raw display
β4\beta_{4}== (5ν114ν10+173ν9138ν8+1628ν71288ν6+4028ν5+282)/36 ( 5 \nu^{11} - 4 \nu^{10} + 173 \nu^{9} - 138 \nu^{8} + 1628 \nu^{7} - 1288 \nu^{6} + 4028 \nu^{5} + \cdots - 282 ) / 36 Copy content Toggle raw display
β5\beta_{5}== (35ν101189ν810640ν621220ν49755ν2577)/27 ( -35\nu^{10} - 1189\nu^{8} - 10640\nu^{6} - 21220\nu^{4} - 9755\nu^{2} - 577 ) / 27 Copy content Toggle raw display
β6\beta_{6}== (3ν11+64ν10+99ν9+2172ν8+816ν7+19384ν6+1032ν5++1038)/18 ( 3 \nu^{11} + 64 \nu^{10} + 99 \nu^{9} + 2172 \nu^{8} + 816 \nu^{7} + 19384 \nu^{6} + 1032 \nu^{5} + \cdots + 1038 ) / 18 Copy content Toggle raw display
β7\beta_{7}== (137ν1126ν104649ν9880ν841480ν77796ν681680ν5+280)/36 ( - 137 \nu^{11} - 26 \nu^{10} - 4649 \nu^{9} - 880 \nu^{8} - 41480 \nu^{7} - 7796 \nu^{6} - 81680 \nu^{5} + \cdots - 280 ) / 36 Copy content Toggle raw display
β8\beta_{8}== (137ν1126ν10+4649ν9880ν8+41480ν77796ν6+81680ν5+280)/36 ( 137 \nu^{11} - 26 \nu^{10} + 4649 \nu^{9} - 880 \nu^{8} + 41480 \nu^{7} - 7796 \nu^{6} + 81680 \nu^{5} + \cdots - 280 ) / 36 Copy content Toggle raw display
β9\beta_{9}== (655ν1122205ν9197572ν7383900ν5162043ν37337ν)/108 ( -655\nu^{11} - 22205\nu^{9} - 197572\nu^{7} - 383900\nu^{5} - 162043\nu^{3} - 7337\nu ) / 108 Copy content Toggle raw display
β10\beta_{10}== (713ν11167ν1024191ν95665ν8215732ν750492ν6+2461)/72 ( - 713 \nu^{11} - 167 \nu^{10} - 24191 \nu^{9} - 5665 \nu^{8} - 215732 \nu^{7} - 50492 \nu^{6} + \cdots - 2461 ) / 72 Copy content Toggle raw display
β11\beta_{11}== (733ν11+73ν1024883ν9+2471ν8222244ν7+21892ν6++491)/72 ( - 733 \nu^{11} + 73 \nu^{10} - 24883 \nu^{9} + 2471 \nu^{8} - 222244 \nu^{7} + 21892 \nu^{6} + \cdots + 491 ) / 72 Copy content Toggle raw display
ν\nu== (2β114β10+6β93β8+3β7β6+3β5++1)/48 ( - 2 \beta_{11} - 4 \beta_{10} + 6 \beta_{9} - 3 \beta_{8} + 3 \beta_{7} - \beta_{6} + 3 \beta_{5} + \cdots + 1 ) / 48 Copy content Toggle raw display
ν2\nu^{2}== (β11β104β69β5+6β4+4β312β236β1140)/24 ( \beta_{11} - \beta_{10} - 4\beta_{6} - 9\beta_{5} + 6\beta_{4} + 4\beta_{3} - 12\beta_{2} - 36\beta _1 - 140 ) / 24 Copy content Toggle raw display
ν3\nu^{3}== (64β11+86β10114β9+105β8105β7+11β6+11)/48 ( 64 \beta_{11} + 86 \beta_{10} - 114 \beta_{9} + 105 \beta_{8} - 105 \beta_{7} + 11 \beta_{6} + \cdots - 11 ) / 48 Copy content Toggle raw display
ν4\nu^{4}== (6β8+6β7+18β6+45β518β418β3+36β2+108β1+382)/4 ( 6\beta_{8} + 6\beta_{7} + 18\beta_{6} + 45\beta_{5} - 18\beta_{4} - 18\beta_{3} + 36\beta_{2} + 108\beta _1 + 382 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (1466β111744β10+1950β92649β8+2649β7139β6++139)/48 ( - 1466 \beta_{11} - 1744 \beta_{10} + 1950 \beta_{9} - 2649 \beta_{8} + 2649 \beta_{7} - 139 \beta_{6} + \cdots + 139 ) / 48 Copy content Toggle raw display
ν6\nu^{6}== (305β11+305β101296β81296β72452β66345β5+42620)/24 ( - 305 \beta_{11} + 305 \beta_{10} - 1296 \beta_{8} - 1296 \beta_{7} - 2452 \beta_{6} - 6345 \beta_{5} + \cdots - 42620 ) / 24 Copy content Toggle raw display
ν7\nu^{7}== (31516β11+35630β1035322β9+59883β859883β7+2057β6+2057)/48 ( 31516 \beta_{11} + 35630 \beta_{10} - 35322 \beta_{9} + 59883 \beta_{8} - 59883 \beta_{7} + 2057 \beta_{6} + \cdots - 2057 ) / 48 Copy content Toggle raw display
ν8\nu^{8}== 405β11405β10+1380β8+1380β7+2205β6+5787β5++34642 405 \beta_{11} - 405 \beta_{10} + 1380 \beta_{8} + 1380 \beta_{7} + 2205 \beta_{6} + 5787 \beta_{5} + \cdots + 34642 Copy content Toggle raw display
ν9\nu^{9}== (663278β11731260β10+674682β91291845β8+1291845β7++33991)/48 ( - 663278 \beta_{11} - 731260 \beta_{10} + 674682 \beta_{9} - 1291845 \beta_{8} + 1291845 \beta_{7} + \cdots + 33991 ) / 48 Copy content Toggle raw display
ν10\nu^{10}== (237761β11+237761β10752976β8752976β71116724β6+16638620)/24 ( - 237761 \beta_{11} + 237761 \beta_{10} - 752976 \beta_{8} - 752976 \beta_{7} - 1116724 \beta_{6} + \cdots - 16638620 ) / 24 Copy content Toggle raw display
ν11\nu^{11}== (13822672β11+15043898β1013332606β9+27258279β827258279β7+610613)/48 ( 13822672 \beta_{11} + 15043898 \beta_{10} - 13332606 \beta_{9} + 27258279 \beta_{8} - 27258279 \beta_{7} + \cdots - 610613 ) / 48 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/240Z)×\left(\mathbb{Z}/240\mathbb{Z}\right)^\times.

nn 3131 9797 161161 181181
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
209.1
0.220185i
0.220185i
0.304307i
0.304307i
0.723561i
0.723561i
1.38205i
1.38205i
3.28615i
3.28615i
4.54164i
4.54164i
0 −2.72256 1.26002i 0 −0.689011 + 4.95230i 0 0.735748i 0 5.82469 + 6.86097i 0
209.2 0 −2.72256 + 1.26002i 0 −0.689011 4.95230i 0 0.735748i 0 5.82469 6.86097i 0
209.3 0 −2.49147 1.67109i 0 4.19906 2.71439i 0 12.7692i 0 3.41489 + 8.32698i 0
209.4 0 −2.49147 + 1.67109i 0 4.19906 + 2.71439i 0 12.7692i 0 3.41489 8.32698i 0
209.5 0 −0.938195 2.84952i 0 −4.88807 + 1.05205i 0 6.81219i 0 −7.23958 + 5.34682i 0
209.6 0 −0.938195 + 2.84952i 0 −4.88807 1.05205i 0 6.81219i 0 −7.23958 5.34682i 0
209.7 0 0.938195 2.84952i 0 4.88807 1.05205i 0 6.81219i 0 −7.23958 5.34682i 0
209.8 0 0.938195 + 2.84952i 0 4.88807 + 1.05205i 0 6.81219i 0 −7.23958 + 5.34682i 0
209.9 0 2.49147 1.67109i 0 −4.19906 + 2.71439i 0 12.7692i 0 3.41489 8.32698i 0
209.10 0 2.49147 + 1.67109i 0 −4.19906 2.71439i 0 12.7692i 0 3.41489 + 8.32698i 0
209.11 0 2.72256 1.26002i 0 0.689011 4.95230i 0 0.735748i 0 5.82469 6.86097i 0
209.12 0 2.72256 + 1.26002i 0 0.689011 + 4.95230i 0 0.735748i 0 5.82469 + 6.86097i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 209.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.3.c.e 12
3.b odd 2 1 inner 240.3.c.e 12
4.b odd 2 1 120.3.c.a 12
5.b even 2 1 inner 240.3.c.e 12
5.c odd 4 2 1200.3.l.y 12
8.b even 2 1 960.3.c.j 12
8.d odd 2 1 960.3.c.k 12
12.b even 2 1 120.3.c.a 12
15.d odd 2 1 inner 240.3.c.e 12
15.e even 4 2 1200.3.l.y 12
20.d odd 2 1 120.3.c.a 12
20.e even 4 2 600.3.l.g 12
24.f even 2 1 960.3.c.k 12
24.h odd 2 1 960.3.c.j 12
40.e odd 2 1 960.3.c.k 12
40.f even 2 1 960.3.c.j 12
60.h even 2 1 120.3.c.a 12
60.l odd 4 2 600.3.l.g 12
120.i odd 2 1 960.3.c.j 12
120.m even 2 1 960.3.c.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.3.c.a 12 4.b odd 2 1
120.3.c.a 12 12.b even 2 1
120.3.c.a 12 20.d odd 2 1
120.3.c.a 12 60.h even 2 1
240.3.c.e 12 1.a even 1 1 trivial
240.3.c.e 12 3.b odd 2 1 inner
240.3.c.e 12 5.b even 2 1 inner
240.3.c.e 12 15.d odd 2 1 inner
600.3.l.g 12 20.e even 4 2
600.3.l.g 12 60.l odd 4 2
960.3.c.j 12 8.b even 2 1
960.3.c.j 12 24.h odd 2 1
960.3.c.j 12 40.f even 2 1
960.3.c.j 12 120.i odd 2 1
960.3.c.k 12 8.d odd 2 1
960.3.c.k 12 24.f even 2 1
960.3.c.k 12 40.e odd 2 1
960.3.c.k 12 120.m even 2 1
1200.3.l.y 12 5.c odd 4 2
1200.3.l.y 12 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(240,[χ])S_{3}^{\mathrm{new}}(240, [\chi]):

T76+210T74+7680T72+4096 T_{7}^{6} + 210T_{7}^{4} + 7680T_{7}^{2} + 4096 Copy content Toggle raw display
T176264T174+13968T172165888 T_{17}^{6} - 264T_{17}^{4} + 13968T_{17}^{2} - 165888 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T124T10++531441 T^{12} - 4 T^{10} + \cdots + 531441 Copy content Toggle raw display
55 T12++244140625 T^{12} + \cdots + 244140625 Copy content Toggle raw display
77 (T6+210T4++4096)2 (T^{6} + 210 T^{4} + \cdots + 4096)^{2} Copy content Toggle raw display
1111 (T6+336T4++1083392)2 (T^{6} + 336 T^{4} + \cdots + 1083392)^{2} Copy content Toggle raw display
1313 (T6+768T4++6553600)2 (T^{6} + 768 T^{4} + \cdots + 6553600)^{2} Copy content Toggle raw display
1717 (T6264T4+165888)2 (T^{6} - 264 T^{4} + \cdots - 165888)^{2} Copy content Toggle raw display
1919 (T3780T5648)4 (T^{3} - 780 T - 5648)^{4} Copy content Toggle raw display
2323 (T61050T4+13148192)2 (T^{6} - 1050 T^{4} + \cdots - 13148192)^{2} Copy content Toggle raw display
2929 (T6+4416T4++807698432)2 (T^{6} + 4416 T^{4} + \cdots + 807698432)^{2} Copy content Toggle raw display
3131 (T312T2++31104)4 (T^{3} - 12 T^{2} + \cdots + 31104)^{4} Copy content Toggle raw display
3737 (T6+2592T4++237899776)2 (T^{6} + 2592 T^{4} + \cdots + 237899776)^{2} Copy content Toggle raw display
4141 (T6+4356T4++772087808)2 (T^{6} + 4356 T^{4} + \cdots + 772087808)^{2} Copy content Toggle raw display
4343 (T6+4050T4++1224440064)2 (T^{6} + 4050 T^{4} + \cdots + 1224440064)^{2} Copy content Toggle raw display
4747 (T65754T4+2393766432)2 (T^{6} - 5754 T^{4} + \cdots - 2393766432)^{2} Copy content Toggle raw display
5353 (T611400T4+21525635072)2 (T^{6} - 11400 T^{4} + \cdots - 21525635072)^{2} Copy content Toggle raw display
5959 (T6+11856T4++1313998848)2 (T^{6} + 11856 T^{4} + \cdots + 1313998848)^{2} Copy content Toggle raw display
6161 (T336T2++1984)4 (T^{3} - 36 T^{2} + \cdots + 1984)^{4} Copy content Toggle raw display
6767 (T6+5106T4++1763584)2 (T^{6} + 5106 T^{4} + \cdots + 1763584)^{2} Copy content Toggle raw display
7171 (T6+19200T4++124856041472)2 (T^{6} + 19200 T^{4} + \cdots + 124856041472)^{2} Copy content Toggle raw display
7373 (T6+26400T4++238331428864)2 (T^{6} + 26400 T^{4} + \cdots + 238331428864)^{2} Copy content Toggle raw display
7979 (T3+108T2+234400)4 (T^{3} + 108 T^{2} + \cdots - 234400)^{4} Copy content Toggle raw display
8383 (T614586T4+387755552)2 (T^{6} - 14586 T^{4} + \cdots - 387755552)^{2} Copy content Toggle raw display
8989 (T6+27648T4++278628139008)2 (T^{6} + 27648 T^{4} + \cdots + 278628139008)^{2} Copy content Toggle raw display
9797 (T6+13344T4++16777216)2 (T^{6} + 13344 T^{4} + \cdots + 16777216)^{2} Copy content Toggle raw display
show more
show less