Properties

Label 2400.4.a.b.1.1
Level $2400$
Weight $4$
Character 2400.1
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -12.0000 q^{7} +9.00000 q^{9} -20.0000 q^{11} +58.0000 q^{13} +70.0000 q^{17} -92.0000 q^{19} +36.0000 q^{21} -112.000 q^{23} -27.0000 q^{27} +66.0000 q^{29} -108.000 q^{31} +60.0000 q^{33} +58.0000 q^{37} -174.000 q^{39} +66.0000 q^{41} +388.000 q^{43} +408.000 q^{47} -199.000 q^{49} -210.000 q^{51} -474.000 q^{53} +276.000 q^{57} -540.000 q^{59} +14.0000 q^{61} -108.000 q^{63} +276.000 q^{67} +336.000 q^{69} -96.0000 q^{71} +790.000 q^{73} +240.000 q^{77} +308.000 q^{79} +81.0000 q^{81} +1036.00 q^{83} -198.000 q^{87} +1210.00 q^{89} -696.000 q^{91} +324.000 q^{93} -1426.00 q^{97} -180.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −12.0000 −0.647939 −0.323970 0.946068i \(-0.605018\pi\)
−0.323970 + 0.946068i \(0.605018\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −20.0000 −0.548202 −0.274101 0.961701i \(-0.588380\pi\)
−0.274101 + 0.961701i \(0.588380\pi\)
\(12\) 0 0
\(13\) 58.0000 1.23741 0.618704 0.785624i \(-0.287658\pi\)
0.618704 + 0.785624i \(0.287658\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 70.0000 0.998676 0.499338 0.866407i \(-0.333577\pi\)
0.499338 + 0.866407i \(0.333577\pi\)
\(18\) 0 0
\(19\) −92.0000 −1.11086 −0.555428 0.831565i \(-0.687445\pi\)
−0.555428 + 0.831565i \(0.687445\pi\)
\(20\) 0 0
\(21\) 36.0000 0.374088
\(22\) 0 0
\(23\) −112.000 −1.01537 −0.507687 0.861541i \(-0.669499\pi\)
−0.507687 + 0.861541i \(0.669499\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 66.0000 0.422617 0.211308 0.977419i \(-0.432228\pi\)
0.211308 + 0.977419i \(0.432228\pi\)
\(30\) 0 0
\(31\) −108.000 −0.625722 −0.312861 0.949799i \(-0.601287\pi\)
−0.312861 + 0.949799i \(0.601287\pi\)
\(32\) 0 0
\(33\) 60.0000 0.316505
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.0000 0.257707 0.128853 0.991664i \(-0.458870\pi\)
0.128853 + 0.991664i \(0.458870\pi\)
\(38\) 0 0
\(39\) −174.000 −0.714418
\(40\) 0 0
\(41\) 66.0000 0.251402 0.125701 0.992068i \(-0.459882\pi\)
0.125701 + 0.992068i \(0.459882\pi\)
\(42\) 0 0
\(43\) 388.000 1.37603 0.688017 0.725695i \(-0.258482\pi\)
0.688017 + 0.725695i \(0.258482\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 408.000 1.26623 0.633116 0.774057i \(-0.281776\pi\)
0.633116 + 0.774057i \(0.281776\pi\)
\(48\) 0 0
\(49\) −199.000 −0.580175
\(50\) 0 0
\(51\) −210.000 −0.576586
\(52\) 0 0
\(53\) −474.000 −1.22847 −0.614235 0.789123i \(-0.710535\pi\)
−0.614235 + 0.789123i \(0.710535\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 276.000 0.641353
\(58\) 0 0
\(59\) −540.000 −1.19156 −0.595780 0.803148i \(-0.703157\pi\)
−0.595780 + 0.803148i \(0.703157\pi\)
\(60\) 0 0
\(61\) 14.0000 0.0293855 0.0146928 0.999892i \(-0.495323\pi\)
0.0146928 + 0.999892i \(0.495323\pi\)
\(62\) 0 0
\(63\) −108.000 −0.215980
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 276.000 0.503265 0.251633 0.967823i \(-0.419033\pi\)
0.251633 + 0.967823i \(0.419033\pi\)
\(68\) 0 0
\(69\) 336.000 0.586227
\(70\) 0 0
\(71\) −96.0000 −0.160466 −0.0802331 0.996776i \(-0.525566\pi\)
−0.0802331 + 0.996776i \(0.525566\pi\)
\(72\) 0 0
\(73\) 790.000 1.26661 0.633305 0.773902i \(-0.281698\pi\)
0.633305 + 0.773902i \(0.281698\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 240.000 0.355202
\(78\) 0 0
\(79\) 308.000 0.438642 0.219321 0.975653i \(-0.429616\pi\)
0.219321 + 0.975653i \(0.429616\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1036.00 1.37007 0.685035 0.728510i \(-0.259787\pi\)
0.685035 + 0.728510i \(0.259787\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −198.000 −0.243998
\(88\) 0 0
\(89\) 1210.00 1.44112 0.720560 0.693392i \(-0.243885\pi\)
0.720560 + 0.693392i \(0.243885\pi\)
\(90\) 0 0
\(91\) −696.000 −0.801765
\(92\) 0 0
\(93\) 324.000 0.361261
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1426.00 −1.49266 −0.746332 0.665574i \(-0.768187\pi\)
−0.746332 + 0.665574i \(0.768187\pi\)
\(98\) 0 0
\(99\) −180.000 −0.182734
\(100\) 0 0
\(101\) 74.0000 0.0729037 0.0364519 0.999335i \(-0.488394\pi\)
0.0364519 + 0.999335i \(0.488394\pi\)
\(102\) 0 0
\(103\) 1436.00 1.37372 0.686861 0.726789i \(-0.258988\pi\)
0.686861 + 0.726789i \(0.258988\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −84.0000 −0.0758933 −0.0379467 0.999280i \(-0.512082\pi\)
−0.0379467 + 0.999280i \(0.512082\pi\)
\(108\) 0 0
\(109\) −250.000 −0.219685 −0.109842 0.993949i \(-0.535035\pi\)
−0.109842 + 0.993949i \(0.535035\pi\)
\(110\) 0 0
\(111\) −174.000 −0.148787
\(112\) 0 0
\(113\) 654.000 0.544453 0.272226 0.962233i \(-0.412240\pi\)
0.272226 + 0.962233i \(0.412240\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 522.000 0.412469
\(118\) 0 0
\(119\) −840.000 −0.647081
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) −198.000 −0.145147
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2572.00 −1.79707 −0.898536 0.438900i \(-0.855368\pi\)
−0.898536 + 0.438900i \(0.855368\pi\)
\(128\) 0 0
\(129\) −1164.00 −0.794453
\(130\) 0 0
\(131\) −836.000 −0.557570 −0.278785 0.960354i \(-0.589932\pi\)
−0.278785 + 0.960354i \(0.589932\pi\)
\(132\) 0 0
\(133\) 1104.00 0.719766
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1250.00 −0.779523 −0.389762 0.920916i \(-0.627443\pi\)
−0.389762 + 0.920916i \(0.627443\pi\)
\(138\) 0 0
\(139\) −2428.00 −1.48158 −0.740792 0.671734i \(-0.765550\pi\)
−0.740792 + 0.671734i \(0.765550\pi\)
\(140\) 0 0
\(141\) −1224.00 −0.731060
\(142\) 0 0
\(143\) −1160.00 −0.678350
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 597.000 0.334964
\(148\) 0 0
\(149\) 1746.00 0.959986 0.479993 0.877272i \(-0.340639\pi\)
0.479993 + 0.877272i \(0.340639\pi\)
\(150\) 0 0
\(151\) 2092.00 1.12745 0.563724 0.825963i \(-0.309368\pi\)
0.563724 + 0.825963i \(0.309368\pi\)
\(152\) 0 0
\(153\) 630.000 0.332892
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2162.00 1.09902 0.549511 0.835487i \(-0.314814\pi\)
0.549511 + 0.835487i \(0.314814\pi\)
\(158\) 0 0
\(159\) 1422.00 0.709257
\(160\) 0 0
\(161\) 1344.00 0.657901
\(162\) 0 0
\(163\) −932.000 −0.447852 −0.223926 0.974606i \(-0.571887\pi\)
−0.223926 + 0.974606i \(0.571887\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3192.00 −1.47907 −0.739534 0.673119i \(-0.764954\pi\)
−0.739534 + 0.673119i \(0.764954\pi\)
\(168\) 0 0
\(169\) 1167.00 0.531179
\(170\) 0 0
\(171\) −828.000 −0.370285
\(172\) 0 0
\(173\) −2282.00 −1.00287 −0.501437 0.865194i \(-0.667195\pi\)
−0.501437 + 0.865194i \(0.667195\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1620.00 0.687947
\(178\) 0 0
\(179\) −2004.00 −0.836793 −0.418397 0.908264i \(-0.637408\pi\)
−0.418397 + 0.908264i \(0.637408\pi\)
\(180\) 0 0
\(181\) −4226.00 −1.73545 −0.867724 0.497046i \(-0.834418\pi\)
−0.867724 + 0.497046i \(0.834418\pi\)
\(182\) 0 0
\(183\) −42.0000 −0.0169657
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1400.00 −0.547477
\(188\) 0 0
\(189\) 324.000 0.124696
\(190\) 0 0
\(191\) 2656.00 1.00619 0.503093 0.864232i \(-0.332195\pi\)
0.503093 + 0.864232i \(0.332195\pi\)
\(192\) 0 0
\(193\) −2162.00 −0.806343 −0.403171 0.915124i \(-0.632092\pi\)
−0.403171 + 0.915124i \(0.632092\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3514.00 −1.27087 −0.635437 0.772153i \(-0.719180\pi\)
−0.635437 + 0.772153i \(0.719180\pi\)
\(198\) 0 0
\(199\) −988.000 −0.351947 −0.175974 0.984395i \(-0.556307\pi\)
−0.175974 + 0.984395i \(0.556307\pi\)
\(200\) 0 0
\(201\) −828.000 −0.290560
\(202\) 0 0
\(203\) −792.000 −0.273830
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1008.00 −0.338458
\(208\) 0 0
\(209\) 1840.00 0.608973
\(210\) 0 0
\(211\) 3548.00 1.15760 0.578802 0.815468i \(-0.303520\pi\)
0.578802 + 0.815468i \(0.303520\pi\)
\(212\) 0 0
\(213\) 288.000 0.0926452
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1296.00 0.405430
\(218\) 0 0
\(219\) −2370.00 −0.731277
\(220\) 0 0
\(221\) 4060.00 1.23577
\(222\) 0 0
\(223\) −732.000 −0.219813 −0.109907 0.993942i \(-0.535055\pi\)
−0.109907 + 0.993942i \(0.535055\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5492.00 −1.60580 −0.802901 0.596113i \(-0.796711\pi\)
−0.802901 + 0.596113i \(0.796711\pi\)
\(228\) 0 0
\(229\) 798.000 0.230277 0.115138 0.993349i \(-0.463269\pi\)
0.115138 + 0.993349i \(0.463269\pi\)
\(230\) 0 0
\(231\) −720.000 −0.205076
\(232\) 0 0
\(233\) 2886.00 0.811451 0.405726 0.913995i \(-0.367019\pi\)
0.405726 + 0.913995i \(0.367019\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −924.000 −0.253250
\(238\) 0 0
\(239\) 4096.00 1.10857 0.554285 0.832327i \(-0.312992\pi\)
0.554285 + 0.832327i \(0.312992\pi\)
\(240\) 0 0
\(241\) 2354.00 0.629189 0.314594 0.949226i \(-0.398132\pi\)
0.314594 + 0.949226i \(0.398132\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5336.00 −1.37458
\(248\) 0 0
\(249\) −3108.00 −0.791010
\(250\) 0 0
\(251\) −2916.00 −0.733292 −0.366646 0.930361i \(-0.619494\pi\)
−0.366646 + 0.930361i \(0.619494\pi\)
\(252\) 0 0
\(253\) 2240.00 0.556631
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −882.000 −0.214076 −0.107038 0.994255i \(-0.534137\pi\)
−0.107038 + 0.994255i \(0.534137\pi\)
\(258\) 0 0
\(259\) −696.000 −0.166978
\(260\) 0 0
\(261\) 594.000 0.140872
\(262\) 0 0
\(263\) 4456.00 1.04475 0.522374 0.852716i \(-0.325046\pi\)
0.522374 + 0.852716i \(0.325046\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3630.00 −0.832031
\(268\) 0 0
\(269\) −1486.00 −0.336814 −0.168407 0.985718i \(-0.553862\pi\)
−0.168407 + 0.985718i \(0.553862\pi\)
\(270\) 0 0
\(271\) −4676.00 −1.04814 −0.524072 0.851674i \(-0.675588\pi\)
−0.524072 + 0.851674i \(0.675588\pi\)
\(272\) 0 0
\(273\) 2088.00 0.462899
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2898.00 0.628606 0.314303 0.949323i \(-0.398229\pi\)
0.314303 + 0.949323i \(0.398229\pi\)
\(278\) 0 0
\(279\) −972.000 −0.208574
\(280\) 0 0
\(281\) 5194.00 1.10266 0.551331 0.834287i \(-0.314120\pi\)
0.551331 + 0.834287i \(0.314120\pi\)
\(282\) 0 0
\(283\) 5420.00 1.13846 0.569232 0.822177i \(-0.307240\pi\)
0.569232 + 0.822177i \(0.307240\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −792.000 −0.162893
\(288\) 0 0
\(289\) −13.0000 −0.00264604
\(290\) 0 0
\(291\) 4278.00 0.861790
\(292\) 0 0
\(293\) −9130.00 −1.82041 −0.910205 0.414157i \(-0.864076\pi\)
−0.910205 + 0.414157i \(0.864076\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 540.000 0.105502
\(298\) 0 0
\(299\) −6496.00 −1.25643
\(300\) 0 0
\(301\) −4656.00 −0.891586
\(302\) 0 0
\(303\) −222.000 −0.0420910
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6044.00 −1.12361 −0.561807 0.827269i \(-0.689894\pi\)
−0.561807 + 0.827269i \(0.689894\pi\)
\(308\) 0 0
\(309\) −4308.00 −0.793118
\(310\) 0 0
\(311\) −6120.00 −1.11586 −0.557931 0.829887i \(-0.688405\pi\)
−0.557931 + 0.829887i \(0.688405\pi\)
\(312\) 0 0
\(313\) 614.000 0.110880 0.0554398 0.998462i \(-0.482344\pi\)
0.0554398 + 0.998462i \(0.482344\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −786.000 −0.139262 −0.0696312 0.997573i \(-0.522182\pi\)
−0.0696312 + 0.997573i \(0.522182\pi\)
\(318\) 0 0
\(319\) −1320.00 −0.231680
\(320\) 0 0
\(321\) 252.000 0.0438170
\(322\) 0 0
\(323\) −6440.00 −1.10938
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 750.000 0.126835
\(328\) 0 0
\(329\) −4896.00 −0.820441
\(330\) 0 0
\(331\) 468.000 0.0777148 0.0388574 0.999245i \(-0.487628\pi\)
0.0388574 + 0.999245i \(0.487628\pi\)
\(332\) 0 0
\(333\) 522.000 0.0859022
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1538.00 −0.248606 −0.124303 0.992244i \(-0.539669\pi\)
−0.124303 + 0.992244i \(0.539669\pi\)
\(338\) 0 0
\(339\) −1962.00 −0.314340
\(340\) 0 0
\(341\) 2160.00 0.343022
\(342\) 0 0
\(343\) 6504.00 1.02386
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8396.00 −1.29891 −0.649454 0.760401i \(-0.725002\pi\)
−0.649454 + 0.760401i \(0.725002\pi\)
\(348\) 0 0
\(349\) −11090.0 −1.70096 −0.850479 0.526010i \(-0.823688\pi\)
−0.850479 + 0.526010i \(0.823688\pi\)
\(350\) 0 0
\(351\) −1566.00 −0.238139
\(352\) 0 0
\(353\) −3298.00 −0.497266 −0.248633 0.968598i \(-0.579981\pi\)
−0.248633 + 0.968598i \(0.579981\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2520.00 0.373593
\(358\) 0 0
\(359\) −10720.0 −1.57599 −0.787994 0.615682i \(-0.788880\pi\)
−0.787994 + 0.615682i \(0.788880\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) 2793.00 0.403842
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4116.00 −0.585432 −0.292716 0.956199i \(-0.594559\pi\)
−0.292716 + 0.956199i \(0.594559\pi\)
\(368\) 0 0
\(369\) 594.000 0.0838006
\(370\) 0 0
\(371\) 5688.00 0.795974
\(372\) 0 0
\(373\) −3590.00 −0.498346 −0.249173 0.968459i \(-0.580159\pi\)
−0.249173 + 0.968459i \(0.580159\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3828.00 0.522950
\(378\) 0 0
\(379\) −12452.0 −1.68764 −0.843821 0.536625i \(-0.819699\pi\)
−0.843821 + 0.536625i \(0.819699\pi\)
\(380\) 0 0
\(381\) 7716.00 1.03754
\(382\) 0 0
\(383\) 12416.0 1.65647 0.828235 0.560381i \(-0.189345\pi\)
0.828235 + 0.560381i \(0.189345\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3492.00 0.458678
\(388\) 0 0
\(389\) 2370.00 0.308904 0.154452 0.988000i \(-0.450639\pi\)
0.154452 + 0.988000i \(0.450639\pi\)
\(390\) 0 0
\(391\) −7840.00 −1.01403
\(392\) 0 0
\(393\) 2508.00 0.321913
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9486.00 −1.19922 −0.599608 0.800294i \(-0.704677\pi\)
−0.599608 + 0.800294i \(0.704677\pi\)
\(398\) 0 0
\(399\) −3312.00 −0.415557
\(400\) 0 0
\(401\) −10630.0 −1.32378 −0.661891 0.749600i \(-0.730246\pi\)
−0.661891 + 0.749600i \(0.730246\pi\)
\(402\) 0 0
\(403\) −6264.00 −0.774273
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1160.00 −0.141275
\(408\) 0 0
\(409\) 12890.0 1.55836 0.779180 0.626800i \(-0.215636\pi\)
0.779180 + 0.626800i \(0.215636\pi\)
\(410\) 0 0
\(411\) 3750.00 0.450058
\(412\) 0 0
\(413\) 6480.00 0.772058
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7284.00 0.855393
\(418\) 0 0
\(419\) −11196.0 −1.30539 −0.652697 0.757619i \(-0.726363\pi\)
−0.652697 + 0.757619i \(0.726363\pi\)
\(420\) 0 0
\(421\) −8594.00 −0.994883 −0.497442 0.867497i \(-0.665727\pi\)
−0.497442 + 0.867497i \(0.665727\pi\)
\(422\) 0 0
\(423\) 3672.00 0.422077
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −168.000 −0.0190400
\(428\) 0 0
\(429\) 3480.00 0.391646
\(430\) 0 0
\(431\) 3544.00 0.396075 0.198038 0.980194i \(-0.436543\pi\)
0.198038 + 0.980194i \(0.436543\pi\)
\(432\) 0 0
\(433\) −5810.00 −0.644829 −0.322414 0.946599i \(-0.604494\pi\)
−0.322414 + 0.946599i \(0.604494\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10304.0 1.12793
\(438\) 0 0
\(439\) −9628.00 −1.04674 −0.523371 0.852105i \(-0.675326\pi\)
−0.523371 + 0.852105i \(0.675326\pi\)
\(440\) 0 0
\(441\) −1791.00 −0.193392
\(442\) 0 0
\(443\) 6100.00 0.654221 0.327110 0.944986i \(-0.393925\pi\)
0.327110 + 0.944986i \(0.393925\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5238.00 −0.554248
\(448\) 0 0
\(449\) −7750.00 −0.814577 −0.407289 0.913300i \(-0.633526\pi\)
−0.407289 + 0.913300i \(0.633526\pi\)
\(450\) 0 0
\(451\) −1320.00 −0.137819
\(452\) 0 0
\(453\) −6276.00 −0.650932
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18314.0 −1.87460 −0.937301 0.348522i \(-0.886684\pi\)
−0.937301 + 0.348522i \(0.886684\pi\)
\(458\) 0 0
\(459\) −1890.00 −0.192195
\(460\) 0 0
\(461\) 6122.00 0.618503 0.309252 0.950980i \(-0.399921\pi\)
0.309252 + 0.950980i \(0.399921\pi\)
\(462\) 0 0
\(463\) 10420.0 1.04591 0.522957 0.852359i \(-0.324829\pi\)
0.522957 + 0.852359i \(0.324829\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12612.0 −1.24971 −0.624854 0.780742i \(-0.714842\pi\)
−0.624854 + 0.780742i \(0.714842\pi\)
\(468\) 0 0
\(469\) −3312.00 −0.326085
\(470\) 0 0
\(471\) −6486.00 −0.634520
\(472\) 0 0
\(473\) −7760.00 −0.754345
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4266.00 −0.409490
\(478\) 0 0
\(479\) −3352.00 −0.319743 −0.159871 0.987138i \(-0.551108\pi\)
−0.159871 + 0.987138i \(0.551108\pi\)
\(480\) 0 0
\(481\) 3364.00 0.318888
\(482\) 0 0
\(483\) −4032.00 −0.379839
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17108.0 1.59186 0.795932 0.605386i \(-0.206981\pi\)
0.795932 + 0.605386i \(0.206981\pi\)
\(488\) 0 0
\(489\) 2796.00 0.258567
\(490\) 0 0
\(491\) −11388.0 −1.04671 −0.523354 0.852116i \(-0.675319\pi\)
−0.523354 + 0.852116i \(0.675319\pi\)
\(492\) 0 0
\(493\) 4620.00 0.422057
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1152.00 0.103972
\(498\) 0 0
\(499\) −8996.00 −0.807047 −0.403523 0.914969i \(-0.632215\pi\)
−0.403523 + 0.914969i \(0.632215\pi\)
\(500\) 0 0
\(501\) 9576.00 0.853940
\(502\) 0 0
\(503\) 19504.0 1.72891 0.864454 0.502713i \(-0.167665\pi\)
0.864454 + 0.502713i \(0.167665\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3501.00 −0.306676
\(508\) 0 0
\(509\) 8306.00 0.723295 0.361647 0.932315i \(-0.382214\pi\)
0.361647 + 0.932315i \(0.382214\pi\)
\(510\) 0 0
\(511\) −9480.00 −0.820686
\(512\) 0 0
\(513\) 2484.00 0.213784
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −8160.00 −0.694152
\(518\) 0 0
\(519\) 6846.00 0.579010
\(520\) 0 0
\(521\) 14850.0 1.24873 0.624367 0.781131i \(-0.285357\pi\)
0.624367 + 0.781131i \(0.285357\pi\)
\(522\) 0 0
\(523\) −20044.0 −1.67584 −0.837919 0.545795i \(-0.816228\pi\)
−0.837919 + 0.545795i \(0.816228\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7560.00 −0.624893
\(528\) 0 0
\(529\) 377.000 0.0309855
\(530\) 0 0
\(531\) −4860.00 −0.397187
\(532\) 0 0
\(533\) 3828.00 0.311086
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6012.00 0.483123
\(538\) 0 0
\(539\) 3980.00 0.318053
\(540\) 0 0
\(541\) −21930.0 −1.74278 −0.871390 0.490590i \(-0.836781\pi\)
−0.871390 + 0.490590i \(0.836781\pi\)
\(542\) 0 0
\(543\) 12678.0 1.00196
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −19988.0 −1.56239 −0.781193 0.624290i \(-0.785389\pi\)
−0.781193 + 0.624290i \(0.785389\pi\)
\(548\) 0 0
\(549\) 126.000 0.00979517
\(550\) 0 0
\(551\) −6072.00 −0.469466
\(552\) 0 0
\(553\) −3696.00 −0.284213
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11718.0 0.891396 0.445698 0.895183i \(-0.352956\pi\)
0.445698 + 0.895183i \(0.352956\pi\)
\(558\) 0 0
\(559\) 22504.0 1.70272
\(560\) 0 0
\(561\) 4200.00 0.316086
\(562\) 0 0
\(563\) −12756.0 −0.954887 −0.477443 0.878662i \(-0.658436\pi\)
−0.477443 + 0.878662i \(0.658436\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −972.000 −0.0719932
\(568\) 0 0
\(569\) −15790.0 −1.16336 −0.581679 0.813418i \(-0.697604\pi\)
−0.581679 + 0.813418i \(0.697604\pi\)
\(570\) 0 0
\(571\) 2500.00 0.183225 0.0916127 0.995795i \(-0.470798\pi\)
0.0916127 + 0.995795i \(0.470798\pi\)
\(572\) 0 0
\(573\) −7968.00 −0.580921
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −13778.0 −0.994083 −0.497041 0.867727i \(-0.665580\pi\)
−0.497041 + 0.867727i \(0.665580\pi\)
\(578\) 0 0
\(579\) 6486.00 0.465542
\(580\) 0 0
\(581\) −12432.0 −0.887722
\(582\) 0 0
\(583\) 9480.00 0.673450
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11724.0 0.824363 0.412182 0.911102i \(-0.364767\pi\)
0.412182 + 0.911102i \(0.364767\pi\)
\(588\) 0 0
\(589\) 9936.00 0.695086
\(590\) 0 0
\(591\) 10542.0 0.733739
\(592\) 0 0
\(593\) 27054.0 1.87348 0.936741 0.350024i \(-0.113826\pi\)
0.936741 + 0.350024i \(0.113826\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2964.00 0.203197
\(598\) 0 0
\(599\) 15328.0 1.04555 0.522776 0.852470i \(-0.324897\pi\)
0.522776 + 0.852470i \(0.324897\pi\)
\(600\) 0 0
\(601\) −25286.0 −1.71620 −0.858101 0.513481i \(-0.828356\pi\)
−0.858101 + 0.513481i \(0.828356\pi\)
\(602\) 0 0
\(603\) 2484.00 0.167755
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22060.0 −1.47510 −0.737552 0.675291i \(-0.764018\pi\)
−0.737552 + 0.675291i \(0.764018\pi\)
\(608\) 0 0
\(609\) 2376.00 0.158096
\(610\) 0 0
\(611\) 23664.0 1.56685
\(612\) 0 0
\(613\) 8810.00 0.580477 0.290239 0.956954i \(-0.406265\pi\)
0.290239 + 0.956954i \(0.406265\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11766.0 0.767717 0.383858 0.923392i \(-0.374595\pi\)
0.383858 + 0.923392i \(0.374595\pi\)
\(618\) 0 0
\(619\) −28316.0 −1.83864 −0.919318 0.393515i \(-0.871259\pi\)
−0.919318 + 0.393515i \(0.871259\pi\)
\(620\) 0 0
\(621\) 3024.00 0.195409
\(622\) 0 0
\(623\) −14520.0 −0.933758
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5520.00 −0.351591
\(628\) 0 0
\(629\) 4060.00 0.257365
\(630\) 0 0
\(631\) 1388.00 0.0875680 0.0437840 0.999041i \(-0.486059\pi\)
0.0437840 + 0.999041i \(0.486059\pi\)
\(632\) 0 0
\(633\) −10644.0 −0.668343
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −11542.0 −0.717913
\(638\) 0 0
\(639\) −864.000 −0.0534888
\(640\) 0 0
\(641\) −15974.0 −0.984298 −0.492149 0.870511i \(-0.663788\pi\)
−0.492149 + 0.870511i \(0.663788\pi\)
\(642\) 0 0
\(643\) −13044.0 −0.800008 −0.400004 0.916513i \(-0.630991\pi\)
−0.400004 + 0.916513i \(0.630991\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18016.0 1.09472 0.547359 0.836898i \(-0.315633\pi\)
0.547359 + 0.836898i \(0.315633\pi\)
\(648\) 0 0
\(649\) 10800.0 0.653216
\(650\) 0 0
\(651\) −3888.00 −0.234075
\(652\) 0 0
\(653\) 17830.0 1.06852 0.534259 0.845321i \(-0.320591\pi\)
0.534259 + 0.845321i \(0.320591\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7110.00 0.422203
\(658\) 0 0
\(659\) −20740.0 −1.22597 −0.612986 0.790094i \(-0.710032\pi\)
−0.612986 + 0.790094i \(0.710032\pi\)
\(660\) 0 0
\(661\) 12070.0 0.710240 0.355120 0.934821i \(-0.384440\pi\)
0.355120 + 0.934821i \(0.384440\pi\)
\(662\) 0 0
\(663\) −12180.0 −0.713472
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7392.00 −0.429115
\(668\) 0 0
\(669\) 2196.00 0.126909
\(670\) 0 0
\(671\) −280.000 −0.0161092
\(672\) 0 0
\(673\) −20514.0 −1.17497 −0.587486 0.809234i \(-0.699882\pi\)
−0.587486 + 0.809234i \(0.699882\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13326.0 0.756514 0.378257 0.925701i \(-0.376524\pi\)
0.378257 + 0.925701i \(0.376524\pi\)
\(678\) 0 0
\(679\) 17112.0 0.967155
\(680\) 0 0
\(681\) 16476.0 0.927110
\(682\) 0 0
\(683\) −2988.00 −0.167398 −0.0836989 0.996491i \(-0.526673\pi\)
−0.0836989 + 0.996491i \(0.526673\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2394.00 −0.132950
\(688\) 0 0
\(689\) −27492.0 −1.52012
\(690\) 0 0
\(691\) 16628.0 0.915425 0.457713 0.889100i \(-0.348669\pi\)
0.457713 + 0.889100i \(0.348669\pi\)
\(692\) 0 0
\(693\) 2160.00 0.118401
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4620.00 0.251069
\(698\) 0 0
\(699\) −8658.00 −0.468492
\(700\) 0 0
\(701\) 28082.0 1.51304 0.756521 0.653969i \(-0.226897\pi\)
0.756521 + 0.653969i \(0.226897\pi\)
\(702\) 0 0
\(703\) −5336.00 −0.286275
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −888.000 −0.0472372
\(708\) 0 0
\(709\) 20158.0 1.06777 0.533885 0.845557i \(-0.320731\pi\)
0.533885 + 0.845557i \(0.320731\pi\)
\(710\) 0 0
\(711\) 2772.00 0.146214
\(712\) 0 0
\(713\) 12096.0 0.635342
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12288.0 −0.640033
\(718\) 0 0
\(719\) 30536.0 1.58387 0.791934 0.610607i \(-0.209075\pi\)
0.791934 + 0.610607i \(0.209075\pi\)
\(720\) 0 0
\(721\) −17232.0 −0.890088
\(722\) 0 0
\(723\) −7062.00 −0.363262
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 7204.00 0.367512 0.183756 0.982972i \(-0.441174\pi\)
0.183756 + 0.982972i \(0.441174\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 27160.0 1.37421
\(732\) 0 0
\(733\) −5398.00 −0.272005 −0.136003 0.990708i \(-0.543426\pi\)
−0.136003 + 0.990708i \(0.543426\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5520.00 −0.275891
\(738\) 0 0
\(739\) 5660.00 0.281741 0.140870 0.990028i \(-0.455010\pi\)
0.140870 + 0.990028i \(0.455010\pi\)
\(740\) 0 0
\(741\) 16008.0 0.793615
\(742\) 0 0
\(743\) −3624.00 −0.178939 −0.0894695 0.995990i \(-0.528517\pi\)
−0.0894695 + 0.995990i \(0.528517\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 9324.00 0.456690
\(748\) 0 0
\(749\) 1008.00 0.0491743
\(750\) 0 0
\(751\) 12532.0 0.608920 0.304460 0.952525i \(-0.401524\pi\)
0.304460 + 0.952525i \(0.401524\pi\)
\(752\) 0 0
\(753\) 8748.00 0.423366
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9026.00 0.433363 0.216681 0.976242i \(-0.430477\pi\)
0.216681 + 0.976242i \(0.430477\pi\)
\(758\) 0 0
\(759\) −6720.00 −0.321371
\(760\) 0 0
\(761\) 4674.00 0.222644 0.111322 0.993784i \(-0.464491\pi\)
0.111322 + 0.993784i \(0.464491\pi\)
\(762\) 0 0
\(763\) 3000.00 0.142342
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31320.0 −1.47445
\(768\) 0 0
\(769\) 38386.0 1.80004 0.900022 0.435843i \(-0.143550\pi\)
0.900022 + 0.435843i \(0.143550\pi\)
\(770\) 0 0
\(771\) 2646.00 0.123597
\(772\) 0 0
\(773\) 16774.0 0.780490 0.390245 0.920711i \(-0.372390\pi\)
0.390245 + 0.920711i \(0.372390\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2088.00 0.0964049
\(778\) 0 0
\(779\) −6072.00 −0.279271
\(780\) 0 0
\(781\) 1920.00 0.0879680
\(782\) 0 0
\(783\) −1782.00 −0.0813327
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 27116.0 1.22818 0.614092 0.789234i \(-0.289522\pi\)
0.614092 + 0.789234i \(0.289522\pi\)
\(788\) 0 0
\(789\) −13368.0 −0.603186
\(790\) 0 0
\(791\) −7848.00 −0.352772
\(792\) 0 0
\(793\) 812.000 0.0363619
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17494.0 0.777502 0.388751 0.921343i \(-0.372907\pi\)
0.388751 + 0.921343i \(0.372907\pi\)
\(798\) 0 0
\(799\) 28560.0 1.26456
\(800\) 0 0
\(801\) 10890.0 0.480374
\(802\) 0 0
\(803\) −15800.0 −0.694359
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4458.00 0.194460
\(808\) 0 0
\(809\) 9298.00 0.404079 0.202040 0.979377i \(-0.435243\pi\)
0.202040 + 0.979377i \(0.435243\pi\)
\(810\) 0 0
\(811\) −21252.0 −0.920171 −0.460085 0.887875i \(-0.652181\pi\)
−0.460085 + 0.887875i \(0.652181\pi\)
\(812\) 0 0
\(813\) 14028.0 0.605146
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −35696.0 −1.52857
\(818\) 0 0
\(819\) −6264.00 −0.267255
\(820\) 0 0
\(821\) 1578.00 0.0670799 0.0335399 0.999437i \(-0.489322\pi\)
0.0335399 + 0.999437i \(0.489322\pi\)
\(822\) 0 0
\(823\) 9652.00 0.408806 0.204403 0.978887i \(-0.434475\pi\)
0.204403 + 0.978887i \(0.434475\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15612.0 0.656448 0.328224 0.944600i \(-0.393550\pi\)
0.328224 + 0.944600i \(0.393550\pi\)
\(828\) 0 0
\(829\) −13194.0 −0.552770 −0.276385 0.961047i \(-0.589137\pi\)
−0.276385 + 0.961047i \(0.589137\pi\)
\(830\) 0 0
\(831\) −8694.00 −0.362926
\(832\) 0 0
\(833\) −13930.0 −0.579407
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2916.00 0.120420
\(838\) 0 0
\(839\) 22512.0 0.926342 0.463171 0.886269i \(-0.346712\pi\)
0.463171 + 0.886269i \(0.346712\pi\)
\(840\) 0 0
\(841\) −20033.0 −0.821395
\(842\) 0 0
\(843\) −15582.0 −0.636622
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11172.0 0.453217
\(848\) 0 0
\(849\) −16260.0 −0.657293
\(850\) 0 0
\(851\) −6496.00 −0.261669
\(852\) 0 0
\(853\) 3114.00 0.124996 0.0624978 0.998045i \(-0.480093\pi\)
0.0624978 + 0.998045i \(0.480093\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36254.0 1.44506 0.722528 0.691342i \(-0.242980\pi\)
0.722528 + 0.691342i \(0.242980\pi\)
\(858\) 0 0
\(859\) 27644.0 1.09802 0.549011 0.835815i \(-0.315004\pi\)
0.549011 + 0.835815i \(0.315004\pi\)
\(860\) 0 0
\(861\) 2376.00 0.0940463
\(862\) 0 0
\(863\) −8608.00 −0.339536 −0.169768 0.985484i \(-0.554302\pi\)
−0.169768 + 0.985484i \(0.554302\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 39.0000 0.00152769
\(868\) 0 0
\(869\) −6160.00 −0.240465
\(870\) 0 0
\(871\) 16008.0 0.622744
\(872\) 0 0
\(873\) −12834.0 −0.497555
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37294.0 −1.43595 −0.717975 0.696068i \(-0.754931\pi\)
−0.717975 + 0.696068i \(0.754931\pi\)
\(878\) 0 0
\(879\) 27390.0 1.05101
\(880\) 0 0
\(881\) −5742.00 −0.219583 −0.109792 0.993955i \(-0.535018\pi\)
−0.109792 + 0.993955i \(0.535018\pi\)
\(882\) 0 0
\(883\) 46028.0 1.75421 0.877104 0.480301i \(-0.159472\pi\)
0.877104 + 0.480301i \(0.159472\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10136.0 0.383691 0.191845 0.981425i \(-0.438553\pi\)
0.191845 + 0.981425i \(0.438553\pi\)
\(888\) 0 0
\(889\) 30864.0 1.16439
\(890\) 0 0
\(891\) −1620.00 −0.0609114
\(892\) 0 0
\(893\) −37536.0 −1.40660
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19488.0 0.725402
\(898\) 0 0
\(899\) −7128.00 −0.264441
\(900\) 0 0
\(901\) −33180.0 −1.22684
\(902\) 0 0
\(903\) 13968.0 0.514757
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 30900.0 1.13122 0.565611 0.824672i \(-0.308641\pi\)
0.565611 + 0.824672i \(0.308641\pi\)
\(908\) 0 0
\(909\) 666.000 0.0243012
\(910\) 0 0
\(911\) −45152.0 −1.64210 −0.821050 0.570857i \(-0.806611\pi\)
−0.821050 + 0.570857i \(0.806611\pi\)
\(912\) 0 0
\(913\) −20720.0 −0.751075
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10032.0 0.361271
\(918\) 0 0
\(919\) 30044.0 1.07841 0.539206 0.842174i \(-0.318725\pi\)
0.539206 + 0.842174i \(0.318725\pi\)
\(920\) 0 0
\(921\) 18132.0 0.648718
\(922\) 0 0
\(923\) −5568.00 −0.198562
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12924.0 0.457907
\(928\) 0 0
\(929\) −11382.0 −0.401971 −0.200986 0.979594i \(-0.564414\pi\)
−0.200986 + 0.979594i \(0.564414\pi\)
\(930\) 0 0
\(931\) 18308.0 0.644490
\(932\) 0 0
\(933\) 18360.0 0.644244
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34758.0 1.21184 0.605920 0.795525i \(-0.292805\pi\)
0.605920 + 0.795525i \(0.292805\pi\)
\(938\) 0 0
\(939\) −1842.00 −0.0640164
\(940\) 0 0
\(941\) −13270.0 −0.459713 −0.229856 0.973225i \(-0.573826\pi\)
−0.229856 + 0.973225i \(0.573826\pi\)
\(942\) 0 0
\(943\) −7392.00 −0.255267
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35620.0 1.22228 0.611138 0.791524i \(-0.290712\pi\)
0.611138 + 0.791524i \(0.290712\pi\)
\(948\) 0 0
\(949\) 45820.0 1.56731
\(950\) 0 0
\(951\) 2358.00 0.0804031
\(952\) 0 0
\(953\) 16926.0 0.575327 0.287664 0.957731i \(-0.407121\pi\)
0.287664 + 0.957731i \(0.407121\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3960.00 0.133760
\(958\) 0 0
\(959\) 15000.0 0.505084
\(960\) 0 0
\(961\) −18127.0 −0.608472
\(962\) 0 0
\(963\) −756.000 −0.0252978
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 27676.0 0.920372 0.460186 0.887822i \(-0.347783\pi\)
0.460186 + 0.887822i \(0.347783\pi\)
\(968\) 0 0
\(969\) 19320.0 0.640503
\(970\) 0 0
\(971\) −46916.0 −1.55057 −0.775286 0.631610i \(-0.782394\pi\)
−0.775286 + 0.631610i \(0.782394\pi\)
\(972\) 0 0
\(973\) 29136.0 0.959977
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27594.0 −0.903593 −0.451796 0.892121i \(-0.649217\pi\)
−0.451796 + 0.892121i \(0.649217\pi\)
\(978\) 0 0
\(979\) −24200.0 −0.790026
\(980\) 0 0
\(981\) −2250.00 −0.0732283
\(982\) 0 0
\(983\) 33016.0 1.07126 0.535629 0.844453i \(-0.320075\pi\)
0.535629 + 0.844453i \(0.320075\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 14688.0 0.473682
\(988\) 0 0
\(989\) −43456.0 −1.39719
\(990\) 0 0
\(991\) 2276.00 0.0729561 0.0364781 0.999334i \(-0.488386\pi\)
0.0364781 + 0.999334i \(0.488386\pi\)
\(992\) 0 0
\(993\) −1404.00 −0.0448687
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −57654.0 −1.83141 −0.915707 0.401846i \(-0.868369\pi\)
−0.915707 + 0.401846i \(0.868369\pi\)
\(998\) 0 0
\(999\) −1566.00 −0.0495956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.4.a.b.1.1 1
4.3 odd 2 2400.4.a.u.1.1 1
5.4 even 2 480.4.a.h.1.1 yes 1
15.14 odd 2 1440.4.a.q.1.1 1
20.19 odd 2 480.4.a.a.1.1 1
40.19 odd 2 960.4.a.be.1.1 1
40.29 even 2 960.4.a.p.1.1 1
60.59 even 2 1440.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.a.1.1 1 20.19 odd 2
480.4.a.h.1.1 yes 1 5.4 even 2
960.4.a.p.1.1 1 40.29 even 2
960.4.a.be.1.1 1 40.19 odd 2
1440.4.a.l.1.1 1 60.59 even 2
1440.4.a.q.1.1 1 15.14 odd 2
2400.4.a.b.1.1 1 1.1 even 1 trivial
2400.4.a.u.1.1 1 4.3 odd 2