Properties

Label 2400.4.a.bk
Level $2400$
Weight $4$
Character orbit 2400.a
Self dual yes
Analytic conductor $141.605$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.32340.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 42x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{2} + 2) q^{7} + 9 q^{9} + ( - 3 \beta_1 + 1) q^{11} + ( - \beta_{2} - \beta_1 - 7) q^{13} + ( - 2 \beta_{2} - \beta_1 - 11) q^{17} + (6 \beta_{2} + 5 \beta_1 - 6) q^{19} + (3 \beta_{2} - 6) q^{21}+ \cdots + ( - 27 \beta_1 + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 7 q^{7} + 27 q^{9} - 21 q^{13} - 32 q^{17} - 19 q^{19} - 21 q^{21} + 60 q^{23} - 81 q^{27} + 44 q^{29} + 151 q^{31} - 330 q^{37} + 63 q^{39} + 82 q^{41} + 367 q^{43} - 246 q^{47} - 42 q^{49}+ \cdots + 351 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 42x - 14 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} + 4\nu - 55 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{2} + 8\nu + 55 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 2\beta _1 + 55 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.334222
6.64138
−6.30716
0 −3.00000 0 0 0 −15.3676 0 9.00000 0
1.2 0 −3.00000 0 0 0 −4.63836 0 9.00000 0
1.3 0 −3.00000 0 0 0 27.0060 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.4.a.bk 3
4.b odd 2 1 2400.4.a.bq yes 3
5.b even 2 1 2400.4.a.br yes 3
20.d odd 2 1 2400.4.a.bl yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2400.4.a.bk 3 1.a even 1 1 trivial
2400.4.a.bl yes 3 20.d odd 2 1
2400.4.a.bq yes 3 4.b odd 2 1
2400.4.a.br yes 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2400))\):

\( T_{7}^{3} - 7T_{7}^{2} - 469T_{7} - 1925 \) Copy content Toggle raw display
\( T_{11}^{3} - 3360T_{11} + 5600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots - 1925 \) Copy content Toggle raw display
$11$ \( T^{3} - 3360T + 5600 \) Copy content Toggle raw display
$13$ \( T^{3} + 21 T^{2} + \cdots - 3465 \) Copy content Toggle raw display
$17$ \( T^{3} + 32 T^{2} + \cdots - 46880 \) Copy content Toggle raw display
$19$ \( T^{3} + 19 T^{2} + \cdots + 98225 \) Copy content Toggle raw display
$23$ \( T^{3} - 60 T^{2} + \cdots + 1524384 \) Copy content Toggle raw display
$29$ \( T^{3} - 44 T^{2} + \cdots + 540128 \) Copy content Toggle raw display
$31$ \( T^{3} - 151 T^{2} + \cdots + 84715 \) Copy content Toggle raw display
$37$ \( T^{3} + 330 T^{2} + \cdots - 125000 \) Copy content Toggle raw display
$41$ \( T^{3} - 82 T^{2} + \cdots - 2267000 \) Copy content Toggle raw display
$43$ \( T^{3} - 367 T^{2} + \cdots + 19330723 \) Copy content Toggle raw display
$47$ \( T^{3} + 246 T^{2} + \cdots + 19722184 \) Copy content Toggle raw display
$53$ \( T^{3} + 554 T^{2} + \cdots - 116619560 \) Copy content Toggle raw display
$59$ \( T^{3} + 42 T^{2} + \cdots - 1559880 \) Copy content Toggle raw display
$61$ \( T^{3} + 27 T^{2} + \cdots + 124612825 \) Copy content Toggle raw display
$67$ \( T^{3} + 837 T^{2} + \cdots + 650439 \) Copy content Toggle raw display
$71$ \( T^{3} - 1422 T^{2} + \cdots + 39802680 \) Copy content Toggle raw display
$73$ \( T^{3} + 498 T^{2} + \cdots - 10909480 \) Copy content Toggle raw display
$79$ \( T^{3} - 688 T^{2} + \cdots + 13573120 \) Copy content Toggle raw display
$83$ \( T^{3} - 702 T^{2} + \cdots + 189586328 \) Copy content Toggle raw display
$89$ \( T^{3} + 1488 T^{2} + \cdots - 589400064 \) Copy content Toggle raw display
$97$ \( T^{3} - 351 T^{2} + \cdots + 344046515 \) Copy content Toggle raw display
show more
show less