Properties

Label 242.4.a.i
Level $242$
Weight $4$
Character orbit 242.a
Self dual yes
Analytic conductor $14.278$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [242,4,Mod(1,242)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(242, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("242.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2784622214\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta - 1) q^{3} + 4 q^{4} + ( - 7 \beta - 6) q^{5} + ( - 2 \beta + 2) q^{6} + ( - 11 \beta + 3) q^{7} - 8 q^{8} + ( - 2 \beta - 23) q^{9} + (14 \beta + 12) q^{10} + (4 \beta - 4) q^{12}+ \cdots + (132 \beta - 58) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 2 q^{3} + 8 q^{4} - 12 q^{5} + 4 q^{6} + 6 q^{7} - 16 q^{8} - 46 q^{9} + 24 q^{10} - 8 q^{12} + 114 q^{13} - 12 q^{14} - 30 q^{15} + 32 q^{16} - 72 q^{17} + 92 q^{18} + 150 q^{19} - 48 q^{20}+ \cdots - 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−2.00000 −2.73205 4.00000 6.12436 5.46410 22.0526 −8.00000 −19.5359 −12.2487
1.2 −2.00000 0.732051 4.00000 −18.1244 −1.46410 −16.0526 −8.00000 −26.4641 36.2487
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 242.4.a.i 2
3.b odd 2 1 2178.4.a.bn 2
4.b odd 2 1 1936.4.a.r 2
11.b odd 2 1 242.4.a.l yes 2
11.c even 5 4 242.4.c.t 8
11.d odd 10 4 242.4.c.p 8
33.d even 2 1 2178.4.a.bd 2
44.c even 2 1 1936.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
242.4.a.i 2 1.a even 1 1 trivial
242.4.a.l yes 2 11.b odd 2 1
242.4.c.p 8 11.d odd 10 4
242.4.c.t 8 11.c even 5 4
1936.4.a.r 2 4.b odd 2 1
1936.4.a.s 2 44.c even 2 1
2178.4.a.bd 2 33.d even 2 1
2178.4.a.bn 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(242))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} + 12T_{5} - 111 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} - 354 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} + 12T - 111 \) Copy content Toggle raw display
$7$ \( T^{2} - 6T - 354 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 114T + 3141 \) Copy content Toggle raw display
$17$ \( T^{2} + 72T + 1053 \) Copy content Toggle raw display
$19$ \( T^{2} - 150T - 1002 \) Copy content Toggle raw display
$23$ \( T^{2} + 222T + 10446 \) Copy content Toggle raw display
$29$ \( T^{2} - 462T + 48069 \) Copy content Toggle raw display
$31$ \( T^{2} - 14T - 81626 \) Copy content Toggle raw display
$37$ \( T^{2} - 464T + 41917 \) Copy content Toggle raw display
$41$ \( T^{2} - 60T - 93087 \) Copy content Toggle raw display
$43$ \( T^{2} - 432T + 19008 \) Copy content Toggle raw display
$47$ \( T^{2} - 450T - 85482 \) Copy content Toggle raw display
$53$ \( T^{2} - 288T + 19413 \) Copy content Toggle raw display
$59$ \( T^{2} - 204T - 16104 \) Copy content Toggle raw display
$61$ \( T^{2} - 372T - 276456 \) Copy content Toggle raw display
$67$ \( T^{2} - 374T - 309794 \) Copy content Toggle raw display
$71$ \( T^{2} - 1092 T + 296088 \) Copy content Toggle raw display
$73$ \( T^{2} - 444T + 46932 \) Copy content Toggle raw display
$79$ \( T^{2} + 726T + 97422 \) Copy content Toggle raw display
$83$ \( T^{2} + 282T + 19854 \) Copy content Toggle raw display
$89$ \( T^{2} + 1578 T + 616173 \) Copy content Toggle raw display
$97$ \( T^{2} + 1274 T - 807719 \) Copy content Toggle raw display
show more
show less