Properties

Label 242.6.a.c
Level $242$
Weight $6$
Character orbit 242.a
Self dual yes
Analytic conductor $38.813$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [242,6,Mod(1,242)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(242, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("242.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8128843947\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} - 21 q^{3} + 16 q^{4} + 81 q^{5} - 84 q^{6} - 98 q^{7} + 64 q^{8} + 198 q^{9} + 324 q^{10} - 336 q^{12} - 824 q^{13} - 392 q^{14} - 1701 q^{15} + 256 q^{16} - 978 q^{17} + 792 q^{18} + 2140 q^{19}+ \cdots - 28812 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −21.0000 16.0000 81.0000 −84.0000 −98.0000 64.0000 198.000 324.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 242.6.a.c 1
11.b odd 2 1 22.6.a.a 1
33.d even 2 1 198.6.a.d 1
44.c even 2 1 176.6.a.d 1
55.d odd 2 1 550.6.a.g 1
55.e even 4 2 550.6.b.g 2
77.b even 2 1 1078.6.a.b 1
88.b odd 2 1 704.6.a.i 1
88.g even 2 1 704.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.6.a.a 1 11.b odd 2 1
176.6.a.d 1 44.c even 2 1
198.6.a.d 1 33.d even 2 1
242.6.a.c 1 1.a even 1 1 trivial
550.6.a.g 1 55.d odd 2 1
550.6.b.g 2 55.e even 4 2
704.6.a.b 1 88.g even 2 1
704.6.a.i 1 88.b odd 2 1
1078.6.a.b 1 77.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(242))\):

\( T_{3} + 21 \) Copy content Toggle raw display
\( T_{7} + 98 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T + 21 \) Copy content Toggle raw display
$5$ \( T - 81 \) Copy content Toggle raw display
$7$ \( T + 98 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 824 \) Copy content Toggle raw display
$17$ \( T + 978 \) Copy content Toggle raw display
$19$ \( T - 2140 \) Copy content Toggle raw display
$23$ \( T - 3699 \) Copy content Toggle raw display
$29$ \( T + 3480 \) Copy content Toggle raw display
$31$ \( T + 7813 \) Copy content Toggle raw display
$37$ \( T + 13597 \) Copy content Toggle raw display
$41$ \( T + 6492 \) Copy content Toggle raw display
$43$ \( T + 14234 \) Copy content Toggle raw display
$47$ \( T + 20352 \) Copy content Toggle raw display
$53$ \( T + 366 \) Copy content Toggle raw display
$59$ \( T - 9825 \) Copy content Toggle raw display
$61$ \( T + 26132 \) Copy content Toggle raw display
$67$ \( T - 17093 \) Copy content Toggle raw display
$71$ \( T + 23583 \) Copy content Toggle raw display
$73$ \( T - 35176 \) Copy content Toggle raw display
$79$ \( T - 42490 \) Copy content Toggle raw display
$83$ \( T + 22674 \) Copy content Toggle raw display
$89$ \( T + 17145 \) Copy content Toggle raw display
$97$ \( T + 30727 \) Copy content Toggle raw display
show more
show less