Defining parameters
Level: | \( N \) | \(=\) | \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 2420.n (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 220 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Sturm bound: | \(1188\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2420, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3264 | 2656 | 608 |
Cusp forms | 3072 | 2528 | 544 |
Eisenstein series | 192 | 128 | 64 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(2420, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(2420, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(2420, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)