Properties

Label 2420.3.n
Level $2420$
Weight $3$
Character orbit 2420.n
Rep. character $\chi_{2420}(1219,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $2528$
Sturm bound $1188$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2420.n (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 220 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1188\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2420, [\chi])\).

Total New Old
Modular forms 3264 2656 608
Cusp forms 3072 2528 544
Eisenstein series 192 128 64

Trace form

\( 2528 q + 6 q^{4} + 6 q^{5} - 10 q^{6} - 1788 q^{9} + 24 q^{10} - 18 q^{14} - 90 q^{16} - 14 q^{20} - 40 q^{21} - 14 q^{24} + 22 q^{25} - 12 q^{26} + 12 q^{29} - 136 q^{30} + 240 q^{34} - 172 q^{36} + 114 q^{40}+ \cdots + 714 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(2420, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2420, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2420, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)