Defining parameters
Level: | \( N \) | \(=\) | \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 2420.y (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Sturm bound: | \(1188\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2420, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6624 | 864 | 5760 |
Cusp forms | 6048 | 864 | 5184 |
Eisenstein series | 576 | 0 | 576 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(2420, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(2420, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(2420, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1210, [\chi])\)\(^{\oplus 2}\)