Properties

Label 243.2.e.c.217.1
Level $243$
Weight $2$
Character 243.217
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 217.1
Root \(0.500000 - 1.27297i\) of defining polynomial
Character \(\chi\) \(=\) 243.217
Dual form 243.2.e.c.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.139184 + 0.789350i) q^{2} +(1.27568 + 0.464311i) q^{4} +(-2.10650 + 1.76756i) q^{5} +(-2.23349 + 0.812925i) q^{7} +(-1.34559 + 2.33062i) q^{8} +(-1.10204 - 1.90878i) q^{10} +(-0.191633 - 0.160799i) q^{11} +(0.453566 + 2.57230i) q^{13} +(-0.330816 - 1.87615i) q^{14} +(0.427502 + 0.358716i) q^{16} +(0.146688 + 0.254072i) q^{17} +(1.39237 - 2.41166i) q^{19} +(-3.50793 + 1.27678i) q^{20} +(0.153599 - 0.128885i) q^{22} +(6.28639 + 2.28806i) q^{23} +(0.444822 - 2.52271i) q^{25} -2.09357 q^{26} -3.22668 q^{28} +(-0.0616550 + 0.349663i) q^{29} +(-2.59869 - 0.945845i) q^{31} +(-4.46577 + 3.74722i) q^{32} +(-0.220968 + 0.0804258i) q^{34} +(3.26796 - 5.66027i) q^{35} +(3.49619 + 6.05558i) q^{37} +(1.70985 + 1.43473i) q^{38} +(-1.28505 - 7.28786i) q^{40} +(-1.68744 - 9.56997i) q^{41} +(0.199713 + 0.167579i) q^{43} +(-0.169802 - 0.294106i) q^{44} +(-2.68104 + 4.64370i) q^{46} +(10.7365 - 3.90777i) q^{47} +(-1.03467 + 0.868188i) q^{49} +(1.92939 + 0.702240i) q^{50} +(-0.615741 + 3.49204i) q^{52} +5.43137 q^{53} +0.687897 q^{55} +(1.11073 - 6.29929i) q^{56} +(-0.267425 - 0.0973348i) q^{58} +(4.57859 - 3.84189i) q^{59} +(11.1323 - 4.05183i) q^{61} +(1.10830 - 1.91963i) q^{62} +(-1.77824 - 3.08001i) q^{64} +(-5.50214 - 4.61685i) q^{65} +(0.314356 + 1.78280i) q^{67} +(0.0691597 + 0.392224i) q^{68} +(4.01309 + 3.36738i) q^{70} +(0.185255 + 0.320871i) q^{71} +(-2.51339 + 4.35333i) q^{73} +(-5.26658 + 1.91688i) q^{74} +(2.89599 - 2.43002i) q^{76} +(0.558728 + 0.203360i) q^{77} +(0.139409 - 0.790625i) q^{79} -1.53459 q^{80} +7.78892 q^{82} +(-0.478514 + 2.71379i) q^{83} +(-0.758087 - 0.275921i) q^{85} +(-0.160075 + 0.134319i) q^{86} +(0.632620 - 0.230255i) q^{88} +(-5.22533 + 9.05054i) q^{89} +(-3.10412 - 5.37650i) q^{91} +(6.95708 + 5.83768i) q^{92} +(1.59025 + 9.01876i) q^{94} +(1.32973 + 7.54127i) q^{95} +(-11.3640 - 9.53550i) q^{97} +(-0.541296 - 0.937552i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{4} - 3 q^{5} + 3 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} - 9 q^{16} + 9 q^{17} - 3 q^{19} - 21 q^{20} - 15 q^{22} + 24 q^{23} - 15 q^{25} - 30 q^{26} - 12 q^{28}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.139184 + 0.789350i −0.0984177 + 0.558155i 0.895229 + 0.445607i \(0.147012\pi\)
−0.993646 + 0.112548i \(0.964099\pi\)
\(3\) 0 0
\(4\) 1.27568 + 0.464311i 0.637842 + 0.232156i
\(5\) −2.10650 + 1.76756i −0.942056 + 0.790479i −0.977942 0.208877i \(-0.933019\pi\)
0.0358862 + 0.999356i \(0.488575\pi\)
\(6\) 0 0
\(7\) −2.23349 + 0.812925i −0.844181 + 0.307257i −0.727666 0.685932i \(-0.759395\pi\)
−0.116516 + 0.993189i \(0.537172\pi\)
\(8\) −1.34559 + 2.33062i −0.475736 + 0.823999i
\(9\) 0 0
\(10\) −1.10204 1.90878i −0.348494 0.603610i
\(11\) −0.191633 0.160799i −0.0577795 0.0484827i 0.613441 0.789741i \(-0.289785\pi\)
−0.671220 + 0.741258i \(0.734229\pi\)
\(12\) 0 0
\(13\) 0.453566 + 2.57230i 0.125797 + 0.713428i 0.980832 + 0.194858i \(0.0624245\pi\)
−0.855035 + 0.518570i \(0.826464\pi\)
\(14\) −0.330816 1.87615i −0.0884144 0.501423i
\(15\) 0 0
\(16\) 0.427502 + 0.358716i 0.106875 + 0.0896791i
\(17\) 0.146688 + 0.254072i 0.0355772 + 0.0616215i 0.883266 0.468873i \(-0.155340\pi\)
−0.847689 + 0.530494i \(0.822006\pi\)
\(18\) 0 0
\(19\) 1.39237 2.41166i 0.319432 0.553273i −0.660937 0.750441i \(-0.729841\pi\)
0.980370 + 0.197168i \(0.0631745\pi\)
\(20\) −3.50793 + 1.27678i −0.784397 + 0.285497i
\(21\) 0 0
\(22\) 0.153599 0.128885i 0.0327474 0.0274783i
\(23\) 6.28639 + 2.28806i 1.31080 + 0.477094i 0.900500 0.434855i \(-0.143201\pi\)
0.410304 + 0.911949i \(0.365423\pi\)
\(24\) 0 0
\(25\) 0.444822 2.52271i 0.0889643 0.504542i
\(26\) −2.09357 −0.410584
\(27\) 0 0
\(28\) −3.22668 −0.609786
\(29\) −0.0616550 + 0.349663i −0.0114490 + 0.0649308i −0.989997 0.141088i \(-0.954940\pi\)
0.978548 + 0.206019i \(0.0660509\pi\)
\(30\) 0 0
\(31\) −2.59869 0.945845i −0.466738 0.169879i 0.0979360 0.995193i \(-0.468776\pi\)
−0.564674 + 0.825314i \(0.690998\pi\)
\(32\) −4.46577 + 3.74722i −0.789443 + 0.662422i
\(33\) 0 0
\(34\) −0.220968 + 0.0804258i −0.0378957 + 0.0137929i
\(35\) 3.26796 5.66027i 0.552386 0.956760i
\(36\) 0 0
\(37\) 3.49619 + 6.05558i 0.574770 + 0.995531i 0.996067 + 0.0886080i \(0.0282418\pi\)
−0.421297 + 0.906923i \(0.638425\pi\)
\(38\) 1.70985 + 1.43473i 0.277374 + 0.232744i
\(39\) 0 0
\(40\) −1.28505 7.28786i −0.203184 1.15231i
\(41\) −1.68744 9.56997i −0.263535 1.49458i −0.773176 0.634192i \(-0.781333\pi\)
0.509641 0.860387i \(-0.329778\pi\)
\(42\) 0 0
\(43\) 0.199713 + 0.167579i 0.0304559 + 0.0255555i 0.657889 0.753115i \(-0.271450\pi\)
−0.627433 + 0.778671i \(0.715894\pi\)
\(44\) −0.169802 0.294106i −0.0255986 0.0443381i
\(45\) 0 0
\(46\) −2.68104 + 4.64370i −0.395298 + 0.684677i
\(47\) 10.7365 3.90777i 1.56608 0.570007i 0.593962 0.804493i \(-0.297563\pi\)
0.972119 + 0.234486i \(0.0753407\pi\)
\(48\) 0 0
\(49\) −1.03467 + 0.868188i −0.147810 + 0.124027i
\(50\) 1.92939 + 0.702240i 0.272857 + 0.0993117i
\(51\) 0 0
\(52\) −0.615741 + 3.49204i −0.0853879 + 0.484259i
\(53\) 5.43137 0.746056 0.373028 0.927820i \(-0.378320\pi\)
0.373028 + 0.927820i \(0.378320\pi\)
\(54\) 0 0
\(55\) 0.687897 0.0927560
\(56\) 1.11073 6.29929i 0.148428 0.841778i
\(57\) 0 0
\(58\) −0.267425 0.0973348i −0.0351146 0.0127807i
\(59\) 4.57859 3.84189i 0.596082 0.500172i −0.294102 0.955774i \(-0.595020\pi\)
0.890184 + 0.455602i \(0.150576\pi\)
\(60\) 0 0
\(61\) 11.1323 4.05183i 1.42535 0.518784i 0.489753 0.871861i \(-0.337087\pi\)
0.935594 + 0.353078i \(0.114865\pi\)
\(62\) 1.10830 1.91963i 0.140754 0.243793i
\(63\) 0 0
\(64\) −1.77824 3.08001i −0.222281 0.385001i
\(65\) −5.50214 4.61685i −0.682457 0.572649i
\(66\) 0 0
\(67\) 0.314356 + 1.78280i 0.0384047 + 0.217804i 0.997970 0.0636814i \(-0.0202841\pi\)
−0.959566 + 0.281485i \(0.909173\pi\)
\(68\) 0.0691597 + 0.392224i 0.00838685 + 0.0475642i
\(69\) 0 0
\(70\) 4.01309 + 3.36738i 0.479656 + 0.402479i
\(71\) 0.185255 + 0.320871i 0.0219857 + 0.0380804i 0.876809 0.480839i \(-0.159668\pi\)
−0.854823 + 0.518919i \(0.826334\pi\)
\(72\) 0 0
\(73\) −2.51339 + 4.35333i −0.294171 + 0.509518i −0.974792 0.223117i \(-0.928377\pi\)
0.680621 + 0.732636i \(0.261710\pi\)
\(74\) −5.26658 + 1.91688i −0.612228 + 0.222833i
\(75\) 0 0
\(76\) 2.89599 2.43002i 0.332193 0.278743i
\(77\) 0.558728 + 0.203360i 0.0636730 + 0.0231751i
\(78\) 0 0
\(79\) 0.139409 0.790625i 0.0156847 0.0889523i −0.975961 0.217947i \(-0.930064\pi\)
0.991645 + 0.128995i \(0.0411751\pi\)
\(80\) −1.53459 −0.171572
\(81\) 0 0
\(82\) 7.78892 0.860143
\(83\) −0.478514 + 2.71379i −0.0525237 + 0.297877i −0.999742 0.0227124i \(-0.992770\pi\)
0.947218 + 0.320589i \(0.103881\pi\)
\(84\) 0 0
\(85\) −0.758087 0.275921i −0.0822261 0.0299279i
\(86\) −0.160075 + 0.134319i −0.0172613 + 0.0144840i
\(87\) 0 0
\(88\) 0.632620 0.230255i 0.0674375 0.0245452i
\(89\) −5.22533 + 9.05054i −0.553884 + 0.959356i 0.444105 + 0.895975i \(0.353522\pi\)
−0.997989 + 0.0633809i \(0.979812\pi\)
\(90\) 0 0
\(91\) −3.10412 5.37650i −0.325401 0.563611i
\(92\) 6.95708 + 5.83768i 0.725326 + 0.608621i
\(93\) 0 0
\(94\) 1.59025 + 9.01876i 0.164022 + 0.930214i
\(95\) 1.32973 + 7.54127i 0.136427 + 0.773718i
\(96\) 0 0
\(97\) −11.3640 9.53550i −1.15384 0.968183i −0.154034 0.988066i \(-0.549226\pi\)
−0.999802 + 0.0198821i \(0.993671\pi\)
\(98\) −0.541296 0.937552i −0.0546791 0.0947070i
\(99\) 0 0
\(100\) 1.73877 3.01164i 0.173877 0.301164i
\(101\) −3.76378 + 1.36990i −0.374510 + 0.136310i −0.522416 0.852691i \(-0.674969\pi\)
0.147906 + 0.989001i \(0.452747\pi\)
\(102\) 0 0
\(103\) −4.53449 + 3.80489i −0.446797 + 0.374907i −0.838246 0.545293i \(-0.816418\pi\)
0.391449 + 0.920200i \(0.371974\pi\)
\(104\) −6.60537 2.40416i −0.647710 0.235747i
\(105\) 0 0
\(106\) −0.755958 + 4.28725i −0.0734251 + 0.416415i
\(107\) −0.258978 −0.0250364 −0.0125182 0.999922i \(-0.503985\pi\)
−0.0125182 + 0.999922i \(0.503985\pi\)
\(108\) 0 0
\(109\) −8.55787 −0.819695 −0.409848 0.912154i \(-0.634418\pi\)
−0.409848 + 0.912154i \(0.634418\pi\)
\(110\) −0.0957441 + 0.542992i −0.00912884 + 0.0517722i
\(111\) 0 0
\(112\) −1.24643 0.453664i −0.117777 0.0428672i
\(113\) −2.38943 + 2.00497i −0.224779 + 0.188612i −0.748221 0.663449i \(-0.769092\pi\)
0.523443 + 0.852061i \(0.324647\pi\)
\(114\) 0 0
\(115\) −17.2866 + 6.29180i −1.61198 + 0.586714i
\(116\) −0.241005 + 0.417432i −0.0223767 + 0.0387576i
\(117\) 0 0
\(118\) 2.39533 + 4.14884i 0.220508 + 0.381932i
\(119\) −0.534169 0.448221i −0.0489672 0.0410883i
\(120\) 0 0
\(121\) −1.89926 10.7713i −0.172660 0.979205i
\(122\) 1.64888 + 9.35124i 0.149282 + 0.846621i
\(123\) 0 0
\(124\) −2.87594 2.41320i −0.258267 0.216712i
\(125\) −3.35257 5.80682i −0.299863 0.519378i
\(126\) 0 0
\(127\) 9.22726 15.9821i 0.818787 1.41818i −0.0877893 0.996139i \(-0.527980\pi\)
0.906576 0.422042i \(-0.138686\pi\)
\(128\) −8.27744 + 3.01274i −0.731629 + 0.266291i
\(129\) 0 0
\(130\) 4.41012 3.70053i 0.386793 0.324558i
\(131\) −13.3676 4.86540i −1.16793 0.425092i −0.316006 0.948757i \(-0.602342\pi\)
−0.851924 + 0.523665i \(0.824564\pi\)
\(132\) 0 0
\(133\) −1.14936 + 6.51832i −0.0996618 + 0.565210i
\(134\) −1.45101 −0.125348
\(135\) 0 0
\(136\) −0.789527 −0.0677014
\(137\) −3.41837 + 19.3865i −0.292051 + 1.65630i 0.386903 + 0.922121i \(0.373545\pi\)
−0.678953 + 0.734181i \(0.737566\pi\)
\(138\) 0 0
\(139\) 16.8308 + 6.12591i 1.42757 + 0.519593i 0.936234 0.351378i \(-0.114287\pi\)
0.491336 + 0.870970i \(0.336509\pi\)
\(140\) 6.79701 5.70337i 0.574452 0.482022i
\(141\) 0 0
\(142\) −0.279064 + 0.101571i −0.0234185 + 0.00852365i
\(143\) 0.326705 0.565870i 0.0273205 0.0473205i
\(144\) 0 0
\(145\) −0.488175 0.845544i −0.0405408 0.0702186i
\(146\) −3.08647 2.58986i −0.255438 0.214338i
\(147\) 0 0
\(148\) 1.64836 + 9.34832i 0.135495 + 0.768428i
\(149\) 2.82863 + 16.0420i 0.231731 + 1.31421i 0.849390 + 0.527765i \(0.176970\pi\)
−0.617660 + 0.786446i \(0.711919\pi\)
\(150\) 0 0
\(151\) 10.9352 + 9.17571i 0.889893 + 0.746709i 0.968189 0.250222i \(-0.0805035\pi\)
−0.0782960 + 0.996930i \(0.524948\pi\)
\(152\) 3.74711 + 6.49019i 0.303931 + 0.526424i
\(153\) 0 0
\(154\) −0.238288 + 0.412728i −0.0192018 + 0.0332585i
\(155\) 7.14598 2.60092i 0.573979 0.208911i
\(156\) 0 0
\(157\) 0.584763 0.490675i 0.0466692 0.0391601i −0.619155 0.785269i \(-0.712525\pi\)
0.665824 + 0.746109i \(0.268080\pi\)
\(158\) 0.604676 + 0.220084i 0.0481055 + 0.0175090i
\(159\) 0 0
\(160\) 2.78368 15.7871i 0.220070 1.24808i
\(161\) −15.9006 −1.25315
\(162\) 0 0
\(163\) 5.12834 0.401682 0.200841 0.979624i \(-0.435632\pi\)
0.200841 + 0.979624i \(0.435632\pi\)
\(164\) 2.29080 12.9918i 0.178881 1.01449i
\(165\) 0 0
\(166\) −2.07553 0.755430i −0.161092 0.0586327i
\(167\) 6.81866 5.72153i 0.527643 0.442745i −0.339643 0.940554i \(-0.610306\pi\)
0.867287 + 0.497809i \(0.165862\pi\)
\(168\) 0 0
\(169\) 5.80499 2.11284i 0.446538 0.162526i
\(170\) 0.323312 0.559992i 0.0247969 0.0429495i
\(171\) 0 0
\(172\) 0.176962 + 0.306507i 0.0134932 + 0.0233709i
\(173\) −5.21771 4.37818i −0.396695 0.332867i 0.422519 0.906354i \(-0.361146\pi\)
−0.819215 + 0.573487i \(0.805590\pi\)
\(174\) 0 0
\(175\) 1.05727 + 5.99606i 0.0799219 + 0.453260i
\(176\) −0.0242421 0.137484i −0.00182732 0.0103632i
\(177\) 0 0
\(178\) −6.41676 5.38430i −0.480957 0.403571i
\(179\) 9.17382 + 15.8895i 0.685684 + 1.18764i 0.973221 + 0.229870i \(0.0738301\pi\)
−0.287538 + 0.957769i \(0.592837\pi\)
\(180\) 0 0
\(181\) −5.66282 + 9.80830i −0.420914 + 0.729045i −0.996029 0.0890276i \(-0.971624\pi\)
0.575115 + 0.818073i \(0.304957\pi\)
\(182\) 4.67599 1.70192i 0.346607 0.126155i
\(183\) 0 0
\(184\) −13.7915 + 11.5724i −1.01672 + 0.853131i
\(185\) −18.0683 6.57634i −1.32841 0.483502i
\(186\) 0 0
\(187\) 0.0127442 0.0722758i 0.000931947 0.00528533i
\(188\) 15.5108 1.13124
\(189\) 0 0
\(190\) −6.13778 −0.445281
\(191\) 1.19095 6.75422i 0.0861742 0.488718i −0.910923 0.412577i \(-0.864629\pi\)
0.997097 0.0761413i \(-0.0242600\pi\)
\(192\) 0 0
\(193\) −19.1818 6.98159i −1.38073 0.502546i −0.458333 0.888781i \(-0.651553\pi\)
−0.922400 + 0.386235i \(0.873775\pi\)
\(194\) 9.10853 7.64296i 0.653954 0.548733i
\(195\) 0 0
\(196\) −1.72302 + 0.627127i −0.123073 + 0.0447948i
\(197\) −1.51786 + 2.62902i −0.108143 + 0.187310i −0.915018 0.403413i \(-0.867824\pi\)
0.806875 + 0.590723i \(0.201157\pi\)
\(198\) 0 0
\(199\) 1.13124 + 1.95936i 0.0801912 + 0.138895i 0.903332 0.428942i \(-0.141114\pi\)
−0.823141 + 0.567837i \(0.807780\pi\)
\(200\) 5.28094 + 4.43123i 0.373419 + 0.313335i
\(201\) 0 0
\(202\) −0.557476 3.16160i −0.0392239 0.222450i
\(203\) −0.146544 0.831091i −0.0102854 0.0583311i
\(204\) 0 0
\(205\) 20.4701 + 17.1765i 1.42970 + 1.19966i
\(206\) −2.37226 4.10888i −0.165283 0.286279i
\(207\) 0 0
\(208\) −0.728826 + 1.26236i −0.0505350 + 0.0875292i
\(209\) −0.654617 + 0.238261i −0.0452808 + 0.0164809i
\(210\) 0 0
\(211\) 19.4811 16.3466i 1.34114 1.12535i 0.359804 0.933028i \(-0.382844\pi\)
0.981333 0.192319i \(-0.0616007\pi\)
\(212\) 6.92871 + 2.52184i 0.475866 + 0.173201i
\(213\) 0 0
\(214\) 0.0360456 0.204425i 0.00246402 0.0139742i
\(215\) −0.716901 −0.0488923
\(216\) 0 0
\(217\) 6.57305 0.446208
\(218\) 1.19112 6.75516i 0.0806726 0.457517i
\(219\) 0 0
\(220\) 0.877539 + 0.319398i 0.0591637 + 0.0215338i
\(221\) −0.587016 + 0.492565i −0.0394870 + 0.0331335i
\(222\) 0 0
\(223\) 3.60028 1.31039i 0.241093 0.0877505i −0.218648 0.975804i \(-0.570165\pi\)
0.459741 + 0.888053i \(0.347942\pi\)
\(224\) 6.92805 11.9997i 0.462900 0.801766i
\(225\) 0 0
\(226\) −1.25005 2.16515i −0.0831523 0.144024i
\(227\) 1.92736 + 1.61725i 0.127923 + 0.107341i 0.704505 0.709699i \(-0.251169\pi\)
−0.576581 + 0.817040i \(0.695614\pi\)
\(228\) 0 0
\(229\) −2.76789 15.6975i −0.182907 1.03732i −0.928615 0.371045i \(-0.879000\pi\)
0.745708 0.666273i \(-0.232111\pi\)
\(230\) −2.56042 14.5209i −0.168829 0.957479i
\(231\) 0 0
\(232\) −0.731970 0.614196i −0.0480562 0.0403239i
\(233\) −14.0641 24.3598i −0.921372 1.59586i −0.797295 0.603590i \(-0.793736\pi\)
−0.124077 0.992273i \(-0.539597\pi\)
\(234\) 0 0
\(235\) −15.7092 + 27.2092i −1.02476 + 1.77493i
\(236\) 7.62467 2.77515i 0.496324 0.180647i
\(237\) 0 0
\(238\) 0.428151 0.359261i 0.0277529 0.0232874i
\(239\) 13.8189 + 5.02968i 0.893872 + 0.325343i 0.747794 0.663930i \(-0.231113\pi\)
0.146077 + 0.989273i \(0.453335\pi\)
\(240\) 0 0
\(241\) 1.46610 8.31468i 0.0944400 0.535596i −0.900478 0.434902i \(-0.856783\pi\)
0.994918 0.100693i \(-0.0321060\pi\)
\(242\) 8.76664 0.563541
\(243\) 0 0
\(244\) 16.0826 1.02958
\(245\) 0.644947 3.65768i 0.0412042 0.233680i
\(246\) 0 0
\(247\) 6.83505 + 2.48775i 0.434904 + 0.158292i
\(248\) 5.70116 4.78384i 0.362024 0.303774i
\(249\) 0 0
\(250\) 5.05024 1.83814i 0.319405 0.116254i
\(251\) 11.6102 20.1095i 0.732832 1.26930i −0.222835 0.974856i \(-0.571531\pi\)
0.955668 0.294447i \(-0.0951354\pi\)
\(252\) 0 0
\(253\) −0.836762 1.44931i −0.0526067 0.0911176i
\(254\) 11.3312 + 9.50798i 0.710981 + 0.596584i
\(255\) 0 0
\(256\) −2.46118 13.9580i −0.153824 0.872377i
\(257\) 1.19213 + 6.76090i 0.0743630 + 0.421733i 0.999149 + 0.0412458i \(0.0131327\pi\)
−0.924786 + 0.380488i \(0.875756\pi\)
\(258\) 0 0
\(259\) −12.7314 10.6830i −0.791094 0.663806i
\(260\) −4.87534 8.44434i −0.302356 0.523696i
\(261\) 0 0
\(262\) 5.70105 9.87451i 0.352212 0.610049i
\(263\) −3.15073 + 1.14677i −0.194282 + 0.0707130i −0.437329 0.899302i \(-0.644075\pi\)
0.243047 + 0.970015i \(0.421853\pi\)
\(264\) 0 0
\(265\) −11.4412 + 9.60029i −0.702826 + 0.589741i
\(266\) −4.98526 1.81449i −0.305666 0.111253i
\(267\) 0 0
\(268\) −0.426755 + 2.42025i −0.0260682 + 0.147840i
\(269\) 12.7416 0.776869 0.388434 0.921476i \(-0.373016\pi\)
0.388434 + 0.921476i \(0.373016\pi\)
\(270\) 0 0
\(271\) −23.5566 −1.43096 −0.715481 0.698632i \(-0.753792\pi\)
−0.715481 + 0.698632i \(0.753792\pi\)
\(272\) −0.0284302 + 0.161236i −0.00172383 + 0.00977635i
\(273\) 0 0
\(274\) −14.8270 5.39657i −0.895730 0.326019i
\(275\) −0.490892 + 0.411907i −0.0296019 + 0.0248389i
\(276\) 0 0
\(277\) −3.92906 + 1.43006i −0.236074 + 0.0859240i −0.457348 0.889288i \(-0.651201\pi\)
0.221274 + 0.975212i \(0.428978\pi\)
\(278\) −7.17806 + 12.4328i −0.430511 + 0.745667i
\(279\) 0 0
\(280\) 8.79463 + 15.2327i 0.525580 + 0.910331i
\(281\) −16.5742 13.9074i −0.988731 0.829644i −0.00334741 0.999994i \(-0.501066\pi\)
−0.985384 + 0.170351i \(0.945510\pi\)
\(282\) 0 0
\(283\) 0.907718 + 5.14792i 0.0539582 + 0.306012i 0.999828 0.0185334i \(-0.00589971\pi\)
−0.945870 + 0.324546i \(0.894789\pi\)
\(284\) 0.0873428 + 0.495346i 0.00518284 + 0.0293934i
\(285\) 0 0
\(286\) 0.401198 + 0.336645i 0.0237233 + 0.0199062i
\(287\) 11.5486 + 20.0027i 0.681690 + 1.18072i
\(288\) 0 0
\(289\) 8.45697 14.6479i 0.497469 0.861641i
\(290\) 0.735376 0.267655i 0.0431828 0.0157173i
\(291\) 0 0
\(292\) −5.22759 + 4.38647i −0.305922 + 0.256699i
\(293\) 5.77175 + 2.10074i 0.337189 + 0.122727i 0.505065 0.863081i \(-0.331469\pi\)
−0.167876 + 0.985808i \(0.553691\pi\)
\(294\) 0 0
\(295\) −2.85401 + 16.1859i −0.166167 + 0.942380i
\(296\) −18.8177 −1.09376
\(297\) 0 0
\(298\) −13.0564 −0.756339
\(299\) −3.03429 + 17.2083i −0.175477 + 0.995181i
\(300\) 0 0
\(301\) −0.582286 0.211935i −0.0335624 0.0122157i
\(302\) −8.76484 + 7.35458i −0.504360 + 0.423208i
\(303\) 0 0
\(304\) 1.46034 0.531522i 0.0837564 0.0304849i
\(305\) −16.2884 + 28.2123i −0.932669 + 1.61543i
\(306\) 0 0
\(307\) −9.50194 16.4578i −0.542304 0.939298i −0.998771 0.0495580i \(-0.984219\pi\)
0.456467 0.889740i \(-0.349115\pi\)
\(308\) 0.618338 + 0.518847i 0.0352331 + 0.0295641i
\(309\) 0 0
\(310\) 1.05844 + 6.00268i 0.0601151 + 0.340930i
\(311\) −3.74158 21.2196i −0.212166 1.20325i −0.885758 0.464148i \(-0.846361\pi\)
0.673592 0.739103i \(-0.264750\pi\)
\(312\) 0 0
\(313\) −2.92140 2.45135i −0.165127 0.138558i 0.556480 0.830861i \(-0.312152\pi\)
−0.721607 + 0.692303i \(0.756596\pi\)
\(314\) 0.305925 + 0.529877i 0.0172643 + 0.0299027i
\(315\) 0 0
\(316\) 0.544937 0.943859i 0.0306551 0.0530962i
\(317\) −3.99791 + 1.45512i −0.224545 + 0.0817277i −0.451843 0.892098i \(-0.649233\pi\)
0.227298 + 0.973825i \(0.427011\pi\)
\(318\) 0 0
\(319\) 0.0680406 0.0570928i 0.00380954 0.00319658i
\(320\) 9.18999 + 3.34488i 0.513736 + 0.186985i
\(321\) 0 0
\(322\) 2.21311 12.5512i 0.123332 0.699449i
\(323\) 0.816980 0.0454580
\(324\) 0 0
\(325\) 6.69092 0.371146
\(326\) −0.713781 + 4.04805i −0.0395327 + 0.224201i
\(327\) 0 0
\(328\) 24.5746 + 8.94442i 1.35690 + 0.493873i
\(329\) −20.8032 + 17.4560i −1.14692 + 0.962378i
\(330\) 0 0
\(331\) 13.4318 4.88876i 0.738277 0.268711i 0.0546128 0.998508i \(-0.482608\pi\)
0.683664 + 0.729797i \(0.260385\pi\)
\(332\) −1.87047 + 3.23976i −0.102656 + 0.177805i
\(333\) 0 0
\(334\) 3.56725 + 6.17865i 0.195191 + 0.338081i
\(335\) −3.81340 3.19982i −0.208348 0.174825i
\(336\) 0 0
\(337\) 6.20245 + 35.1759i 0.337869 + 1.91615i 0.396833 + 0.917891i \(0.370109\pi\)
−0.0589637 + 0.998260i \(0.518780\pi\)
\(338\) 0.859813 + 4.87624i 0.0467677 + 0.265233i
\(339\) 0 0
\(340\) −0.838967 0.703977i −0.0454994 0.0381785i
\(341\) 0.345903 + 0.599121i 0.0187317 + 0.0324442i
\(342\) 0 0
\(343\) 9.92407 17.1890i 0.535849 0.928118i
\(344\) −0.659294 + 0.239963i −0.0355467 + 0.0129379i
\(345\) 0 0
\(346\) 4.18214 3.50923i 0.224833 0.188657i
\(347\) 18.2691 + 6.64939i 0.980735 + 0.356958i 0.782126 0.623121i \(-0.214135\pi\)
0.198609 + 0.980079i \(0.436358\pi\)
\(348\) 0 0
\(349\) −1.39278 + 7.89885i −0.0745538 + 0.422816i 0.924572 + 0.381008i \(0.124423\pi\)
−0.999126 + 0.0418080i \(0.986688\pi\)
\(350\) −4.88014 −0.260855
\(351\) 0 0
\(352\) 1.45834 0.0777296
\(353\) 1.52008 8.62082i 0.0809059 0.458840i −0.917259 0.398291i \(-0.869604\pi\)
0.998165 0.0605496i \(-0.0192853\pi\)
\(354\) 0 0
\(355\) −0.957400 0.348465i −0.0508135 0.0184946i
\(356\) −10.8681 + 9.11945i −0.576010 + 0.483330i
\(357\) 0 0
\(358\) −13.8192 + 5.02979i −0.730370 + 0.265833i
\(359\) 4.13896 7.16888i 0.218446 0.378359i −0.735887 0.677104i \(-0.763235\pi\)
0.954333 + 0.298745i \(0.0965680\pi\)
\(360\) 0 0
\(361\) 5.62260 + 9.73862i 0.295926 + 0.512559i
\(362\) −6.95401 5.83511i −0.365495 0.306686i
\(363\) 0 0
\(364\) −1.46351 8.30000i −0.0767089 0.435038i
\(365\) −2.40032 13.6129i −0.125638 0.712530i
\(366\) 0 0
\(367\) −11.3373 9.51316i −0.591805 0.496583i 0.296995 0.954879i \(-0.404016\pi\)
−0.888800 + 0.458296i \(0.848460\pi\)
\(368\) 1.86668 + 3.23318i 0.0973074 + 0.168541i
\(369\) 0 0
\(370\) 7.70585 13.3469i 0.400608 0.693874i
\(371\) −12.1309 + 4.41530i −0.629806 + 0.229231i
\(372\) 0 0
\(373\) 19.5597 16.4126i 1.01276 0.849810i 0.0240627 0.999710i \(-0.492340\pi\)
0.988701 + 0.149901i \(0.0478954\pi\)
\(374\) 0.0552771 + 0.0201192i 0.00285831 + 0.00104034i
\(375\) 0 0
\(376\) −5.33936 + 30.2810i −0.275356 + 1.56162i
\(377\) −0.927403 −0.0477637
\(378\) 0 0
\(379\) 20.1244 1.03372 0.516861 0.856070i \(-0.327101\pi\)
0.516861 + 0.856070i \(0.327101\pi\)
\(380\) −1.80518 + 10.2377i −0.0926038 + 0.525182i
\(381\) 0 0
\(382\) 5.16568 + 1.88015i 0.264299 + 0.0961970i
\(383\) −18.2788 + 15.3377i −0.934002 + 0.783721i −0.976532 0.215374i \(-0.930903\pi\)
0.0425294 + 0.999095i \(0.486458\pi\)
\(384\) 0 0
\(385\) −1.53641 + 0.559209i −0.0783029 + 0.0284999i
\(386\) 8.18070 14.1694i 0.416387 0.721203i
\(387\) 0 0
\(388\) −10.0694 17.4407i −0.511196 0.885418i
\(389\) 29.0892 + 24.4088i 1.47488 + 1.23757i 0.911449 + 0.411413i \(0.134965\pi\)
0.563434 + 0.826161i \(0.309480\pi\)
\(390\) 0 0
\(391\) 0.340810 + 1.93283i 0.0172355 + 0.0977473i
\(392\) −0.631187 3.57964i −0.0318797 0.180799i
\(393\) 0 0
\(394\) −1.86395 1.56404i −0.0939046 0.0787953i
\(395\) 1.10382 + 1.91187i 0.0555390 + 0.0961964i
\(396\) 0 0
\(397\) −10.1747 + 17.6230i −0.510651 + 0.884474i 0.489272 + 0.872131i \(0.337262\pi\)
−0.999924 + 0.0123433i \(0.996071\pi\)
\(398\) −1.70407 + 0.620230i −0.0854173 + 0.0310893i
\(399\) 0 0
\(400\) 1.09510 0.918897i 0.0547550 0.0459449i
\(401\) −6.52613 2.37532i −0.325900 0.118618i 0.173889 0.984765i \(-0.444367\pi\)
−0.499788 + 0.866148i \(0.666589\pi\)
\(402\) 0 0
\(403\) 1.25432 7.11361i 0.0624822 0.354354i
\(404\) −5.43745 −0.270523
\(405\) 0 0
\(406\) 0.676418 0.0335701
\(407\) 0.303746 1.72263i 0.0150561 0.0853877i
\(408\) 0 0
\(409\) 10.2482 + 3.73005i 0.506743 + 0.184439i 0.582724 0.812670i \(-0.301987\pi\)
−0.0759814 + 0.997109i \(0.524209\pi\)
\(410\) −16.4074 + 13.7674i −0.810302 + 0.679924i
\(411\) 0 0
\(412\) −7.55123 + 2.74842i −0.372023 + 0.135405i
\(413\) −7.10308 + 12.3029i −0.349520 + 0.605386i
\(414\) 0 0
\(415\) −3.78880 6.56240i −0.185985 0.322135i
\(416\) −11.6645 9.78768i −0.571899 0.479881i
\(417\) 0 0
\(418\) −0.0969594 0.549884i −0.00474244 0.0268957i
\(419\) −1.74850 9.91621i −0.0854196 0.484439i −0.997265 0.0739054i \(-0.976454\pi\)
0.911846 0.410533i \(-0.134657\pi\)
\(420\) 0 0
\(421\) −2.38053 1.99750i −0.116020 0.0973524i 0.582932 0.812521i \(-0.301905\pi\)
−0.698952 + 0.715169i \(0.746350\pi\)
\(422\) 10.1917 + 17.6526i 0.496126 + 0.859315i
\(423\) 0 0
\(424\) −7.30837 + 12.6585i −0.354926 + 0.614750i
\(425\) 0.706199 0.257036i 0.0342557 0.0124681i
\(426\) 0 0
\(427\) −21.5701 + 18.0995i −1.04385 + 0.875895i
\(428\) −0.330375 0.120247i −0.0159693 0.00581234i
\(429\) 0 0
\(430\) 0.0997810 0.565886i 0.00481187 0.0272894i
\(431\) −28.0701 −1.35209 −0.676044 0.736862i \(-0.736307\pi\)
−0.676044 + 0.736862i \(0.736307\pi\)
\(432\) 0 0
\(433\) 19.5251 0.938317 0.469158 0.883114i \(-0.344557\pi\)
0.469158 + 0.883114i \(0.344557\pi\)
\(434\) −0.914862 + 5.18844i −0.0439148 + 0.249053i
\(435\) 0 0
\(436\) −10.9171 3.97351i −0.522836 0.190297i
\(437\) 14.2710 11.9748i 0.682676 0.572833i
\(438\) 0 0
\(439\) −13.7473 + 5.00361i −0.656123 + 0.238809i −0.648562 0.761162i \(-0.724629\pi\)
−0.00756144 + 0.999971i \(0.502407\pi\)
\(440\) −0.925624 + 1.60323i −0.0441274 + 0.0764309i
\(441\) 0 0
\(442\) −0.307103 0.531918i −0.0146074 0.0253008i
\(443\) 14.0615 + 11.7990i 0.668081 + 0.560586i 0.912497 0.409084i \(-0.134152\pi\)
−0.244416 + 0.969670i \(0.578596\pi\)
\(444\) 0 0
\(445\) −4.99024 28.3011i −0.236560 1.34160i
\(446\) 0.533260 + 3.02427i 0.0252506 + 0.143203i
\(447\) 0 0
\(448\) 6.47551 + 5.43360i 0.305939 + 0.256714i
\(449\) −6.92969 12.0026i −0.327032 0.566437i 0.654889 0.755725i \(-0.272715\pi\)
−0.981922 + 0.189288i \(0.939382\pi\)
\(450\) 0 0
\(451\) −1.21547 + 2.10526i −0.0572344 + 0.0991328i
\(452\) −3.97909 + 1.44827i −0.187160 + 0.0681208i
\(453\) 0 0
\(454\) −1.54483 + 1.29627i −0.0725026 + 0.0608369i
\(455\) 16.0422 + 5.83887i 0.752068 + 0.273730i
\(456\) 0 0
\(457\) 3.06457 17.3800i 0.143354 0.813003i −0.825319 0.564666i \(-0.809005\pi\)
0.968674 0.248337i \(-0.0798839\pi\)
\(458\) 12.7760 0.596985
\(459\) 0 0
\(460\) −24.9736 −1.16440
\(461\) 4.45200 25.2485i 0.207350 1.17594i −0.686348 0.727273i \(-0.740787\pi\)
0.893698 0.448668i \(-0.148102\pi\)
\(462\) 0 0
\(463\) −17.2409 6.27519i −0.801254 0.291633i −0.0912482 0.995828i \(-0.529086\pi\)
−0.710006 + 0.704195i \(0.751308\pi\)
\(464\) −0.151787 + 0.127365i −0.00704656 + 0.00591276i
\(465\) 0 0
\(466\) 21.1859 7.71104i 0.981418 0.357207i
\(467\) 8.13092 14.0832i 0.376254 0.651692i −0.614260 0.789104i \(-0.710545\pi\)
0.990514 + 0.137412i \(0.0438786\pi\)
\(468\) 0 0
\(469\) −2.15139 3.72632i −0.0993421 0.172066i
\(470\) −19.2911 16.1872i −0.889832 0.746658i
\(471\) 0 0
\(472\) 2.79312 + 15.8406i 0.128564 + 0.729121i
\(473\) −0.0113250 0.0642272i −0.000520724 0.00295317i
\(474\) 0 0
\(475\) −5.46456 4.58531i −0.250731 0.210388i
\(476\) −0.473317 0.819809i −0.0216944 0.0375759i
\(477\) 0 0
\(478\) −5.89354 + 10.2079i −0.269564 + 0.466899i
\(479\) 8.90050 3.23952i 0.406674 0.148017i −0.130580 0.991438i \(-0.541684\pi\)
0.537254 + 0.843421i \(0.319462\pi\)
\(480\) 0 0
\(481\) −13.9910 + 11.7399i −0.637936 + 0.535291i
\(482\) 6.35913 + 2.31454i 0.289651 + 0.105424i
\(483\) 0 0
\(484\) 2.57835 14.6226i 0.117198 0.664662i
\(485\) 40.7928 1.85231
\(486\) 0 0
\(487\) −0.467564 −0.0211874 −0.0105937 0.999944i \(-0.503372\pi\)
−0.0105937 + 0.999944i \(0.503372\pi\)
\(488\) −5.53619 + 31.3973i −0.250612 + 1.42129i
\(489\) 0 0
\(490\) 2.79742 + 1.01818i 0.126375 + 0.0459966i
\(491\) 19.1871 16.0999i 0.865902 0.726578i −0.0973291 0.995252i \(-0.531030\pi\)
0.963231 + 0.268674i \(0.0865855\pi\)
\(492\) 0 0
\(493\) −0.0978836 + 0.0356267i −0.00440845 + 0.00160455i
\(494\) −2.91504 + 5.04899i −0.131154 + 0.227165i
\(495\) 0 0
\(496\) −0.771653 1.33654i −0.0346482 0.0600125i
\(497\) −0.674610 0.566065i −0.0302604 0.0253915i
\(498\) 0 0
\(499\) −2.43701 13.8209i −0.109095 0.618711i −0.989505 0.144497i \(-0.953844\pi\)
0.880410 0.474214i \(-0.157268\pi\)
\(500\) −1.58065 8.96431i −0.0706888 0.400896i
\(501\) 0 0
\(502\) 14.2575 + 11.9635i 0.636344 + 0.533956i
\(503\) −14.1558 24.5186i −0.631176 1.09323i −0.987312 0.158794i \(-0.949239\pi\)
0.356136 0.934434i \(-0.384094\pi\)
\(504\) 0 0
\(505\) 5.50701 9.53842i 0.245059 0.424454i
\(506\) 1.26048 0.458777i 0.0560351 0.0203951i
\(507\) 0 0
\(508\) 19.1917 16.1038i 0.851495 0.714489i
\(509\) 26.9574 + 9.81169i 1.19487 + 0.434895i 0.861429 0.507877i \(-0.169570\pi\)
0.333436 + 0.942773i \(0.391792\pi\)
\(510\) 0 0
\(511\) 2.07472 11.7663i 0.0917802 0.520512i
\(512\) −6.25700 −0.276523
\(513\) 0 0
\(514\) −5.50264 −0.242711
\(515\) 2.82652 16.0300i 0.124552 0.706367i
\(516\) 0 0
\(517\) −2.68583 0.977564i −0.118123 0.0429932i
\(518\) 10.2046 8.56267i 0.448364 0.376222i
\(519\) 0 0
\(520\) 18.1637 6.61106i 0.796532 0.289914i
\(521\) 12.4548 21.5724i 0.545655 0.945102i −0.452910 0.891556i \(-0.649614\pi\)
0.998565 0.0535462i \(-0.0170525\pi\)
\(522\) 0 0
\(523\) 12.9324 + 22.3995i 0.565494 + 0.979464i 0.997004 + 0.0773554i \(0.0246476\pi\)
−0.431510 + 0.902108i \(0.642019\pi\)
\(524\) −14.7937 12.4134i −0.646268 0.542283i
\(525\) 0 0
\(526\) −0.466674 2.64664i −0.0203480 0.115399i
\(527\) −0.140885 0.798998i −0.00613704 0.0348049i
\(528\) 0 0
\(529\) 16.6645 + 13.9832i 0.724544 + 0.607965i
\(530\) −5.98556 10.3673i −0.259996 0.450327i
\(531\) 0 0
\(532\) −4.49274 + 7.78166i −0.194785 + 0.337378i
\(533\) 23.8515 8.68123i 1.03312 0.376026i
\(534\) 0 0
\(535\) 0.545538 0.457761i 0.0235857 0.0197907i
\(536\) −4.57802 1.66626i −0.197741 0.0719717i
\(537\) 0 0
\(538\) −1.77342 + 10.0576i −0.0764577 + 0.433613i
\(539\) 0.337880 0.0145535
\(540\) 0 0
\(541\) −21.9158 −0.942232 −0.471116 0.882071i \(-0.656149\pi\)
−0.471116 + 0.882071i \(0.656149\pi\)
\(542\) 3.27870 18.5944i 0.140832 0.798698i
\(543\) 0 0
\(544\) −1.60714 0.584951i −0.0689055 0.0250796i
\(545\) 18.0272 15.1266i 0.772199 0.647952i
\(546\) 0 0
\(547\) 9.37442 3.41201i 0.400821 0.145887i −0.133741 0.991016i \(-0.542699\pi\)
0.534562 + 0.845129i \(0.320477\pi\)
\(548\) −13.3621 + 23.1439i −0.570802 + 0.988658i
\(549\) 0 0
\(550\) −0.256815 0.444816i −0.0109506 0.0189670i
\(551\) 0.757421 + 0.635552i 0.0322672 + 0.0270754i
\(552\) 0 0
\(553\) 0.331351 + 1.87918i 0.0140905 + 0.0799110i
\(554\) −0.581957 3.30044i −0.0247250 0.140222i
\(555\) 0 0
\(556\) 18.6264 + 15.6294i 0.789937 + 0.662836i
\(557\) 9.26650 + 16.0500i 0.392634 + 0.680062i 0.992796 0.119816i \(-0.0382305\pi\)
−0.600162 + 0.799879i \(0.704897\pi\)
\(558\) 0 0
\(559\) −0.340480 + 0.589729i −0.0144008 + 0.0249429i
\(560\) 3.42749 1.24750i 0.144838 0.0527167i
\(561\) 0 0
\(562\) 13.2846 11.1471i 0.560378 0.470213i
\(563\) −41.0487 14.9405i −1.73000 0.629667i −0.731365 0.681986i \(-0.761116\pi\)
−0.998630 + 0.0523192i \(0.983339\pi\)
\(564\) 0 0
\(565\) 1.48942 8.44694i 0.0626605 0.355365i
\(566\) −4.18985 −0.176113
\(567\) 0 0
\(568\) −0.997105 −0.0418376
\(569\) 2.35583 13.3606i 0.0987616 0.560105i −0.894768 0.446531i \(-0.852659\pi\)
0.993530 0.113573i \(-0.0362297\pi\)
\(570\) 0 0
\(571\) −22.3165 8.12254i −0.933916 0.339918i −0.170155 0.985417i \(-0.554427\pi\)
−0.763761 + 0.645500i \(0.776649\pi\)
\(572\) 0.679513 0.570179i 0.0284119 0.0238404i
\(573\) 0 0
\(574\) −17.3965 + 6.33181i −0.726116 + 0.264285i
\(575\) 8.56844 14.8410i 0.357329 0.618911i
\(576\) 0 0
\(577\) 4.05951 + 7.03128i 0.169000 + 0.292716i 0.938068 0.346450i \(-0.112613\pi\)
−0.769069 + 0.639166i \(0.779280\pi\)
\(578\) 10.3852 + 8.71425i 0.431969 + 0.362465i
\(579\) 0 0
\(580\) −0.230162 1.30531i −0.00955695 0.0542002i
\(581\) −1.13735 6.45022i −0.0471851 0.267600i
\(582\) 0 0
\(583\) −1.04083 0.873359i −0.0431067 0.0361708i
\(584\) −6.76397 11.7155i −0.279895 0.484793i
\(585\) 0 0
\(586\) −2.46156 + 4.26354i −0.101686 + 0.176125i
\(587\) 3.46934 1.26274i 0.143195 0.0521187i −0.269428 0.963020i \(-0.586835\pi\)
0.412623 + 0.910902i \(0.364613\pi\)
\(588\) 0 0
\(589\) −5.89940 + 4.95018i −0.243081 + 0.203969i
\(590\) −12.3791 4.50563i −0.509640 0.185494i
\(591\) 0 0
\(592\) −0.677609 + 3.84291i −0.0278495 + 0.157943i
\(593\) 29.4590 1.20974 0.604869 0.796325i \(-0.293226\pi\)
0.604869 + 0.796325i \(0.293226\pi\)
\(594\) 0 0
\(595\) 1.91749 0.0786093
\(596\) −3.84003 + 21.7779i −0.157294 + 0.892056i
\(597\) 0 0
\(598\) −13.1610 4.79023i −0.538195 0.195887i
\(599\) −16.7575 + 14.0612i −0.684694 + 0.574526i −0.917374 0.398027i \(-0.869695\pi\)
0.232680 + 0.972553i \(0.425251\pi\)
\(600\) 0 0
\(601\) −34.3182 + 12.4908i −1.39987 + 0.509510i −0.928139 0.372233i \(-0.878592\pi\)
−0.471729 + 0.881744i \(0.656370\pi\)
\(602\) 0.248335 0.430130i 0.0101214 0.0175308i
\(603\) 0 0
\(604\) 9.68946 + 16.7826i 0.394258 + 0.682876i
\(605\) 23.0397 + 19.3326i 0.936696 + 0.785982i
\(606\) 0 0
\(607\) −1.14275 6.48085i −0.0463827 0.263049i 0.952794 0.303617i \(-0.0981944\pi\)
−0.999177 + 0.0405678i \(0.987083\pi\)
\(608\) 2.81902 + 15.9874i 0.114326 + 0.648376i
\(609\) 0 0
\(610\) −20.0023 16.7839i −0.809868 0.679560i
\(611\) 14.9217 + 25.8451i 0.603667 + 1.04558i
\(612\) 0 0
\(613\) 3.57434 6.19093i 0.144366 0.250049i −0.784770 0.619787i \(-0.787219\pi\)
0.929136 + 0.369737i \(0.120552\pi\)
\(614\) 14.3135 5.20969i 0.577646 0.210246i
\(615\) 0 0
\(616\) −1.22577 + 1.02855i −0.0493878 + 0.0414413i
\(617\) −15.5401 5.65615i −0.625623 0.227708i 0.00970235 0.999953i \(-0.496912\pi\)
−0.635325 + 0.772245i \(0.719134\pi\)
\(618\) 0 0
\(619\) −0.260359 + 1.47657i −0.0104647 + 0.0593484i −0.989593 0.143895i \(-0.954037\pi\)
0.979128 + 0.203244i \(0.0651483\pi\)
\(620\) 10.3236 0.414608
\(621\) 0 0
\(622\) 17.2704 0.692481
\(623\) 4.31333 24.4621i 0.172810 0.980054i
\(624\) 0 0
\(625\) 29.3618 + 10.6868i 1.17447 + 0.427473i
\(626\) 2.34158 1.96482i 0.0935884 0.0785300i
\(627\) 0 0
\(628\) 0.973799 0.354434i 0.0388588 0.0141435i
\(629\) −1.02570 + 1.77657i −0.0408974 + 0.0708363i
\(630\) 0 0
\(631\) 17.9456 + 31.0827i 0.714404 + 1.23738i 0.963189 + 0.268826i \(0.0866356\pi\)
−0.248785 + 0.968559i \(0.580031\pi\)
\(632\) 1.65506 + 1.38876i 0.0658348 + 0.0552420i
\(633\) 0 0
\(634\) −0.592155 3.35828i −0.0235175 0.133374i
\(635\) 8.81213 + 49.9760i 0.349699 + 1.98324i
\(636\) 0 0
\(637\) −2.70253 2.26769i −0.107078 0.0898493i
\(638\) 0.0355961 + 0.0616542i 0.00140926 + 0.00244091i
\(639\) 0 0
\(640\) 12.1112 20.9772i 0.478738 0.829198i
\(641\) −36.8622 + 13.4167i −1.45597 + 0.529930i −0.944252 0.329224i \(-0.893213\pi\)
−0.511718 + 0.859153i \(0.670991\pi\)
\(642\) 0 0
\(643\) −7.98104 + 6.69688i −0.314741 + 0.264099i −0.786448 0.617656i \(-0.788082\pi\)
0.471707 + 0.881755i \(0.343638\pi\)
\(644\) −20.2842 7.38284i −0.799309 0.290925i
\(645\) 0 0
\(646\) −0.113710 + 0.644883i −0.00447387 + 0.0253726i
\(647\) −39.1517 −1.53921 −0.769606 0.638519i \(-0.779547\pi\)
−0.769606 + 0.638519i \(0.779547\pi\)
\(648\) 0 0
\(649\) −1.49518 −0.0586910
\(650\) −0.931268 + 5.28148i −0.0365273 + 0.207157i
\(651\) 0 0
\(652\) 6.54214 + 2.38114i 0.256210 + 0.0932528i
\(653\) 25.2104 21.1541i 0.986561 0.827823i 0.00149448 0.999999i \(-0.499524\pi\)
0.985066 + 0.172176i \(0.0550798\pi\)
\(654\) 0 0
\(655\) 36.7587 13.3791i 1.43628 0.522764i
\(656\) 2.71152 4.69649i 0.105867 0.183367i
\(657\) 0 0
\(658\) −10.8834 18.8506i −0.424279 0.734873i
\(659\) −16.5224 13.8639i −0.643620 0.540061i 0.261508 0.965201i \(-0.415780\pi\)
−0.905128 + 0.425140i \(0.860225\pi\)
\(660\) 0 0
\(661\) 4.56632 + 25.8969i 0.177609 + 1.00727i 0.935089 + 0.354413i \(0.115319\pi\)
−0.757480 + 0.652859i \(0.773570\pi\)
\(662\) 1.98946 + 11.2828i 0.0773227 + 0.438519i
\(663\) 0 0
\(664\) −5.68093 4.76687i −0.220463 0.184990i
\(665\) −9.10043 15.7624i −0.352900 0.611240i
\(666\) 0 0
\(667\) −1.18764 + 2.05705i −0.0459855 + 0.0796493i
\(668\) 11.3550 4.13289i 0.439339 0.159906i
\(669\) 0 0
\(670\) 3.05654 2.56475i 0.118085 0.0990848i
\(671\) −2.78485 1.01360i −0.107508 0.0391296i
\(672\) 0 0
\(673\) 2.00079 11.3471i 0.0771250 0.437397i −0.921655 0.388011i \(-0.873162\pi\)
0.998780 0.0493865i \(-0.0157266\pi\)
\(674\) −28.6293 −1.10276
\(675\) 0 0
\(676\) 8.38635 0.322552
\(677\) −5.89102 + 33.4096i −0.226410 + 1.28404i 0.633561 + 0.773693i \(0.281593\pi\)
−0.859971 + 0.510343i \(0.829518\pi\)
\(678\) 0 0
\(679\) 33.1330 + 12.0594i 1.27153 + 0.462798i
\(680\) 1.66314 1.39554i 0.0637785 0.0535165i
\(681\) 0 0
\(682\) −0.521061 + 0.189651i −0.0199524 + 0.00726209i
\(683\) −18.3777 + 31.8310i −0.703201 + 1.21798i 0.264135 + 0.964486i \(0.414913\pi\)
−0.967337 + 0.253495i \(0.918420\pi\)
\(684\) 0 0
\(685\) −27.0661 46.8799i −1.03414 1.79119i
\(686\) 12.1869 + 10.2260i 0.465296 + 0.390430i
\(687\) 0 0
\(688\) 0.0252642 + 0.143280i 0.000963189 + 0.00546252i
\(689\) 2.46348 + 13.9711i 0.0938513 + 0.532257i
\(690\) 0 0
\(691\) 10.2482 + 8.59929i 0.389861 + 0.327132i 0.816559 0.577262i \(-0.195879\pi\)
−0.426698 + 0.904394i \(0.640323\pi\)
\(692\) −4.62331 8.00781i −0.175752 0.304411i
\(693\) 0 0
\(694\) −7.79146 + 13.4952i −0.295760 + 0.512271i
\(695\) −46.2820 + 16.8453i −1.75558 + 0.638978i
\(696\) 0 0
\(697\) 2.18393 1.83254i 0.0827223 0.0694123i
\(698\) −6.04111 2.19878i −0.228659 0.0832252i
\(699\) 0 0
\(700\) −1.43530 + 8.13998i −0.0542492 + 0.307662i
\(701\) 5.00452 0.189018 0.0945091 0.995524i \(-0.469872\pi\)
0.0945091 + 0.995524i \(0.469872\pi\)
\(702\) 0 0
\(703\) 19.4720 0.734400
\(704\) −0.154493 + 0.876171i −0.00582266 + 0.0330219i
\(705\) 0 0
\(706\) 6.59328 + 2.39976i 0.248141 + 0.0903160i
\(707\) 7.29274 6.11934i 0.274272 0.230141i
\(708\) 0 0
\(709\) −16.1100 + 5.86354i −0.605022 + 0.220210i −0.626324 0.779563i \(-0.715441\pi\)
0.0213017 + 0.999773i \(0.493219\pi\)
\(710\) 0.408315 0.707223i 0.0153238 0.0265416i
\(711\) 0 0
\(712\) −14.0623 24.3566i −0.527006 0.912800i
\(713\) −14.1722 11.8919i −0.530754 0.445356i
\(714\) 0 0
\(715\) 0.312007 + 1.76948i 0.0116684 + 0.0661747i
\(716\) 4.32522 + 24.5295i 0.161641 + 0.916711i
\(717\) 0 0
\(718\) 5.08268 + 4.26488i 0.189684 + 0.159164i
\(719\) 21.6760 + 37.5439i 0.808377 + 1.40015i 0.913987 + 0.405742i \(0.132987\pi\)
−0.105610 + 0.994408i \(0.533680\pi\)
\(720\) 0 0
\(721\) 7.03467 12.1844i 0.261985 0.453771i
\(722\) −8.46976 + 3.08274i −0.315212 + 0.114728i
\(723\) 0 0
\(724\) −11.7781 + 9.88298i −0.437729 + 0.367298i
\(725\) 0.854673 + 0.311075i 0.0317417 + 0.0115530i
\(726\) 0 0
\(727\) −6.31105 + 35.7918i −0.234064 + 1.32744i 0.610512 + 0.792007i \(0.290964\pi\)
−0.844576 + 0.535436i \(0.820147\pi\)
\(728\) 16.7075 0.619220
\(729\) 0 0
\(730\) 11.0794 0.410067
\(731\) −0.0132815 + 0.0753233i −0.000491235 + 0.00278593i
\(732\) 0 0
\(733\) −3.64188 1.32554i −0.134516 0.0489598i 0.273885 0.961762i \(-0.411691\pi\)
−0.408401 + 0.912803i \(0.633913\pi\)
\(734\) 9.08719 7.62506i 0.335414 0.281446i
\(735\) 0 0
\(736\) −36.6474 + 13.3386i −1.35084 + 0.491667i
\(737\) 0.226432 0.392191i 0.00834071 0.0144465i
\(738\) 0 0
\(739\) −13.2241 22.9048i −0.486456 0.842567i 0.513422 0.858136i \(-0.328377\pi\)
−0.999879 + 0.0155689i \(0.995044\pi\)
\(740\) −19.9960 16.7787i −0.735069 0.616796i
\(741\) 0 0
\(742\) −1.79679 10.1901i −0.0659621 0.374090i
\(743\) −2.33789 13.2588i −0.0857688 0.486419i −0.997188 0.0749400i \(-0.976123\pi\)
0.911419 0.411479i \(-0.134988\pi\)
\(744\) 0 0
\(745\) −34.3138 28.7927i −1.25716 1.05488i
\(746\) 10.2329 + 17.7238i 0.374651 + 0.648915i
\(747\) 0 0
\(748\) 0.0498160 0.0862839i 0.00182145 0.00315485i
\(749\) 0.578427 0.210530i 0.0211352 0.00769260i
\(750\) 0 0
\(751\) 2.88669 2.42222i 0.105337 0.0883880i −0.588598 0.808426i \(-0.700320\pi\)
0.693935 + 0.720038i \(0.255876\pi\)
\(752\) 5.99166 + 2.18079i 0.218493 + 0.0795250i
\(753\) 0 0
\(754\) 0.129079 0.732046i 0.00470079 0.0266595i
\(755\) −39.2536 −1.42859
\(756\) 0 0
\(757\) −33.7073 −1.22511 −0.612556 0.790427i \(-0.709859\pi\)
−0.612556 + 0.790427i \(0.709859\pi\)
\(758\) −2.80099 + 15.8852i −0.101737 + 0.576976i
\(759\) 0 0
\(760\) −19.3651 7.04833i −0.702447 0.255670i
\(761\) −7.39649 + 6.20639i −0.268122 + 0.224981i −0.766929 0.641732i \(-0.778216\pi\)
0.498807 + 0.866713i \(0.333772\pi\)
\(762\) 0 0
\(763\) 19.1139 6.95691i 0.691971 0.251857i
\(764\) 4.65533 8.06327i 0.168424 0.291719i
\(765\) 0 0
\(766\) −9.56272 16.5631i −0.345515 0.598450i
\(767\) 11.9592 + 10.0350i 0.431822 + 0.362342i
\(768\) 0 0
\(769\) 6.72210 + 38.1229i 0.242405 + 1.37475i 0.826443 + 0.563021i \(0.190361\pi\)
−0.584038 + 0.811726i \(0.698528\pi\)
\(770\) −0.227568 1.29060i −0.00820097 0.0465100i
\(771\) 0 0
\(772\) −21.2282 17.8126i −0.764021 0.641090i
\(773\) −12.1519 21.0478i −0.437075 0.757036i 0.560387 0.828231i \(-0.310652\pi\)
−0.997462 + 0.0711944i \(0.977319\pi\)
\(774\) 0 0
\(775\) −3.54205 + 6.13500i −0.127234 + 0.220376i
\(776\) 37.5148 13.6543i 1.34670 0.490160i
\(777\) 0 0
\(778\) −23.3158 + 19.5643i −0.835912 + 0.701414i
\(779\) −25.4291 9.25543i −0.911091 0.331610i
\(780\) 0 0
\(781\) 0.0160948 0.0912782i 0.000575918 0.00326619i
\(782\) −1.57311 −0.0562544
\(783\) 0 0
\(784\) −0.753755 −0.0269198
\(785\) −0.364506 + 2.06721i −0.0130098 + 0.0737820i
\(786\) 0 0
\(787\) −19.6777 7.16211i −0.701436 0.255302i −0.0334119 0.999442i \(-0.510637\pi\)
−0.668024 + 0.744140i \(0.732860\pi\)
\(788\) −3.15700 + 2.64904i −0.112463 + 0.0943680i
\(789\) 0 0
\(790\) −1.66276 + 0.605197i −0.0591585 + 0.0215319i
\(791\) 3.70688 6.42051i 0.131802 0.228287i
\(792\) 0 0
\(793\) 15.4718 + 26.7979i 0.549419 + 0.951621i
\(794\) −12.4946 10.4842i −0.443416 0.372070i
\(795\) 0 0
\(796\) 0.533348 + 3.02477i 0.0189040 + 0.107210i
\(797\) 2.07280 + 11.7554i 0.0734222 + 0.416398i 0.999260 + 0.0384758i \(0.0122503\pi\)
−0.925837 + 0.377922i \(0.876639\pi\)
\(798\) 0 0
\(799\) 2.56778 + 2.15462i 0.0908414 + 0.0762250i
\(800\) 7.46668 + 12.9327i 0.263987 + 0.457239i
\(801\) 0 0
\(802\) 2.78329 4.82080i 0.0982814 0.170228i
\(803\) 1.18166 0.430089i 0.0416999 0.0151775i
\(804\) 0 0
\(805\) 33.4947 28.1054i 1.18053 0.990585i
\(806\) 5.44055 + 1.98020i 0.191635 + 0.0697495i
\(807\) 0 0
\(808\) 1.87176 10.6153i 0.0658482 0.373444i
\(809\) 8.60808 0.302644 0.151322 0.988485i \(-0.451647\pi\)
0.151322 + 0.988485i \(0.451647\pi\)
\(810\) 0 0
\(811\) 1.53770 0.0539958 0.0269979 0.999635i \(-0.491405\pi\)
0.0269979 + 0.999635i \(0.491405\pi\)
\(812\) 0.198941 1.12825i 0.00698146 0.0395939i
\(813\) 0 0
\(814\) 1.31748 + 0.479524i 0.0461777 + 0.0168073i
\(815\) −10.8028 + 9.06466i −0.378407 + 0.317521i
\(816\) 0 0
\(817\) 0.682218 0.248307i 0.0238678 0.00868716i
\(818\) −4.37071 + 7.57029i −0.152818 + 0.264689i
\(819\) 0 0
\(820\) 18.1382 + 31.4163i 0.633413 + 1.09710i
\(821\) 22.1971 + 18.6256i 0.774684 + 0.650037i 0.941904 0.335882i \(-0.109034\pi\)
−0.167220 + 0.985920i \(0.553479\pi\)
\(822\) 0 0
\(823\) −1.95472 11.0858i −0.0681372 0.386425i −0.999737 0.0229391i \(-0.992698\pi\)
0.931600 0.363486i \(-0.118414\pi\)
\(824\) −2.76622 15.6880i −0.0963657 0.546517i
\(825\) 0 0
\(826\) −8.72266 7.31918i −0.303500 0.254667i
\(827\) −15.4640 26.7844i −0.537734 0.931383i −0.999026 0.0441346i \(-0.985947\pi\)
0.461291 0.887249i \(-0.347386\pi\)
\(828\) 0 0
\(829\) 4.91762 8.51757i 0.170796 0.295827i −0.767902 0.640567i \(-0.778699\pi\)
0.938698 + 0.344739i \(0.112033\pi\)
\(830\) 5.70737 2.07731i 0.198106 0.0721045i
\(831\) 0 0
\(832\) 7.11616 5.97117i 0.246709 0.207013i
\(833\) −0.372356 0.135526i −0.0129014 0.00469571i
\(834\) 0 0
\(835\) −4.25033 + 24.1048i −0.147089 + 0.834182i
\(836\) −0.945711 −0.0327081
\(837\) 0 0
\(838\) 8.07072 0.278798
\(839\) −2.28229 + 12.9435i −0.0787935 + 0.446860i 0.919731 + 0.392550i \(0.128407\pi\)
−0.998524 + 0.0543102i \(0.982704\pi\)
\(840\) 0 0
\(841\) 27.1326 + 9.87547i 0.935608 + 0.340533i
\(842\) 1.90806 1.60105i 0.0657561 0.0551759i
\(843\) 0 0
\(844\) 32.4417 11.8078i 1.11669 0.406441i
\(845\) −8.49363 + 14.7114i −0.292190 + 0.506088i
\(846\) 0 0
\(847\) 12.9982 + 22.5136i 0.446624 + 0.773575i
\(848\) 2.32192 + 1.94832i 0.0797350 + 0.0669056i
\(849\) 0 0
\(850\) 0.104600 + 0.593214i 0.00358774 + 0.0203471i
\(851\) 8.12290 + 46.0672i 0.278449 + 1.57916i
\(852\) 0 0
\(853\) 11.8295 + 9.92614i 0.405035 + 0.339864i 0.822436 0.568858i \(-0.192615\pi\)
−0.417401 + 0.908722i \(0.637059\pi\)
\(854\) −11.2846 19.5455i −0.386151 0.668834i
\(855\) 0 0
\(856\) 0.348478 0.603581i 0.0119107 0.0206300i
\(857\) −20.6570 + 7.51854i −0.705630 + 0.256828i −0.669813 0.742530i \(-0.733626\pi\)
−0.0358174 + 0.999358i \(0.511403\pi\)
\(858\) 0 0
\(859\) 14.9889 12.5772i 0.511416 0.429129i −0.350211 0.936671i \(-0.613890\pi\)
0.861627 + 0.507542i \(0.169446\pi\)
\(860\) −0.914540 0.332865i −0.0311855 0.0113506i
\(861\) 0 0
\(862\) 3.90689 22.1571i 0.133069 0.754674i
\(863\) 21.8676 0.744383 0.372191 0.928156i \(-0.378607\pi\)
0.372191 + 0.928156i \(0.378607\pi\)
\(864\) 0 0
\(865\) 18.7298 0.636833
\(866\) −2.71758 + 15.4121i −0.0923470 + 0.523726i
\(867\) 0 0
\(868\) 8.38514 + 3.05194i 0.284610 + 0.103590i
\(869\) −0.153847 + 0.129093i −0.00521890 + 0.00437918i
\(870\) 0 0
\(871\) −4.44332 + 1.61724i −0.150556 + 0.0547979i
\(872\) 11.5153 19.9452i 0.389959 0.675428i
\(873\) 0 0
\(874\) 7.46602 + 12.9315i 0.252542 + 0.437416i
\(875\) 12.2085 + 10.2441i 0.412721 + 0.346314i
\(876\) 0 0
\(877\) −6.78962 38.5059i −0.229269 1.30025i −0.854353 0.519693i \(-0.826046\pi\)
0.625084 0.780558i \(-0.285065\pi\)
\(878\) −2.03620 11.5479i −0.0687184 0.389721i
\(879\) 0 0
\(880\) 0.294077 + 0.246760i 0.00991334 + 0.00831828i
\(881\) 3.65254 + 6.32639i 0.123057 + 0.213141i 0.920972 0.389629i \(-0.127397\pi\)
−0.797915 + 0.602771i \(0.794063\pi\)
\(882\) 0 0
\(883\) 1.74646 3.02496i 0.0587732 0.101798i −0.835142 0.550035i \(-0.814614\pi\)
0.893915 + 0.448237i \(0.147948\pi\)
\(884\) −0.977551 + 0.355799i −0.0328786 + 0.0119668i
\(885\) 0 0
\(886\) −11.2706 + 9.45720i −0.378645 + 0.317721i
\(887\) −26.7073 9.72065i −0.896742 0.326388i −0.147796 0.989018i \(-0.547218\pi\)
−0.748947 + 0.662630i \(0.769440\pi\)
\(888\) 0 0
\(889\) −7.61679 + 43.1970i −0.255459 + 1.44878i
\(890\) 23.0340 0.772102
\(891\) 0 0
\(892\) 5.20125 0.174151
\(893\) 5.52501 31.3339i 0.184887 1.04855i
\(894\) 0 0
\(895\) −47.4104 17.2560i −1.58476 0.576804i
\(896\) 16.0385 13.4579i 0.535808 0.449596i
\(897\) 0 0
\(898\) 10.4387 3.79939i 0.348345 0.126787i
\(899\) 0.490949 0.850349i 0.0163741 0.0283607i
\(900\) 0 0
\(901\) 0.796719 + 1.37996i 0.0265426 + 0.0459731i
\(902\) −1.49261 1.25245i −0.0496986 0.0417021i
\(903\) 0 0
\(904\) −1.45764 8.26671i −0.0484805 0.274947i
\(905\) −5.40805 30.6706i −0.179770 1.01952i
\(906\) 0 0
\(907\) 40.6897 + 34.1427i 1.35108 + 1.13369i 0.978628 + 0.205640i \(0.0659277\pi\)
0.372453 + 0.928051i \(0.378517\pi\)
\(908\) 1.70780 + 2.95799i 0.0566753 + 0.0981644i
\(909\) 0 0
\(910\) −6.84171 + 11.8502i −0.226801 + 0.392830i
\(911\) 7.58885 2.76212i 0.251430 0.0915130i −0.213231 0.977002i \(-0.568399\pi\)
0.464661 + 0.885489i \(0.346176\pi\)
\(912\) 0 0
\(913\) 0.528073 0.443106i 0.0174767 0.0146647i
\(914\) 13.2924 + 4.83803i 0.439673 + 0.160028i
\(915\) 0 0
\(916\) 3.75756 21.3102i 0.124153 0.704108i
\(917\) 33.8116 1.11656
\(918\) 0 0
\(919\) −47.9961 −1.58325 −0.791623 0.611009i \(-0.790764\pi\)
−0.791623 + 0.611009i \(0.790764\pi\)
\(920\) 8.59676 48.7547i 0.283427 1.60739i
\(921\) 0 0
\(922\) 19.3103 + 7.02837i 0.635950 + 0.231467i
\(923\) −0.741351 + 0.622068i −0.0244019 + 0.0204756i
\(924\) 0 0
\(925\) 16.8316 6.12622i 0.553421 0.201429i
\(926\) 7.35298 12.7357i 0.241634 0.418522i
\(927\) 0 0
\(928\) −1.03493 1.79255i −0.0339732 0.0588433i
\(929\) −22.2106 18.6369i −0.728707 0.611458i 0.201071 0.979577i \(-0.435558\pi\)
−0.929779 + 0.368118i \(0.880002\pi\)
\(930\) 0 0
\(931\) 0.653134 + 3.70411i 0.0214056 + 0.121397i
\(932\) −6.63087 37.6055i −0.217201 1.23181i
\(933\) 0 0
\(934\) 9.98486 + 8.37829i 0.326715 + 0.274146i
\(935\) 0.100907 + 0.174775i 0.00330000 + 0.00571576i
\(936\) 0 0
\(937\) −2.51425 + 4.35481i −0.0821369 + 0.142265i −0.904168 0.427178i \(-0.859508\pi\)
0.822031 + 0.569443i \(0.192841\pi\)
\(938\) 3.24081 1.17956i 0.105816 0.0385140i
\(939\) 0 0
\(940\) −32.6735 + 27.4164i −1.06569 + 0.894223i
\(941\) 52.4734 + 19.0988i 1.71059 + 0.622602i 0.996959 0.0779249i \(-0.0248294\pi\)
0.713626 + 0.700527i \(0.247052\pi\)
\(942\) 0 0
\(943\) 11.2887 64.0216i 0.367612 2.08483i
\(944\) 3.33551 0.108561
\(945\) 0 0
\(946\) 0.0522740 0.00169957
\(947\) 7.38515 41.8833i 0.239985 1.36102i −0.591872 0.806032i \(-0.701611\pi\)
0.831857 0.554991i \(-0.187278\pi\)
\(948\) 0 0
\(949\) −12.3381 4.49069i −0.400510 0.145774i
\(950\) 4.37999 3.67525i 0.142106 0.119241i
\(951\) 0 0
\(952\) 1.76340 0.641826i 0.0571522 0.0208017i
\(953\) −10.9074 + 18.8922i −0.353325 + 0.611977i −0.986830 0.161762i \(-0.948282\pi\)
0.633505 + 0.773739i \(0.281616\pi\)
\(954\) 0 0
\(955\) 9.42977 + 16.3328i 0.305140 + 0.528518i
\(956\) 15.2932 + 12.8326i 0.494619 + 0.415035i
\(957\) 0 0
\(958\) 1.31831 + 7.47649i 0.0425926 + 0.241555i
\(959\) −8.12489 46.0785i −0.262366 1.48795i
\(960\) 0 0
\(961\) −17.8888 15.0105i −0.577059 0.484210i
\(962\) −7.31954 12.6778i −0.235991 0.408749i
\(963\) 0 0
\(964\) 5.73088 9.92618i 0.184579 0.319701i
\(965\) 52.7468 19.1983i 1.69798 0.618014i
\(966\) 0 0
\(967\) 3.54570 2.97520i 0.114022 0.0956759i −0.583994 0.811758i \(-0.698511\pi\)
0.698016 + 0.716082i \(0.254066\pi\)
\(968\) 27.6593 + 10.0672i 0.889005 + 0.323571i
\(969\) 0 0
\(970\) −5.67769 + 32.1998i −0.182300 + 1.03387i
\(971\) −21.6509 −0.694809 −0.347405 0.937715i \(-0.612937\pi\)
−0.347405 + 0.937715i \(0.612937\pi\)
\(972\) 0 0
\(973\) −42.5714 −1.36478
\(974\) 0.0650773 0.369072i 0.00208521 0.0118258i
\(975\) 0 0
\(976\) 6.21254 + 2.26118i 0.198859 + 0.0723786i
\(977\) −16.9180 + 14.1958i −0.541253 + 0.454165i −0.871966 0.489566i \(-0.837155\pi\)
0.330713 + 0.943731i \(0.392711\pi\)
\(978\) 0 0
\(979\) 2.45666 0.894152i 0.0785153 0.0285772i
\(980\) 2.52105 4.36659i 0.0805320 0.139485i
\(981\) 0 0
\(982\) 10.0379 + 17.3862i 0.320323 + 0.554815i
\(983\) −10.6197 8.91100i −0.338716 0.284217i 0.457524 0.889197i \(-0.348736\pi\)
−0.796240 + 0.604981i \(0.793181\pi\)
\(984\) 0 0
\(985\) −1.44958 8.22095i −0.0461873 0.261941i
\(986\) −0.0144981 0.0822230i −0.000461715 0.00261852i
\(987\) 0 0
\(988\) 7.56427 + 6.34718i 0.240652 + 0.201931i
\(989\) 0.872042 + 1.51042i 0.0277293 + 0.0480286i
\(990\) 0 0
\(991\) −17.4112 + 30.1570i −0.553084 + 0.957970i 0.444966 + 0.895548i \(0.353216\pi\)
−0.998050 + 0.0624224i \(0.980117\pi\)
\(992\) 15.1494 5.51394i 0.480995 0.175068i
\(993\) 0 0
\(994\) 0.540718 0.453716i 0.0171505 0.0143910i
\(995\) −5.84624 2.12786i −0.185338 0.0674576i
\(996\) 0 0
\(997\) −4.29775 + 24.3738i −0.136111 + 0.771924i 0.837968 + 0.545719i \(0.183743\pi\)
−0.974080 + 0.226206i \(0.927368\pi\)
\(998\) 11.2488 0.356073
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.e.c.217.1 12
3.2 odd 2 243.2.e.b.217.2 12
9.2 odd 6 81.2.e.a.19.1 12
9.4 even 3 243.2.e.d.136.1 12
9.5 odd 6 243.2.e.a.136.2 12
9.7 even 3 27.2.e.a.7.2 yes 12
27.2 odd 18 729.2.c.b.487.3 12
27.4 even 9 243.2.e.d.109.1 12
27.5 odd 18 81.2.e.a.64.1 12
27.7 even 9 729.2.c.e.244.4 12
27.11 odd 18 729.2.a.d.1.4 6
27.13 even 9 inner 243.2.e.c.28.1 12
27.14 odd 18 243.2.e.b.28.2 12
27.16 even 9 729.2.a.a.1.3 6
27.20 odd 18 729.2.c.b.244.3 12
27.22 even 9 27.2.e.a.4.2 12
27.23 odd 18 243.2.e.a.109.2 12
27.25 even 9 729.2.c.e.487.4 12
36.7 odd 6 432.2.u.c.385.2 12
45.7 odd 12 675.2.u.b.574.3 24
45.34 even 6 675.2.l.c.601.1 12
45.43 odd 12 675.2.u.b.574.2 24
108.103 odd 18 432.2.u.c.193.2 12
135.22 odd 36 675.2.u.b.274.2 24
135.49 even 18 675.2.l.c.301.1 12
135.103 odd 36 675.2.u.b.274.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.4.2 12 27.22 even 9
27.2.e.a.7.2 yes 12 9.7 even 3
81.2.e.a.19.1 12 9.2 odd 6
81.2.e.a.64.1 12 27.5 odd 18
243.2.e.a.109.2 12 27.23 odd 18
243.2.e.a.136.2 12 9.5 odd 6
243.2.e.b.28.2 12 27.14 odd 18
243.2.e.b.217.2 12 3.2 odd 2
243.2.e.c.28.1 12 27.13 even 9 inner
243.2.e.c.217.1 12 1.1 even 1 trivial
243.2.e.d.109.1 12 27.4 even 9
243.2.e.d.136.1 12 9.4 even 3
432.2.u.c.193.2 12 108.103 odd 18
432.2.u.c.385.2 12 36.7 odd 6
675.2.l.c.301.1 12 135.49 even 18
675.2.l.c.601.1 12 45.34 even 6
675.2.u.b.274.2 24 135.22 odd 36
675.2.u.b.274.3 24 135.103 odd 36
675.2.u.b.574.2 24 45.43 odd 12
675.2.u.b.574.3 24 45.7 odd 12
729.2.a.a.1.3 6 27.16 even 9
729.2.a.d.1.4 6 27.11 odd 18
729.2.c.b.244.3 12 27.20 odd 18
729.2.c.b.487.3 12 27.2 odd 18
729.2.c.e.244.4 12 27.7 even 9
729.2.c.e.487.4 12 27.25 even 9