Properties

Label 243.2.e.c.28.2
Level $243$
Weight $2$
Character 243.28
Analytic conductor $1.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(28,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 28.2
Root \(0.500000 + 0.0126039i\) of defining polynomial
Character \(\chi\) \(=\) 243.28
Dual form 243.2.e.c.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.291887 + 1.65538i) q^{2} +(-0.775684 + 0.282326i) q^{4} +(-0.865281 - 0.726057i) q^{5} +(3.67319 + 1.33693i) q^{7} +(0.987144 + 1.70978i) q^{8} +(0.949332 - 1.64429i) q^{10} +(-1.43285 + 1.20231i) q^{11} +(-0.127214 + 0.721468i) q^{13} +(-1.14097 + 6.47073i) q^{14} +(-3.80689 + 3.19436i) q^{16} +(-0.944822 + 1.63648i) q^{17} +(-1.37143 - 2.37538i) q^{19} +(0.876169 + 0.318900i) q^{20} +(-2.40850 - 2.02097i) q^{22} +(5.47625 - 1.99319i) q^{23} +(-0.646688 - 3.66755i) q^{25} -1.23143 q^{26} -3.22668 q^{28} +(-0.923797 - 5.23911i) q^{29} +(-1.25975 + 0.458512i) q^{31} +(-3.37426 - 2.83134i) q^{32} +(-2.98477 - 1.08637i) q^{34} +(-2.20765 - 3.82376i) q^{35} +(-1.69806 + 2.94112i) q^{37} +(3.53185 - 2.96357i) q^{38} +(0.387244 - 2.19617i) q^{40} +(0.311930 - 1.76904i) q^{41} +(3.85332 - 3.23332i) q^{43} +(0.771999 - 1.33714i) q^{44} +(4.89793 + 8.48346i) q^{46} +(-1.60563 - 0.584402i) q^{47} +(6.34260 + 5.32207i) q^{49} +(5.88242 - 2.14102i) q^{50} +(-0.105011 - 0.595547i) q^{52} +2.84494 q^{53} +2.11276 q^{55} +(1.34010 + 7.60010i) q^{56} +(8.40305 - 3.05846i) q^{58} +(-8.62570 - 7.23782i) q^{59} +(-4.91543 - 1.78907i) q^{61} +(-1.12672 - 1.95153i) q^{62} +(-1.26751 + 2.19540i) q^{64} +(0.633903 - 0.531908i) q^{65} +(-0.328026 + 1.86033i) q^{67} +(0.270863 - 1.53614i) q^{68} +(5.68538 - 4.77060i) q^{70} +(6.09193 - 10.5515i) q^{71} +(-4.94384 - 8.56298i) q^{73} +(-5.36430 - 1.95245i) q^{74} +(1.73443 + 1.45536i) q^{76} +(-6.87053 + 2.50067i) q^{77} +(2.14505 + 12.1652i) q^{79} +5.61331 q^{80} +3.01948 q^{82} +(-2.02876 - 11.5057i) q^{83} +(2.00571 - 0.730020i) q^{85} +(6.47709 + 5.43493i) q^{86} +(-3.47012 - 1.26302i) q^{88} +(2.86437 + 4.96123i) q^{89} +(-1.43183 + 2.48001i) q^{91} +(-3.68511 + 3.09217i) q^{92} +(0.498741 - 2.82850i) q^{94} +(-0.537993 + 3.05111i) q^{95} +(-0.263043 + 0.220719i) q^{97} +(-6.95870 + 12.0528i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{4} - 3 q^{5} + 3 q^{7} + 6 q^{8} - 3 q^{10} + 3 q^{11} + 3 q^{13} + 6 q^{14} - 9 q^{16} + 9 q^{17} - 3 q^{19} - 21 q^{20} - 15 q^{22} + 24 q^{23} - 15 q^{25} - 30 q^{26} - 12 q^{28}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.291887 + 1.65538i 0.206396 + 1.17053i 0.895229 + 0.445607i \(0.147012\pi\)
−0.688833 + 0.724920i \(0.741877\pi\)
\(3\) 0 0
\(4\) −0.775684 + 0.282326i −0.387842 + 0.141163i
\(5\) −0.865281 0.726057i −0.386965 0.324703i 0.428464 0.903559i \(-0.359055\pi\)
−0.815430 + 0.578856i \(0.803499\pi\)
\(6\) 0 0
\(7\) 3.67319 + 1.33693i 1.38833 + 0.505312i 0.924694 0.380712i \(-0.124321\pi\)
0.463640 + 0.886024i \(0.346543\pi\)
\(8\) 0.987144 + 1.70978i 0.349008 + 0.604500i
\(9\) 0 0
\(10\) 0.949332 1.64429i 0.300205 0.519971i
\(11\) −1.43285 + 1.20231i −0.432021 + 0.362509i −0.832714 0.553704i \(-0.813214\pi\)
0.400693 + 0.916213i \(0.368770\pi\)
\(12\) 0 0
\(13\) −0.127214 + 0.721468i −0.0352829 + 0.200099i −0.997354 0.0727001i \(-0.976838\pi\)
0.962071 + 0.272799i \(0.0879495\pi\)
\(14\) −1.14097 + 6.47073i −0.304936 + 1.72938i
\(15\) 0 0
\(16\) −3.80689 + 3.19436i −0.951722 + 0.798589i
\(17\) −0.944822 + 1.63648i −0.229153 + 0.396905i −0.957557 0.288243i \(-0.906929\pi\)
0.728404 + 0.685147i \(0.240262\pi\)
\(18\) 0 0
\(19\) −1.37143 2.37538i −0.314627 0.544950i 0.664731 0.747083i \(-0.268546\pi\)
−0.979358 + 0.202133i \(0.935213\pi\)
\(20\) 0.876169 + 0.318900i 0.195917 + 0.0713081i
\(21\) 0 0
\(22\) −2.40850 2.02097i −0.513494 0.430872i
\(23\) 5.47625 1.99319i 1.14188 0.415609i 0.299286 0.954164i \(-0.403252\pi\)
0.842591 + 0.538555i \(0.181029\pi\)
\(24\) 0 0
\(25\) −0.646688 3.66755i −0.129338 0.733510i
\(26\) −1.23143 −0.241504
\(27\) 0 0
\(28\) −3.22668 −0.609786
\(29\) −0.923797 5.23911i −0.171545 0.972879i −0.942057 0.335453i \(-0.891110\pi\)
0.770512 0.637426i \(-0.220001\pi\)
\(30\) 0 0
\(31\) −1.25975 + 0.458512i −0.226258 + 0.0823513i −0.452662 0.891682i \(-0.649525\pi\)
0.226403 + 0.974034i \(0.427303\pi\)
\(32\) −3.37426 2.83134i −0.596490 0.500514i
\(33\) 0 0
\(34\) −2.98477 1.08637i −0.511884 0.186310i
\(35\) −2.20765 3.82376i −0.373161 0.646334i
\(36\) 0 0
\(37\) −1.69806 + 2.94112i −0.279159 + 0.483517i −0.971176 0.238364i \(-0.923389\pi\)
0.692017 + 0.721881i \(0.256722\pi\)
\(38\) 3.53185 2.96357i 0.572941 0.480755i
\(39\) 0 0
\(40\) 0.387244 2.19617i 0.0612286 0.347245i
\(41\) 0.311930 1.76904i 0.0487153 0.276278i −0.950714 0.310070i \(-0.899647\pi\)
0.999429 + 0.0337924i \(0.0107585\pi\)
\(42\) 0 0
\(43\) 3.85332 3.23332i 0.587626 0.493077i −0.299816 0.953997i \(-0.596925\pi\)
0.887441 + 0.460921i \(0.152481\pi\)
\(44\) 0.771999 1.33714i 0.116383 0.201582i
\(45\) 0 0
\(46\) 4.89793 + 8.48346i 0.722160 + 1.25082i
\(47\) −1.60563 0.584402i −0.234205 0.0852438i 0.222251 0.974989i \(-0.428659\pi\)
−0.456457 + 0.889746i \(0.650882\pi\)
\(48\) 0 0
\(49\) 6.34260 + 5.32207i 0.906086 + 0.760296i
\(50\) 5.88242 2.14102i 0.831899 0.302787i
\(51\) 0 0
\(52\) −0.105011 0.595547i −0.0145624 0.0825875i
\(53\) 2.84494 0.390783 0.195391 0.980725i \(-0.437402\pi\)
0.195391 + 0.980725i \(0.437402\pi\)
\(54\) 0 0
\(55\) 2.11276 0.284885
\(56\) 1.34010 + 7.60010i 0.179079 + 1.01561i
\(57\) 0 0
\(58\) 8.40305 3.05846i 1.10338 0.401596i
\(59\) −8.62570 7.23782i −1.12297 0.942284i −0.124219 0.992255i \(-0.539643\pi\)
−0.998751 + 0.0499712i \(0.984087\pi\)
\(60\) 0 0
\(61\) −4.91543 1.78907i −0.629357 0.229067i 0.00759462 0.999971i \(-0.497583\pi\)
−0.636951 + 0.770904i \(0.719805\pi\)
\(62\) −1.12672 1.95153i −0.143093 0.247844i
\(63\) 0 0
\(64\) −1.26751 + 2.19540i −0.158439 + 0.274425i
\(65\) 0.633903 0.531908i 0.0786260 0.0659750i
\(66\) 0 0
\(67\) −0.328026 + 1.86033i −0.0400748 + 0.227275i −0.998267 0.0588505i \(-0.981256\pi\)
0.958192 + 0.286126i \(0.0923676\pi\)
\(68\) 0.270863 1.53614i 0.0328469 0.186284i
\(69\) 0 0
\(70\) 5.68538 4.77060i 0.679533 0.570195i
\(71\) 6.09193 10.5515i 0.722980 1.25224i −0.236821 0.971553i \(-0.576105\pi\)
0.959800 0.280684i \(-0.0905613\pi\)
\(72\) 0 0
\(73\) −4.94384 8.56298i −0.578633 1.00222i −0.995637 0.0933164i \(-0.970253\pi\)
0.417004 0.908905i \(-0.363080\pi\)
\(74\) −5.36430 1.95245i −0.623587 0.226967i
\(75\) 0 0
\(76\) 1.73443 + 1.45536i 0.198952 + 0.166941i
\(77\) −6.87053 + 2.50067i −0.782970 + 0.284978i
\(78\) 0 0
\(79\) 2.14505 + 12.1652i 0.241337 + 1.36869i 0.828847 + 0.559475i \(0.188997\pi\)
−0.587509 + 0.809217i \(0.699892\pi\)
\(80\) 5.61331 0.627587
\(81\) 0 0
\(82\) 3.01948 0.333445
\(83\) −2.02876 11.5057i −0.222685 1.26291i −0.867061 0.498202i \(-0.833994\pi\)
0.644376 0.764709i \(-0.277117\pi\)
\(84\) 0 0
\(85\) 2.00571 0.730020i 0.217550 0.0791818i
\(86\) 6.47709 + 5.43493i 0.698443 + 0.586063i
\(87\) 0 0
\(88\) −3.47012 1.26302i −0.369916 0.134638i
\(89\) 2.86437 + 4.96123i 0.303622 + 0.525889i 0.976954 0.213452i \(-0.0684706\pi\)
−0.673331 + 0.739341i \(0.735137\pi\)
\(90\) 0 0
\(91\) −1.43183 + 2.48001i −0.150097 + 0.259976i
\(92\) −3.68511 + 3.09217i −0.384199 + 0.322381i
\(93\) 0 0
\(94\) 0.498741 2.82850i 0.0514412 0.291738i
\(95\) −0.537993 + 3.05111i −0.0551969 + 0.313037i
\(96\) 0 0
\(97\) −0.263043 + 0.220719i −0.0267080 + 0.0224107i −0.656044 0.754723i \(-0.727771\pi\)
0.629336 + 0.777133i \(0.283327\pi\)
\(98\) −6.95870 + 12.0528i −0.702935 + 1.21752i
\(99\) 0 0
\(100\) 1.53707 + 2.66228i 0.153707 + 0.266228i
\(101\) 16.3528 + 5.95192i 1.62716 + 0.592238i 0.984727 0.174103i \(-0.0557025\pi\)
0.642434 + 0.766341i \(0.277925\pi\)
\(102\) 0 0
\(103\) −12.1135 10.1644i −1.19357 1.00153i −0.999790 0.0204842i \(-0.993479\pi\)
−0.193785 0.981044i \(-0.562076\pi\)
\(104\) −1.35913 + 0.494684i −0.133274 + 0.0485078i
\(105\) 0 0
\(106\) 0.830403 + 4.70945i 0.0806558 + 0.457422i
\(107\) −16.5298 −1.59800 −0.798999 0.601332i \(-0.794637\pi\)
−0.798999 + 0.601332i \(0.794637\pi\)
\(108\) 0 0
\(109\) −4.71844 −0.451945 −0.225972 0.974134i \(-0.572556\pi\)
−0.225972 + 0.974134i \(0.572556\pi\)
\(110\) 0.616689 + 3.49741i 0.0587990 + 0.333465i
\(111\) 0 0
\(112\) −18.2540 + 6.64393i −1.72484 + 0.627792i
\(113\) 15.2786 + 12.8203i 1.43729 + 1.20603i 0.941241 + 0.337737i \(0.109661\pi\)
0.496051 + 0.868294i \(0.334783\pi\)
\(114\) 0 0
\(115\) −6.18566 2.25140i −0.576816 0.209944i
\(116\) 2.19571 + 3.80308i 0.203867 + 0.353108i
\(117\) 0 0
\(118\) 9.46357 16.3914i 0.871193 1.50895i
\(119\) −5.65836 + 4.74793i −0.518701 + 0.435242i
\(120\) 0 0
\(121\) −1.30260 + 7.38743i −0.118419 + 0.671585i
\(122\) 1.52683 8.65909i 0.138233 0.783957i
\(123\) 0 0
\(124\) 0.847720 0.711322i 0.0761275 0.0638786i
\(125\) −4.92714 + 8.53407i −0.440697 + 0.763310i
\(126\) 0 0
\(127\) −0.534728 0.926176i −0.0474495 0.0821849i 0.841325 0.540529i \(-0.181776\pi\)
−0.888775 + 0.458344i \(0.848443\pi\)
\(128\) −12.2825 4.47045i −1.08563 0.395136i
\(129\) 0 0
\(130\) 1.06554 + 0.894090i 0.0934536 + 0.0784169i
\(131\) −7.17953 + 2.61314i −0.627279 + 0.228311i −0.636046 0.771651i \(-0.719431\pi\)
0.00876780 + 0.999962i \(0.497209\pi\)
\(132\) 0 0
\(133\) −1.86179 10.5587i −0.161438 0.915558i
\(134\) −3.17529 −0.274303
\(135\) 0 0
\(136\) −3.73070 −0.319905
\(137\) 2.71768 + 15.4127i 0.232187 + 1.31680i 0.848457 + 0.529264i \(0.177532\pi\)
−0.616270 + 0.787535i \(0.711357\pi\)
\(138\) 0 0
\(139\) −8.13486 + 2.96085i −0.689990 + 0.251136i −0.663131 0.748504i \(-0.730773\pi\)
−0.0268588 + 0.999639i \(0.508550\pi\)
\(140\) 2.79199 + 2.34275i 0.235966 + 0.197999i
\(141\) 0 0
\(142\) 19.2449 + 7.00458i 1.61500 + 0.587811i
\(143\) −0.685146 1.18671i −0.0572948 0.0992375i
\(144\) 0 0
\(145\) −3.00455 + 5.20403i −0.249514 + 0.432172i
\(146\) 12.7319 10.6833i 1.05370 0.884159i
\(147\) 0 0
\(148\) 0.486801 2.76079i 0.0400148 0.226935i
\(149\) −0.427838 + 2.42639i −0.0350499 + 0.198778i −0.997305 0.0733727i \(-0.976624\pi\)
0.962255 + 0.272150i \(0.0877348\pi\)
\(150\) 0 0
\(151\) −8.05374 + 6.75789i −0.655404 + 0.549949i −0.908705 0.417438i \(-0.862928\pi\)
0.253301 + 0.967387i \(0.418484\pi\)
\(152\) 2.70760 4.68969i 0.219615 0.380384i
\(153\) 0 0
\(154\) −6.14497 10.6434i −0.495176 0.857669i
\(155\) 1.42295 + 0.517910i 0.114294 + 0.0415995i
\(156\) 0 0
\(157\) 0.275737 + 0.231371i 0.0220062 + 0.0184654i 0.653724 0.756733i \(-0.273206\pi\)
−0.631718 + 0.775198i \(0.717650\pi\)
\(158\) −19.5119 + 7.10174i −1.55228 + 0.564984i
\(159\) 0 0
\(160\) 0.863968 + 4.89980i 0.0683026 + 0.387364i
\(161\) 22.7800 1.79532
\(162\) 0 0
\(163\) 14.6186 1.14502 0.572508 0.819899i \(-0.305971\pi\)
0.572508 + 0.819899i \(0.305971\pi\)
\(164\) 0.257487 + 1.46028i 0.0201064 + 0.114029i
\(165\) 0 0
\(166\) 18.4540 6.71672i 1.43231 0.521319i
\(167\) 1.66680 + 1.39861i 0.128981 + 0.108228i 0.704996 0.709211i \(-0.250949\pi\)
−0.576015 + 0.817439i \(0.695393\pi\)
\(168\) 0 0
\(169\) 11.7117 + 4.26270i 0.900898 + 0.327900i
\(170\) 1.79390 + 3.10712i 0.137586 + 0.238306i
\(171\) 0 0
\(172\) −2.07611 + 3.59593i −0.158302 + 0.274187i
\(173\) −13.4571 + 11.2919i −1.02313 + 0.858505i −0.990017 0.140947i \(-0.954985\pi\)
−0.0331087 + 0.999452i \(0.510541\pi\)
\(174\) 0 0
\(175\) 2.52785 14.3362i 0.191088 1.08371i
\(176\) 1.61411 9.15408i 0.121668 0.690015i
\(177\) 0 0
\(178\) −7.37662 + 6.18972i −0.552901 + 0.463939i
\(179\) −0.502236 + 0.869898i −0.0375388 + 0.0650192i −0.884184 0.467138i \(-0.845285\pi\)
0.846646 + 0.532157i \(0.178618\pi\)
\(180\) 0 0
\(181\) 10.5866 + 18.3366i 0.786898 + 1.36295i 0.927859 + 0.372932i \(0.121647\pi\)
−0.140961 + 0.990015i \(0.545019\pi\)
\(182\) −4.52328 1.64634i −0.335288 0.122035i
\(183\) 0 0
\(184\) 8.81377 + 7.39563i 0.649760 + 0.545213i
\(185\) 3.60472 1.31201i 0.265024 0.0964609i
\(186\) 0 0
\(187\) −0.613759 3.48080i −0.0448825 0.254541i
\(188\) 1.41045 0.102868
\(189\) 0 0
\(190\) −5.20776 −0.377811
\(191\) −1.70668 9.67907i −0.123491 0.700353i −0.982193 0.187877i \(-0.939839\pi\)
0.858702 0.512476i \(-0.171272\pi\)
\(192\) 0 0
\(193\) 10.4833 3.81561i 0.754604 0.274653i 0.0640621 0.997946i \(-0.479594\pi\)
0.690542 + 0.723293i \(0.257372\pi\)
\(194\) −0.442152 0.371010i −0.0317447 0.0266370i
\(195\) 0 0
\(196\) −6.42241 2.33757i −0.458744 0.166969i
\(197\) −4.54497 7.87212i −0.323816 0.560865i 0.657456 0.753493i \(-0.271632\pi\)
−0.981272 + 0.192628i \(0.938299\pi\)
\(198\) 0 0
\(199\) 7.34694 12.7253i 0.520811 0.902071i −0.478896 0.877872i \(-0.658963\pi\)
0.999707 0.0241994i \(-0.00770367\pi\)
\(200\) 5.63235 4.72610i 0.398267 0.334186i
\(201\) 0 0
\(202\) −5.07950 + 28.8073i −0.357392 + 2.02687i
\(203\) 3.61105 20.4793i 0.253446 1.43736i
\(204\) 0 0
\(205\) −1.55433 + 1.30424i −0.108559 + 0.0910920i
\(206\) 13.2901 23.0192i 0.925968 1.60382i
\(207\) 0 0
\(208\) −1.82034 3.15292i −0.126218 0.218615i
\(209\) 4.82099 + 1.75470i 0.333475 + 0.121375i
\(210\) 0 0
\(211\) 6.01981 + 5.05122i 0.414421 + 0.347740i 0.826036 0.563618i \(-0.190591\pi\)
−0.411615 + 0.911358i \(0.635035\pi\)
\(212\) −2.20678 + 0.803201i −0.151562 + 0.0551641i
\(213\) 0 0
\(214\) −4.82485 27.3631i −0.329820 1.87050i
\(215\) −5.68178 −0.387494
\(216\) 0 0
\(217\) −5.24030 −0.355735
\(218\) −1.37725 7.81079i −0.0932793 0.529013i
\(219\) 0 0
\(220\) −1.63884 + 0.596488i −0.110490 + 0.0402152i
\(221\) −1.06047 0.889842i −0.0713351 0.0598573i
\(222\) 0 0
\(223\) 8.21375 + 2.98956i 0.550033 + 0.200196i 0.602061 0.798450i \(-0.294346\pi\)
−0.0520281 + 0.998646i \(0.516569\pi\)
\(224\) −8.60897 14.9112i −0.575211 0.996295i
\(225\) 0 0
\(226\) −16.7627 + 29.0339i −1.11504 + 1.93131i
\(227\) 3.11659 2.61513i 0.206855 0.173572i −0.533474 0.845816i \(-0.679114\pi\)
0.740330 + 0.672244i \(0.234669\pi\)
\(228\) 0 0
\(229\) 2.80544 15.9104i 0.185389 1.05139i −0.740067 0.672534i \(-0.765206\pi\)
0.925455 0.378857i \(-0.123683\pi\)
\(230\) 1.92139 10.8967i 0.126693 0.718510i
\(231\) 0 0
\(232\) 8.04583 6.75126i 0.528235 0.443242i
\(233\) −8.60658 + 14.9070i −0.563836 + 0.976592i 0.433321 + 0.901240i \(0.357342\pi\)
−0.997157 + 0.0753527i \(0.975992\pi\)
\(234\) 0 0
\(235\) 0.965013 + 1.67145i 0.0629505 + 0.109034i
\(236\) 8.73424 + 3.17900i 0.568550 + 0.206935i
\(237\) 0 0
\(238\) −9.51121 7.98086i −0.616520 0.517322i
\(239\) 1.44284 0.525151i 0.0933296 0.0339692i −0.294933 0.955518i \(-0.595297\pi\)
0.388263 + 0.921549i \(0.373075\pi\)
\(240\) 0 0
\(241\) −0.958828 5.43779i −0.0617636 0.350279i −0.999991 0.00425921i \(-0.998644\pi\)
0.938227 0.346019i \(-0.112467\pi\)
\(242\) −12.6092 −0.810549
\(243\) 0 0
\(244\) 4.31792 0.276427
\(245\) −1.62400 9.21018i −0.103754 0.588417i
\(246\) 0 0
\(247\) 1.88823 0.687259i 0.120145 0.0437292i
\(248\) −2.02752 1.70129i −0.128747 0.108032i
\(249\) 0 0
\(250\) −15.5653 5.66529i −0.984433 0.358304i
\(251\) 10.7204 + 18.5683i 0.676668 + 1.17202i 0.975978 + 0.217868i \(0.0699102\pi\)
−0.299310 + 0.954156i \(0.596756\pi\)
\(252\) 0 0
\(253\) −5.45023 + 9.44007i −0.342653 + 0.593492i
\(254\) 1.37709 1.15552i 0.0864063 0.0725035i
\(255\) 0 0
\(256\) 2.93477 16.6439i 0.183423 1.04024i
\(257\) −2.56764 + 14.5618i −0.160165 + 0.908342i 0.793745 + 0.608250i \(0.208128\pi\)
−0.953910 + 0.300092i \(0.902983\pi\)
\(258\) 0 0
\(259\) −10.1693 + 8.53310i −0.631893 + 0.530221i
\(260\) −0.341537 + 0.591560i −0.0211812 + 0.0366870i
\(261\) 0 0
\(262\) −6.42133 11.1221i −0.396711 0.687124i
\(263\) −2.63373 0.958600i −0.162403 0.0591098i 0.259539 0.965733i \(-0.416429\pi\)
−0.421942 + 0.906623i \(0.638651\pi\)
\(264\) 0 0
\(265\) −2.46167 2.06559i −0.151219 0.126888i
\(266\) 16.9352 6.16392i 1.03837 0.377934i
\(267\) 0 0
\(268\) −0.270774 1.53564i −0.0165402 0.0938040i
\(269\) −0.356528 −0.0217379 −0.0108689 0.999941i \(-0.503460\pi\)
−0.0108689 + 0.999941i \(0.503460\pi\)
\(270\) 0 0
\(271\) −12.1467 −0.737857 −0.368928 0.929458i \(-0.620275\pi\)
−0.368928 + 0.929458i \(0.620275\pi\)
\(272\) −1.63067 9.24799i −0.0988739 0.560742i
\(273\) 0 0
\(274\) −24.7206 + 8.99756i −1.49343 + 0.543563i
\(275\) 5.33613 + 4.47754i 0.321781 + 0.270006i
\(276\) 0 0
\(277\) −23.4829 8.54707i −1.41095 0.513544i −0.479541 0.877519i \(-0.659197\pi\)
−0.931408 + 0.363976i \(0.881419\pi\)
\(278\) −7.27577 12.6020i −0.436372 0.755818i
\(279\) 0 0
\(280\) 4.35854 7.54921i 0.260473 0.451152i
\(281\) 5.60964 4.70705i 0.334643 0.280799i −0.459945 0.887947i \(-0.652131\pi\)
0.794589 + 0.607148i \(0.207687\pi\)
\(282\) 0 0
\(283\) −2.49847 + 14.1695i −0.148518 + 0.842289i 0.815956 + 0.578114i \(0.196211\pi\)
−0.964475 + 0.264176i \(0.914900\pi\)
\(284\) −1.74644 + 9.90457i −0.103632 + 0.587728i
\(285\) 0 0
\(286\) 1.76446 1.48056i 0.104335 0.0875473i
\(287\) 3.51086 6.08099i 0.207240 0.358950i
\(288\) 0 0
\(289\) 6.71462 + 11.6301i 0.394978 + 0.684122i
\(290\) −9.49162 3.45467i −0.557367 0.202865i
\(291\) 0 0
\(292\) 6.25241 + 5.24639i 0.365895 + 0.307022i
\(293\) 13.5461 4.93039i 0.791374 0.288037i 0.0854672 0.996341i \(-0.472762\pi\)
0.705907 + 0.708304i \(0.250540\pi\)
\(294\) 0 0
\(295\) 2.20858 + 12.5255i 0.128589 + 0.729262i
\(296\) −6.70491 −0.389715
\(297\) 0 0
\(298\) −4.14147 −0.239909
\(299\) 0.741367 + 4.20450i 0.0428743 + 0.243152i
\(300\) 0 0
\(301\) 18.4767 6.72496i 1.06498 0.387620i
\(302\) −13.5376 11.3594i −0.779003 0.653661i
\(303\) 0 0
\(304\) 12.8087 + 4.66198i 0.734629 + 0.267383i
\(305\) 2.95426 + 5.11693i 0.169161 + 0.292995i
\(306\) 0 0
\(307\) 15.2163 26.3554i 0.868440 1.50418i 0.00484869 0.999988i \(-0.498457\pi\)
0.863591 0.504193i \(-0.168210\pi\)
\(308\) 4.62336 3.87946i 0.263440 0.221053i
\(309\) 0 0
\(310\) −0.441996 + 2.50668i −0.0251037 + 0.142370i
\(311\) −2.43031 + 13.7830i −0.137810 + 0.781561i 0.835051 + 0.550172i \(0.185438\pi\)
−0.972861 + 0.231389i \(0.925673\pi\)
\(312\) 0 0
\(313\) 16.9201 14.1976i 0.956378 0.802497i −0.0239820 0.999712i \(-0.507634\pi\)
0.980360 + 0.197216i \(0.0631900\pi\)
\(314\) −0.302521 + 0.523982i −0.0170722 + 0.0295700i
\(315\) 0 0
\(316\) −5.09844 8.83075i −0.286810 0.496769i
\(317\) −16.3401 5.94729i −0.917749 0.334033i −0.160406 0.987051i \(-0.551280\pi\)
−0.757343 + 0.653018i \(0.773503\pi\)
\(318\) 0 0
\(319\) 7.62268 + 6.39619i 0.426788 + 0.358118i
\(320\) 2.69074 0.979350i 0.150417 0.0547473i
\(321\) 0 0
\(322\) 6.64920 + 37.7095i 0.370545 + 2.10147i
\(323\) 5.18302 0.288391
\(324\) 0 0
\(325\) 2.72829 0.151338
\(326\) 4.26698 + 24.1992i 0.236326 + 1.34027i
\(327\) 0 0
\(328\) 3.33260 1.21297i 0.184012 0.0669749i
\(329\) −5.11648 4.29323i −0.282081 0.236694i
\(330\) 0 0
\(331\) −0.812033 0.295556i −0.0446334 0.0162452i 0.319607 0.947550i \(-0.396449\pi\)
−0.364240 + 0.931305i \(0.618671\pi\)
\(332\) 4.82203 + 8.35199i 0.264643 + 0.458375i
\(333\) 0 0
\(334\) −1.82870 + 3.16741i −0.100062 + 0.173313i
\(335\) 1.63454 1.37154i 0.0893045 0.0749353i
\(336\) 0 0
\(337\) 0.0726768 0.412171i 0.00395896 0.0224524i −0.982764 0.184863i \(-0.940816\pi\)
0.986723 + 0.162411i \(0.0519269\pi\)
\(338\) −3.63788 + 20.6314i −0.197875 + 1.12220i
\(339\) 0 0
\(340\) −1.34970 + 1.13253i −0.0731976 + 0.0614200i
\(341\) 1.25377 2.17159i 0.0678953 0.117598i
\(342\) 0 0
\(343\) 2.50108 + 4.33199i 0.135046 + 0.233906i
\(344\) 9.33206 + 3.39659i 0.503151 + 0.183132i
\(345\) 0 0
\(346\) −22.6202 18.9806i −1.21607 1.02041i
\(347\) −21.9980 + 8.00660i −1.18091 + 0.429817i −0.856524 0.516107i \(-0.827381\pi\)
−0.324388 + 0.945924i \(0.605159\pi\)
\(348\) 0 0
\(349\) 3.67724 + 20.8547i 0.196838 + 1.11633i 0.909776 + 0.415099i \(0.136253\pi\)
−0.712938 + 0.701227i \(0.752636\pi\)
\(350\) 24.4696 1.30796
\(351\) 0 0
\(352\) 8.23894 0.439137
\(353\) 4.08845 + 23.1868i 0.217606 + 1.23411i 0.876326 + 0.481719i \(0.159987\pi\)
−0.658720 + 0.752389i \(0.728902\pi\)
\(354\) 0 0
\(355\) −12.9323 + 4.70696i −0.686373 + 0.249819i
\(356\) −3.62253 3.03966i −0.191994 0.161102i
\(357\) 0 0
\(358\) −1.58660 0.577476i −0.0838546 0.0305206i
\(359\) 5.23047 + 9.05943i 0.276053 + 0.478139i 0.970400 0.241502i \(-0.0776400\pi\)
−0.694347 + 0.719640i \(0.744307\pi\)
\(360\) 0 0
\(361\) 5.73837 9.93915i 0.302019 0.523113i
\(362\) −27.2638 + 22.8771i −1.43295 + 1.20239i
\(363\) 0 0
\(364\) 0.410480 2.32795i 0.0215150 0.122018i
\(365\) −1.93940 + 10.9989i −0.101513 + 0.575708i
\(366\) 0 0
\(367\) 16.2848 13.6646i 0.850059 0.713284i −0.109744 0.993960i \(-0.535003\pi\)
0.959803 + 0.280676i \(0.0905586\pi\)
\(368\) −14.4805 + 25.0809i −0.754848 + 1.30743i
\(369\) 0 0
\(370\) 3.22404 + 5.58420i 0.167610 + 0.290309i
\(371\) 10.4500 + 3.80349i 0.542537 + 0.197467i
\(372\) 0 0
\(373\) 1.76963 + 1.48489i 0.0916279 + 0.0768849i 0.687451 0.726231i \(-0.258730\pi\)
−0.595823 + 0.803116i \(0.703174\pi\)
\(374\) 5.58288 2.03200i 0.288684 0.105072i
\(375\) 0 0
\(376\) −0.585789 3.32217i −0.0302097 0.171328i
\(377\) 3.89737 0.200725
\(378\) 0 0
\(379\) 12.5539 0.644850 0.322425 0.946595i \(-0.395502\pi\)
0.322425 + 0.946595i \(0.395502\pi\)
\(380\) −0.444095 2.51859i −0.0227816 0.129201i
\(381\) 0 0
\(382\) 15.5243 5.65039i 0.794294 0.289099i
\(383\) −15.0562 12.6337i −0.769338 0.645551i 0.171201 0.985236i \(-0.445235\pi\)
−0.940539 + 0.339685i \(0.889680\pi\)
\(384\) 0 0
\(385\) 7.76057 + 2.82462i 0.395515 + 0.143956i
\(386\) 9.37620 + 16.2401i 0.477236 + 0.826597i
\(387\) 0 0
\(388\) 0.141724 0.245472i 0.00719492 0.0124620i
\(389\) −14.4343 + 12.1118i −0.731846 + 0.614092i −0.930634 0.365951i \(-0.880744\pi\)
0.198788 + 0.980042i \(0.436299\pi\)
\(390\) 0 0
\(391\) −1.91226 + 10.8450i −0.0967072 + 0.548454i
\(392\) −2.83854 + 16.0981i −0.143368 + 0.813079i
\(393\) 0 0
\(394\) 11.7047 9.82140i 0.589674 0.494795i
\(395\) 6.97656 12.0838i 0.351029 0.608000i
\(396\) 0 0
\(397\) −10.0589 17.4225i −0.504841 0.874410i −0.999984 0.00559897i \(-0.998218\pi\)
0.495143 0.868811i \(-0.335116\pi\)
\(398\) 23.2096 + 8.44760i 1.16339 + 0.423440i
\(399\) 0 0
\(400\) 14.1773 + 11.8962i 0.708867 + 0.594810i
\(401\) 28.9479 10.5362i 1.44559 0.526151i 0.504233 0.863568i \(-0.331775\pi\)
0.941355 + 0.337417i \(0.109553\pi\)
\(402\) 0 0
\(403\) −0.170544 0.967201i −0.00849538 0.0481797i
\(404\) −14.3650 −0.714684
\(405\) 0 0
\(406\) 34.9549 1.73478
\(407\) −1.10306 6.25577i −0.0546767 0.310087i
\(408\) 0 0
\(409\) −37.2983 + 13.5755i −1.84428 + 0.671265i −0.856349 + 0.516398i \(0.827273\pi\)
−0.987935 + 0.154867i \(0.950505\pi\)
\(410\) −2.61270 2.19231i −0.129032 0.108271i
\(411\) 0 0
\(412\) 12.2659 + 4.46442i 0.604297 + 0.219946i
\(413\) −22.0073 38.1178i −1.08291 1.87565i
\(414\) 0 0
\(415\) −6.59832 + 11.4286i −0.323899 + 0.561010i
\(416\) 2.47197 2.07423i 0.121198 0.101698i
\(417\) 0 0
\(418\) −1.49750 + 8.49272i −0.0732449 + 0.415393i
\(419\) 2.68132 15.2065i 0.130991 0.742888i −0.846576 0.532267i \(-0.821340\pi\)
0.977568 0.210621i \(-0.0675487\pi\)
\(420\) 0 0
\(421\) −13.8605 + 11.6304i −0.675521 + 0.566830i −0.914694 0.404148i \(-0.867568\pi\)
0.239173 + 0.970977i \(0.423124\pi\)
\(422\) −6.60456 + 11.4394i −0.321505 + 0.556863i
\(423\) 0 0
\(424\) 2.80837 + 4.86424i 0.136386 + 0.236228i
\(425\) 6.61288 + 2.40689i 0.320772 + 0.116751i
\(426\) 0 0
\(427\) −15.6634 13.1432i −0.758007 0.636043i
\(428\) 12.8219 4.66680i 0.619771 0.225578i
\(429\) 0 0
\(430\) −1.65844 9.40548i −0.0799771 0.453572i
\(431\) −28.9683 −1.39535 −0.697677 0.716412i \(-0.745783\pi\)
−0.697677 + 0.716412i \(0.745783\pi\)
\(432\) 0 0
\(433\) −37.5902 −1.80647 −0.903235 0.429146i \(-0.858815\pi\)
−0.903235 + 0.429146i \(0.858815\pi\)
\(434\) −1.52958 8.67467i −0.0734221 0.416398i
\(435\) 0 0
\(436\) 3.66002 1.33214i 0.175283 0.0637978i
\(437\) −12.2449 10.2747i −0.585752 0.491504i
\(438\) 0 0
\(439\) −9.64457 3.51034i −0.460310 0.167539i 0.101448 0.994841i \(-0.467653\pi\)
−0.561758 + 0.827302i \(0.689875\pi\)
\(440\) 2.08560 + 3.61237i 0.0994272 + 0.172213i
\(441\) 0 0
\(442\) 1.16348 2.01521i 0.0553413 0.0958540i
\(443\) 16.7829 14.0825i 0.797379 0.669080i −0.150181 0.988659i \(-0.547986\pi\)
0.947560 + 0.319578i \(0.103541\pi\)
\(444\) 0 0
\(445\) 1.12365 6.37255i 0.0532662 0.302088i
\(446\) −2.55135 + 14.4694i −0.120810 + 0.685148i
\(447\) 0 0
\(448\) −7.59091 + 6.36953i −0.358637 + 0.300932i
\(449\) −4.98565 + 8.63540i −0.235287 + 0.407530i −0.959356 0.282198i \(-0.908936\pi\)
0.724069 + 0.689728i \(0.242270\pi\)
\(450\) 0 0
\(451\) 1.67998 + 2.90981i 0.0791072 + 0.137018i
\(452\) −15.4709 5.63094i −0.727689 0.264857i
\(453\) 0 0
\(454\) 5.23871 + 4.39580i 0.245865 + 0.206305i
\(455\) 3.03957 1.10631i 0.142497 0.0518647i
\(456\) 0 0
\(457\) −1.32287 7.50236i −0.0618812 0.350946i −0.999989 0.00460343i \(-0.998535\pi\)
0.938108 0.346342i \(-0.112576\pi\)
\(458\) 27.1566 1.26894
\(459\) 0 0
\(460\) 5.43375 0.253350
\(461\) −3.95927 22.4541i −0.184402 1.04579i −0.926722 0.375748i \(-0.877386\pi\)
0.742320 0.670045i \(-0.233725\pi\)
\(462\) 0 0
\(463\) 8.26529 3.00832i 0.384120 0.139808i −0.142740 0.989760i \(-0.545591\pi\)
0.526860 + 0.849952i \(0.323369\pi\)
\(464\) 20.2524 + 16.9938i 0.940194 + 0.788916i
\(465\) 0 0
\(466\) −27.1889 9.89595i −1.25950 0.458421i
\(467\) 5.49878 + 9.52416i 0.254453 + 0.440726i 0.964747 0.263180i \(-0.0847713\pi\)
−0.710294 + 0.703905i \(0.751438\pi\)
\(468\) 0 0
\(469\) −3.69203 + 6.39479i −0.170482 + 0.295284i
\(470\) −2.48521 + 2.08533i −0.114634 + 0.0961893i
\(471\) 0 0
\(472\) 3.86030 21.8929i 0.177685 1.00770i
\(473\) −1.63380 + 9.26574i −0.0751222 + 0.426039i
\(474\) 0 0
\(475\) −7.82496 + 6.56592i −0.359034 + 0.301265i
\(476\) 3.04864 5.28040i 0.139734 0.242027i
\(477\) 0 0
\(478\) 1.29047 + 2.23516i 0.0590247 + 0.102234i
\(479\) −24.1431 8.78736i −1.10312 0.401505i −0.274658 0.961542i \(-0.588565\pi\)
−0.828467 + 0.560037i \(0.810787\pi\)
\(480\) 0 0
\(481\) −1.90591 1.59925i −0.0869019 0.0729193i
\(482\) 8.72171 3.17444i 0.397263 0.144592i
\(483\) 0 0
\(484\) −1.07525 6.09807i −0.0488752 0.277185i
\(485\) 0.387861 0.0176119
\(486\) 0 0
\(487\) −30.3800 −1.37665 −0.688325 0.725402i \(-0.741654\pi\)
−0.688325 + 0.725402i \(0.741654\pi\)
\(488\) −1.79332 10.1704i −0.0811796 0.460392i
\(489\) 0 0
\(490\) 14.7723 5.37667i 0.667343 0.242893i
\(491\) 6.67092 + 5.59757i 0.301055 + 0.252615i 0.780783 0.624802i \(-0.214820\pi\)
−0.479728 + 0.877417i \(0.659265\pi\)
\(492\) 0 0
\(493\) 9.44652 + 3.43825i 0.425450 + 0.154851i
\(494\) 1.68882 + 2.92512i 0.0759837 + 0.131608i
\(495\) 0 0
\(496\) 3.33108 5.76961i 0.149570 0.259063i
\(497\) 36.4835 30.6133i 1.63651 1.37319i
\(498\) 0 0
\(499\) 2.02048 11.4587i 0.0904491 0.512962i −0.905598 0.424137i \(-0.860578\pi\)
0.996047 0.0888254i \(-0.0283113\pi\)
\(500\) 1.41252 8.01080i 0.0631698 0.358254i
\(501\) 0 0
\(502\) −27.6084 + 23.1662i −1.23222 + 1.03396i
\(503\) 18.8996 32.7350i 0.842689 1.45958i −0.0449234 0.998990i \(-0.514304\pi\)
0.887613 0.460590i \(-0.152362\pi\)
\(504\) 0 0
\(505\) −9.82831 17.0231i −0.437354 0.757519i
\(506\) −17.2177 6.26673i −0.765421 0.278590i
\(507\) 0 0
\(508\) 0.676264 + 0.567453i 0.0300044 + 0.0251766i
\(509\) −22.1520 + 8.06266i −0.981869 + 0.357371i −0.782567 0.622567i \(-0.786090\pi\)
−0.199303 + 0.979938i \(0.563868\pi\)
\(510\) 0 0
\(511\) −6.71153 38.0630i −0.296901 1.68381i
\(512\) 2.26711 0.100193
\(513\) 0 0
\(514\) −24.8548 −1.09630
\(515\) 3.10161 + 17.5901i 0.136673 + 0.775114i
\(516\) 0 0
\(517\) 3.00326 1.09310i 0.132083 0.0480744i
\(518\) −17.0938 14.3434i −0.751058 0.630212i
\(519\) 0 0
\(520\) 1.53520 + 0.558768i 0.0673230 + 0.0245036i
\(521\) −3.93474 6.81517i −0.172384 0.298578i 0.766869 0.641804i \(-0.221814\pi\)
−0.939253 + 0.343226i \(0.888480\pi\)
\(522\) 0 0
\(523\) −16.6467 + 28.8330i −0.727911 + 1.26078i 0.229854 + 0.973225i \(0.426175\pi\)
−0.957765 + 0.287554i \(0.907158\pi\)
\(524\) 4.83129 4.05394i 0.211056 0.177097i
\(525\) 0 0
\(526\) 0.818090 4.63962i 0.0356704 0.202297i
\(527\) 0.439896 2.49477i 0.0191622 0.108674i
\(528\) 0 0
\(529\) 8.39744 7.04629i 0.365106 0.306360i
\(530\) 2.70080 4.67792i 0.117315 0.203196i
\(531\) 0 0
\(532\) 4.42516 + 7.66461i 0.191855 + 0.332303i
\(533\) 1.23663 + 0.450095i 0.0535642 + 0.0194958i
\(534\) 0 0
\(535\) 14.3029 + 12.0016i 0.618370 + 0.518874i
\(536\) −3.50457 + 1.27556i −0.151374 + 0.0550958i
\(537\) 0 0
\(538\) −0.104066 0.590187i −0.00448660 0.0254448i
\(539\) −15.4868 −0.667062
\(540\) 0 0
\(541\) 22.4283 0.964266 0.482133 0.876098i \(-0.339862\pi\)
0.482133 + 0.876098i \(0.339862\pi\)
\(542\) −3.54546 20.1073i −0.152290 0.863682i
\(543\) 0 0
\(544\) 7.82149 2.84679i 0.335344 0.122055i
\(545\) 4.08278 + 3.42586i 0.174887 + 0.146748i
\(546\) 0 0
\(547\) 19.6313 + 7.14519i 0.839372 + 0.305506i 0.725699 0.688012i \(-0.241516\pi\)
0.113673 + 0.993518i \(0.463739\pi\)
\(548\) −6.45948 11.1881i −0.275935 0.477934i
\(549\) 0 0
\(550\) −5.85447 + 10.1402i −0.249635 + 0.432381i
\(551\) −11.1780 + 9.37944i −0.476198 + 0.399578i
\(552\) 0 0
\(553\) −8.38485 + 47.5529i −0.356560 + 2.02215i
\(554\) 7.29425 41.3678i 0.309903 1.75755i
\(555\) 0 0
\(556\) 5.47416 4.59336i 0.232156 0.194802i
\(557\) −4.28920 + 7.42911i −0.181739 + 0.314782i −0.942473 0.334283i \(-0.891506\pi\)
0.760734 + 0.649064i \(0.224839\pi\)
\(558\) 0 0
\(559\) 1.84254 + 3.19137i 0.0779311 + 0.134981i
\(560\) 20.6187 + 7.50461i 0.871301 + 0.317128i
\(561\) 0 0
\(562\) 9.42932 + 7.91214i 0.397752 + 0.333753i
\(563\) 14.7672 5.37480i 0.622361 0.226521i −0.0115419 0.999933i \(-0.503674\pi\)
0.633903 + 0.773412i \(0.281452\pi\)
\(564\) 0 0
\(565\) −3.91204 22.1863i −0.164581 0.933384i
\(566\) −24.1851 −1.01658
\(567\) 0 0
\(568\) 24.0545 1.00930
\(569\) 2.20061 + 12.4803i 0.0922542 + 0.523200i 0.995554 + 0.0941902i \(0.0300262\pi\)
−0.903300 + 0.429009i \(0.858863\pi\)
\(570\) 0 0
\(571\) 24.7352 9.00289i 1.03514 0.376759i 0.232103 0.972691i \(-0.425439\pi\)
0.803035 + 0.595932i \(0.203217\pi\)
\(572\) 0.866495 + 0.727076i 0.0362300 + 0.0304006i
\(573\) 0 0
\(574\) 11.0911 + 4.03683i 0.462934 + 0.168494i
\(575\) −10.8516 18.7954i −0.452541 0.783824i
\(576\) 0 0
\(577\) 11.0577 19.1525i 0.460338 0.797329i −0.538640 0.842536i \(-0.681062\pi\)
0.998978 + 0.0452074i \(0.0143949\pi\)
\(578\) −17.2922 + 14.5099i −0.719261 + 0.603532i
\(579\) 0 0
\(580\) 0.861348 4.88495i 0.0357655 0.202836i
\(581\) 7.93027 44.9748i 0.329003 1.86587i
\(582\) 0 0
\(583\) −4.07638 + 3.42049i −0.168827 + 0.141662i
\(584\) 9.76057 16.9058i 0.403895 0.699567i
\(585\) 0 0
\(586\) 12.1156 + 20.9848i 0.500491 + 0.866876i
\(587\) −13.4405 4.89196i −0.554751 0.201913i 0.0494052 0.998779i \(-0.484267\pi\)
−0.604156 + 0.796866i \(0.706490\pi\)
\(588\) 0 0
\(589\) 2.81680 + 2.36358i 0.116064 + 0.0973895i
\(590\) −20.0897 + 7.31206i −0.827081 + 0.301033i
\(591\) 0 0
\(592\) −2.93068 16.6207i −0.120450 0.683107i
\(593\) 47.7300 1.96004 0.980018 0.198908i \(-0.0637397\pi\)
0.980018 + 0.198908i \(0.0637397\pi\)
\(594\) 0 0
\(595\) 8.34334 0.342044
\(596\) −0.353166 2.00290i −0.0144662 0.0820421i
\(597\) 0 0
\(598\) −6.74363 + 2.45448i −0.275768 + 0.100371i
\(599\) −0.382692 0.321117i −0.0156364 0.0131205i 0.634936 0.772565i \(-0.281026\pi\)
−0.650572 + 0.759444i \(0.725471\pi\)
\(600\) 0 0
\(601\) 15.9063 + 5.78940i 0.648830 + 0.236155i 0.645406 0.763839i \(-0.276688\pi\)
0.00342336 + 0.999994i \(0.498910\pi\)
\(602\) 16.5254 + 28.6229i 0.673527 + 1.16658i
\(603\) 0 0
\(604\) 4.33923 7.51577i 0.176561 0.305812i
\(605\) 6.49081 5.44644i 0.263889 0.221429i
\(606\) 0 0
\(607\) 0.120622 0.684080i 0.00489588 0.0277659i −0.982262 0.187514i \(-0.939957\pi\)
0.987158 + 0.159748i \(0.0510682\pi\)
\(608\) −2.09796 + 11.8981i −0.0850835 + 0.482533i
\(609\) 0 0
\(610\) −7.60813 + 6.38398i −0.308044 + 0.258480i
\(611\) 0.625887 1.08407i 0.0253207 0.0438567i
\(612\) 0 0
\(613\) 16.3317 + 28.2873i 0.659630 + 1.14251i 0.980711 + 0.195461i \(0.0626204\pi\)
−0.321081 + 0.947052i \(0.604046\pi\)
\(614\) 48.0695 + 17.4959i 1.93993 + 0.706076i
\(615\) 0 0
\(616\) −11.0578 9.27861i −0.445532 0.373846i
\(617\) −21.5043 + 7.82694i −0.865732 + 0.315101i −0.736437 0.676506i \(-0.763493\pi\)
−0.129294 + 0.991606i \(0.541271\pi\)
\(618\) 0 0
\(619\) 1.47353 + 8.35682i 0.0592263 + 0.335889i 0.999995 0.00316005i \(-0.00100588\pi\)
−0.940769 + 0.339049i \(0.889895\pi\)
\(620\) −1.24998 −0.0502002
\(621\) 0 0
\(622\) −23.5254 −0.943282
\(623\) 3.88853 + 22.0530i 0.155791 + 0.883534i
\(624\) 0 0
\(625\) −7.03811 + 2.56166i −0.281524 + 0.102466i
\(626\) 28.4411 + 23.8649i 1.13674 + 0.953835i
\(627\) 0 0
\(628\) −0.279206 0.101623i −0.0111415 0.00405519i
\(629\) −3.20872 5.55767i −0.127940 0.221599i
\(630\) 0 0
\(631\) −0.795865 + 1.37848i −0.0316829 + 0.0548763i −0.881432 0.472311i \(-0.843420\pi\)
0.849749 + 0.527187i \(0.176753\pi\)
\(632\) −18.6824 + 15.6764i −0.743146 + 0.623574i
\(633\) 0 0
\(634\) 5.07555 28.7849i 0.201576 1.14319i
\(635\) −0.209767 + 1.18965i −0.00832434 + 0.0472097i
\(636\) 0 0
\(637\) −4.64658 + 3.89894i −0.184104 + 0.154482i
\(638\) −8.36313 + 14.4854i −0.331099 + 0.573481i
\(639\) 0 0
\(640\) 7.38198 + 12.7860i 0.291798 + 0.505409i
\(641\) −20.3675 7.41317i −0.804469 0.292803i −0.0931317 0.995654i \(-0.529688\pi\)
−0.711337 + 0.702851i \(0.751910\pi\)
\(642\) 0 0
\(643\) −5.28729 4.43656i −0.208510 0.174961i 0.532552 0.846397i \(-0.321233\pi\)
−0.741062 + 0.671437i \(0.765678\pi\)
\(644\) −17.6701 + 6.43139i −0.696300 + 0.253432i
\(645\) 0 0
\(646\) 1.51286 + 8.57984i 0.0595226 + 0.337569i
\(647\) −6.18972 −0.243343 −0.121671 0.992570i \(-0.538825\pi\)
−0.121671 + 0.992570i \(0.538825\pi\)
\(648\) 0 0
\(649\) 21.0614 0.826733
\(650\) 0.796353 + 4.51634i 0.0312355 + 0.177146i
\(651\) 0 0
\(652\) −11.3394 + 4.12720i −0.444085 + 0.161634i
\(653\) −20.8475 17.4931i −0.815826 0.684559i 0.136165 0.990686i \(-0.456522\pi\)
−0.951991 + 0.306127i \(0.900967\pi\)
\(654\) 0 0
\(655\) 8.10960 + 2.95165i 0.316868 + 0.115331i
\(656\) 4.46347 + 7.73096i 0.174269 + 0.301843i
\(657\) 0 0
\(658\) 5.61348 9.72283i 0.218836 0.379035i
\(659\) 4.04624 3.39520i 0.157619 0.132258i −0.560567 0.828109i \(-0.689417\pi\)
0.718187 + 0.695851i \(0.244972\pi\)
\(660\) 0 0
\(661\) 2.02561 11.4878i 0.0787872 0.446824i −0.919738 0.392533i \(-0.871599\pi\)
0.998525 0.0542915i \(-0.0172900\pi\)
\(662\) 0.252234 1.43049i 0.00980334 0.0555975i
\(663\) 0 0
\(664\) 17.6695 14.8265i 0.685711 0.575380i
\(665\) −6.05527 + 10.4880i −0.234813 + 0.406708i
\(666\) 0 0
\(667\) −15.5015 26.8494i −0.600220 1.03961i
\(668\) −1.68777 0.614298i −0.0653018 0.0237679i
\(669\) 0 0
\(670\) 2.74752 + 2.30544i 0.106146 + 0.0890670i
\(671\) 9.19410 3.34638i 0.354934 0.129186i
\(672\) 0 0
\(673\) 8.52655 + 48.3564i 0.328674 + 1.86400i 0.482486 + 0.875904i \(0.339734\pi\)
−0.153811 + 0.988100i \(0.549155\pi\)
\(674\) 0.703510 0.0270982
\(675\) 0 0
\(676\) −10.2880 −0.395693
\(677\) −3.92776 22.2754i −0.150956 0.856114i −0.962390 0.271670i \(-0.912424\pi\)
0.811434 0.584443i \(-0.198687\pi\)
\(678\) 0 0
\(679\) −1.26129 + 0.459073i −0.0484040 + 0.0176176i
\(680\) 3.22811 + 2.70870i 0.123792 + 0.103874i
\(681\) 0 0
\(682\) 3.96075 + 1.44160i 0.151665 + 0.0552016i
\(683\) 8.56931 + 14.8425i 0.327896 + 0.567932i 0.982094 0.188391i \(-0.0603272\pi\)
−0.654198 + 0.756323i \(0.726994\pi\)
\(684\) 0 0
\(685\) 8.83897 15.3095i 0.337720 0.584947i
\(686\) −6.44104 + 5.40468i −0.245920 + 0.206352i
\(687\) 0 0
\(688\) −4.34078 + 24.6178i −0.165491 + 0.938544i
\(689\) −0.361917 + 2.05254i −0.0137880 + 0.0781954i
\(690\) 0 0
\(691\) 13.9848 11.7347i 0.532008 0.446408i −0.336786 0.941581i \(-0.609340\pi\)
0.868794 + 0.495173i \(0.164895\pi\)
\(692\) 7.25049 12.5582i 0.275622 0.477392i
\(693\) 0 0
\(694\) −19.6749 34.0779i −0.746848 1.29358i
\(695\) 9.18868 + 3.34441i 0.348546 + 0.126861i
\(696\) 0 0
\(697\) 2.60028 + 2.18190i 0.0984927 + 0.0826452i
\(698\) −33.4490 + 12.1744i −1.26606 + 0.460809i
\(699\) 0 0
\(700\) 2.08666 + 11.8340i 0.0788682 + 0.447284i
\(701\) −2.92075 −0.110315 −0.0551575 0.998478i \(-0.517566\pi\)
−0.0551575 + 0.998478i \(0.517566\pi\)
\(702\) 0 0
\(703\) 9.31505 0.351324
\(704\) −0.823381 4.66962i −0.0310323 0.175993i
\(705\) 0 0
\(706\) −37.1894 + 13.5358i −1.39964 + 0.509428i
\(707\) 52.1095 + 43.7250i 1.95978 + 1.64445i
\(708\) 0 0
\(709\) −28.2165 10.2700i −1.05969 0.385696i −0.247379 0.968919i \(-0.579569\pi\)
−0.812312 + 0.583223i \(0.801791\pi\)
\(710\) −11.5665 20.0338i −0.434084 0.751856i
\(711\) 0 0
\(712\) −5.65509 + 9.79490i −0.211933 + 0.367079i
\(713\) −5.98481 + 5.02185i −0.224133 + 0.188070i
\(714\) 0 0
\(715\) −0.268774 + 1.52429i −0.0100516 + 0.0570052i
\(716\) 0.143982 0.816560i 0.00538084 0.0305163i
\(717\) 0 0
\(718\) −13.4701 + 11.3027i −0.502698 + 0.421814i
\(719\) −20.0285 + 34.6903i −0.746936 + 1.29373i 0.202349 + 0.979314i \(0.435143\pi\)
−0.949285 + 0.314418i \(0.898191\pi\)
\(720\) 0 0
\(721\) −30.9059 53.5306i −1.15100 1.99358i
\(722\) 18.1280 + 6.59804i 0.674654 + 0.245554i
\(723\) 0 0
\(724\) −13.3888 11.2345i −0.497590 0.417527i
\(725\) −18.6173 + 6.77615i −0.691430 + 0.251660i
\(726\) 0 0
\(727\) −0.267206 1.51540i −0.00991014 0.0562032i 0.979452 0.201679i \(-0.0646398\pi\)
−0.989362 + 0.145476i \(0.953529\pi\)
\(728\) −5.65371 −0.209540
\(729\) 0 0
\(730\) −18.7734 −0.694834
\(731\) 1.65056 + 9.36079i 0.0610482 + 0.346221i
\(732\) 0 0
\(733\) 1.42072 0.517098i 0.0524753 0.0190995i −0.315649 0.948876i \(-0.602222\pi\)
0.368124 + 0.929777i \(0.380000\pi\)
\(734\) 27.3733 + 22.9689i 1.01037 + 0.847798i
\(735\) 0 0
\(736\) −24.1217 8.77956i −0.889136 0.323619i
\(737\) −1.76667 3.05997i −0.0650762 0.112715i
\(738\) 0 0
\(739\) −10.6779 + 18.4946i −0.392792 + 0.680336i −0.992817 0.119646i \(-0.961824\pi\)
0.600024 + 0.799982i \(0.295157\pi\)
\(740\) −2.42571 + 2.03541i −0.0891708 + 0.0748232i
\(741\) 0 0
\(742\) −3.24598 + 18.4089i −0.119164 + 0.675811i
\(743\) −3.53005 + 20.0199i −0.129505 + 0.734459i 0.849025 + 0.528353i \(0.177190\pi\)
−0.978530 + 0.206106i \(0.933921\pi\)
\(744\) 0 0
\(745\) 2.13190 1.78888i 0.0781067 0.0655393i
\(746\) −1.94153 + 3.36282i −0.0710843 + 0.123122i
\(747\) 0 0
\(748\) 1.45880 + 2.52672i 0.0533391 + 0.0923860i
\(749\) −60.7171 22.0992i −2.21855 0.807488i
\(750\) 0 0
\(751\) 3.26577 + 2.74030i 0.119170 + 0.0999951i 0.700425 0.713726i \(-0.252994\pi\)
−0.581255 + 0.813721i \(0.697438\pi\)
\(752\) 7.97925 2.90421i 0.290973 0.105906i
\(753\) 0 0
\(754\) 1.13759 + 6.45162i 0.0414287 + 0.234954i
\(755\) 11.8754 0.432189
\(756\) 0 0
\(757\) 54.3419 1.97509 0.987546 0.157332i \(-0.0502892\pi\)
0.987546 + 0.157332i \(0.0502892\pi\)
\(758\) 3.66432 + 20.7814i 0.133094 + 0.754814i
\(759\) 0 0
\(760\) −5.74781 + 2.09203i −0.208495 + 0.0758860i
\(761\) 13.9122 + 11.6737i 0.504318 + 0.423173i 0.859124 0.511767i \(-0.171009\pi\)
−0.354807 + 0.934940i \(0.615453\pi\)
\(762\) 0 0
\(763\) −17.3317 6.30823i −0.627450 0.228373i
\(764\) 4.05650 + 7.02606i 0.146759 + 0.254194i
\(765\) 0 0
\(766\) 16.5188 28.6113i 0.596847 1.03377i
\(767\) 6.31917 5.30241i 0.228172 0.191459i
\(768\) 0 0
\(769\) 4.31598 24.4771i 0.155638 0.882668i −0.802562 0.596569i \(-0.796530\pi\)
0.958200 0.286099i \(-0.0923586\pi\)
\(770\) −2.41059 + 13.6711i −0.0868716 + 0.492673i
\(771\) 0 0
\(772\) −7.05448 + 5.91941i −0.253896 + 0.213044i
\(773\) −19.2416 + 33.3274i −0.692071 + 1.19870i 0.279087 + 0.960266i \(0.409968\pi\)
−0.971158 + 0.238437i \(0.923365\pi\)
\(774\) 0 0
\(775\) 2.49629 + 4.32369i 0.0896692 + 0.155312i
\(776\) −0.637044 0.231865i −0.0228685 0.00832347i
\(777\) 0 0
\(778\) −24.2627 20.3588i −0.869861 0.729900i
\(779\) −4.62994 + 1.68516i −0.165885 + 0.0603772i
\(780\) 0 0
\(781\) 3.95734 + 22.4432i 0.141605 + 0.803080i
\(782\) −18.5107 −0.661940
\(783\) 0 0
\(784\) −41.1462 −1.46951
\(785\) −0.0706015 0.400401i −0.00251988 0.0142909i
\(786\) 0 0
\(787\) 1.00780 0.366809i 0.0359242 0.0130753i −0.323996 0.946059i \(-0.605026\pi\)
0.359920 + 0.932983i \(0.382804\pi\)
\(788\) 5.74796 + 4.82311i 0.204763 + 0.171816i
\(789\) 0 0
\(790\) 22.0395 + 8.02173i 0.784131 + 0.285400i
\(791\) 38.9814 + 67.5177i 1.38602 + 2.40065i
\(792\) 0 0
\(793\) 1.91607 3.31873i 0.0680417 0.117852i
\(794\) 25.9047 21.7366i 0.919324 0.771404i
\(795\) 0 0
\(796\) −2.10623 + 11.9450i −0.0746534 + 0.423380i
\(797\) 4.38413 24.8636i 0.155294 0.880716i −0.803223 0.595679i \(-0.796883\pi\)
0.958517 0.285037i \(-0.0920058\pi\)
\(798\) 0 0
\(799\) 2.47340 2.07543i 0.0875025 0.0734233i
\(800\) −8.20198 + 14.2063i −0.289984 + 0.502267i
\(801\) 0 0
\(802\) 25.8908 + 44.8442i 0.914237 + 1.58350i
\(803\) 17.3791 + 6.32548i 0.613296 + 0.223221i
\(804\) 0 0
\(805\) −19.7111 16.5396i −0.694726 0.582944i
\(806\) 1.55130 0.564627i 0.0546422 0.0198881i
\(807\) 0 0
\(808\) 5.96604 + 33.8351i 0.209885 + 1.19032i
\(809\) −11.7337 −0.412536 −0.206268 0.978495i \(-0.566132\pi\)
−0.206268 + 0.978495i \(0.566132\pi\)
\(810\) 0 0
\(811\) −38.4085 −1.34871 −0.674353 0.738409i \(-0.735577\pi\)
−0.674353 + 0.738409i \(0.735577\pi\)
\(812\) 2.98080 + 16.9050i 0.104606 + 0.593247i
\(813\) 0 0
\(814\) 10.0337 3.65196i 0.351680 0.128001i
\(815\) −12.6492 10.6139i −0.443081 0.371789i
\(816\) 0 0
\(817\) −12.9649 4.71885i −0.453585 0.165092i
\(818\) −33.3594 57.7802i −1.16639 2.02024i
\(819\) 0 0
\(820\) 0.837450 1.45051i 0.0292450 0.0506539i
\(821\) 20.4779 17.1830i 0.714685 0.599692i −0.211224 0.977438i \(-0.567745\pi\)
0.925909 + 0.377746i \(0.123301\pi\)
\(822\) 0 0
\(823\) 0.757847 4.29796i 0.0264169 0.149818i −0.968746 0.248054i \(-0.920209\pi\)
0.995163 + 0.0982363i \(0.0313201\pi\)
\(824\) 5.42120 30.7451i 0.188856 1.07106i
\(825\) 0 0
\(826\) 56.6756 47.5565i 1.97200 1.65470i
\(827\) 19.5727 33.9009i 0.680610 1.17885i −0.294185 0.955748i \(-0.595048\pi\)
0.974795 0.223102i \(-0.0716184\pi\)
\(828\) 0 0
\(829\) 16.4433 + 28.4807i 0.571101 + 0.989176i 0.996453 + 0.0841481i \(0.0268169\pi\)
−0.425352 + 0.905028i \(0.639850\pi\)
\(830\) −20.8446 7.58683i −0.723528 0.263343i
\(831\) 0 0
\(832\) −1.42267 1.19376i −0.0493220 0.0413861i
\(833\) −14.7021 + 5.35112i −0.509397 + 0.185405i
\(834\) 0 0
\(835\) −0.426778 2.42038i −0.0147693 0.0837606i
\(836\) −4.23496 −0.146469
\(837\) 0 0
\(838\) 25.9552 0.896607
\(839\) 5.49429 + 31.1596i 0.189684 + 1.07575i 0.919788 + 0.392415i \(0.128360\pi\)
−0.730105 + 0.683335i \(0.760529\pi\)
\(840\) 0 0
\(841\) 0.656177 0.238829i 0.0226268 0.00823548i
\(842\) −23.2983 19.5496i −0.802914 0.673725i
\(843\) 0 0
\(844\) −6.09556 2.21860i −0.209818 0.0763674i
\(845\) −7.03892 12.1918i −0.242146 0.419410i
\(846\) 0 0
\(847\) −14.6612 + 25.3939i −0.503764 + 0.872545i
\(848\) −10.8304 + 9.08776i −0.371917 + 0.312075i
\(849\) 0 0
\(850\) −2.05409 + 11.6493i −0.0704548 + 0.399569i
\(851\) −3.43676 + 19.4908i −0.117811 + 0.668138i
\(852\) 0 0
\(853\) −4.33401 + 3.63667i −0.148394 + 0.124517i −0.713962 0.700184i \(-0.753101\pi\)
0.565569 + 0.824701i \(0.308657\pi\)
\(854\) 17.1849 29.7652i 0.588057 1.01854i
\(855\) 0 0
\(856\) −16.3173 28.2624i −0.557715 0.965990i
\(857\) 38.7251 + 14.0948i 1.32282 + 0.481468i 0.904362 0.426766i \(-0.140347\pi\)
0.418461 + 0.908235i \(0.362570\pi\)
\(858\) 0 0
\(859\) 27.4661 + 23.0468i 0.937130 + 0.786346i 0.977084 0.212856i \(-0.0682765\pi\)
−0.0399533 + 0.999202i \(0.512721\pi\)
\(860\) 4.40727 1.60411i 0.150287 0.0546998i
\(861\) 0 0
\(862\) −8.45549 47.9534i −0.287995 1.63330i
\(863\) 20.9694 0.713806 0.356903 0.934142i \(-0.383833\pi\)
0.356903 + 0.934142i \(0.383833\pi\)
\(864\) 0 0
\(865\) 19.8427 0.674673
\(866\) −10.9721 62.2259i −0.372847 2.11452i
\(867\) 0 0
\(868\) 4.06482 1.47947i 0.137969 0.0502166i
\(869\) −17.6998 14.8519i −0.600426 0.503817i
\(870\) 0 0
\(871\) −1.30044 0.473321i −0.0440637 0.0160379i
\(872\) −4.65778 8.06751i −0.157732 0.273201i
\(873\) 0 0
\(874\) 13.4343 23.2689i 0.454422 0.787082i
\(875\) −29.5078 + 24.7600i −0.997545 + 0.837039i
\(876\) 0 0
\(877\) 3.56160 20.1988i 0.120267 0.682066i −0.863741 0.503937i \(-0.831884\pi\)
0.984007 0.178129i \(-0.0570044\pi\)
\(878\) 2.99580 16.9900i 0.101103 0.573385i
\(879\) 0 0
\(880\) −8.04305 + 6.74892i −0.271131 + 0.227506i
\(881\) 19.1438 33.1581i 0.644972 1.11712i −0.339336 0.940665i \(-0.610202\pi\)
0.984308 0.176459i \(-0.0564644\pi\)
\(882\) 0 0
\(883\) 8.72326 + 15.1091i 0.293561 + 0.508463i 0.974649 0.223739i \(-0.0718263\pi\)
−0.681088 + 0.732201i \(0.738493\pi\)
\(884\) 1.07382 + 0.390838i 0.0361164 + 0.0131453i
\(885\) 0 0
\(886\) 28.2106 + 23.6715i 0.947752 + 0.795259i
\(887\) 50.9472 18.5433i 1.71064 0.622622i 0.713675 0.700477i \(-0.247029\pi\)
0.996965 + 0.0778547i \(0.0248070\pi\)
\(888\) 0 0
\(889\) −0.725923 4.11691i −0.0243467 0.138077i
\(890\) 10.8769 0.364596
\(891\) 0 0
\(892\) −7.21530 −0.241586
\(893\) 0.813829 + 4.61546i 0.0272338 + 0.154450i
\(894\) 0 0
\(895\) 1.06617 0.388054i 0.0356381 0.0129712i
\(896\) −39.1391 32.8416i −1.30754 1.09716i
\(897\) 0 0
\(898\) −15.7501 5.73256i −0.525587 0.191298i
\(899\) 3.56595 + 6.17641i 0.118931 + 0.205995i
\(900\) 0 0
\(901\) −2.68796 + 4.65569i −0.0895491 + 0.155104i
\(902\) −4.32646 + 3.63033i −0.144056 + 0.120877i
\(903\) 0 0
\(904\) −6.83771 + 38.7786i −0.227419 + 1.28976i
\(905\) 4.15299 23.5528i 0.138050 0.782921i
\(906\) 0 0
\(907\) 21.9726 18.4372i 0.729587 0.612196i −0.200432 0.979708i \(-0.564235\pi\)
0.930019 + 0.367511i \(0.119790\pi\)
\(908\) −1.67917 + 2.90841i −0.0557252 + 0.0965188i
\(909\) 0 0
\(910\) 2.71857 + 4.70871i 0.0901198 + 0.156092i
\(911\) 26.6700 + 9.70708i 0.883616 + 0.321610i 0.743668 0.668549i \(-0.233084\pi\)
0.139948 + 0.990159i \(0.455307\pi\)
\(912\) 0 0
\(913\) 16.7402 + 14.0467i 0.554021 + 0.464879i
\(914\) 12.0331 4.37969i 0.398020 0.144867i
\(915\) 0 0
\(916\) 2.31579 + 13.1335i 0.0765159 + 0.433943i
\(917\) −29.8653 −0.986240
\(918\) 0 0
\(919\) 37.7786 1.24620 0.623101 0.782141i \(-0.285873\pi\)
0.623101 + 0.782141i \(0.285873\pi\)
\(920\) −2.25674 12.7986i −0.0744025 0.421957i
\(921\) 0 0
\(922\) 36.0144 13.1082i 1.18607 0.431694i
\(923\) 6.83762 + 5.73744i 0.225063 + 0.188850i
\(924\) 0 0
\(925\) 11.8848 + 4.32572i 0.390771 + 0.142229i
\(926\) 7.39243 + 12.8041i 0.242930 + 0.420768i
\(927\) 0 0
\(928\) −11.7166 + 20.2937i −0.384615 + 0.666173i
\(929\) −26.4874 + 22.2256i −0.869024 + 0.729198i −0.963892 0.266292i \(-0.914201\pi\)
0.0948685 + 0.995490i \(0.469757\pi\)
\(930\) 0 0
\(931\) 3.94354 22.3649i 0.129244 0.732982i
\(932\) 2.46735 13.9930i 0.0808206 0.458356i
\(933\) 0 0
\(934\) −14.1610 + 11.8825i −0.463363 + 0.388808i
\(935\) −1.99618 + 3.45749i −0.0652822 + 0.113072i
\(936\) 0 0
\(937\) 9.71839 + 16.8328i 0.317486 + 0.549902i 0.979963 0.199180i \(-0.0638280\pi\)
−0.662477 + 0.749082i \(0.730495\pi\)
\(938\) −11.6634 4.24514i −0.380825 0.138609i
\(939\) 0 0
\(940\) −1.22044 1.02407i −0.0398063 0.0334015i
\(941\) −9.33910 + 3.39915i −0.304446 + 0.110809i −0.489726 0.871877i \(-0.662903\pi\)
0.185280 + 0.982686i \(0.440681\pi\)
\(942\) 0 0
\(943\) −1.81783 10.3094i −0.0591968 0.335722i
\(944\) 55.9572 1.82125
\(945\) 0 0
\(946\) −15.8152 −0.514195
\(947\) 2.93651 + 16.6538i 0.0954239 + 0.541176i 0.994617 + 0.103623i \(0.0330435\pi\)
−0.899193 + 0.437553i \(0.855845\pi\)
\(948\) 0 0
\(949\) 6.80685 2.47749i 0.220960 0.0804227i
\(950\) −13.1531 11.0367i −0.426742 0.358079i
\(951\) 0 0
\(952\) −13.7036 4.98769i −0.444135 0.161652i
\(953\) −8.67866 15.0319i −0.281129 0.486930i 0.690534 0.723300i \(-0.257376\pi\)
−0.971663 + 0.236370i \(0.924042\pi\)
\(954\) 0 0
\(955\) −5.55079 + 9.61426i −0.179620 + 0.311110i
\(956\) −0.970925 + 0.814703i −0.0314020 + 0.0263494i
\(957\) 0 0
\(958\) 7.49932 42.5308i 0.242292 1.37411i
\(959\) −10.6232 + 60.2472i −0.343041 + 1.94548i
\(960\) 0 0
\(961\) −22.3706 + 18.7712i −0.721633 + 0.605522i
\(962\) 2.09104 3.62179i 0.0674179 0.116771i
\(963\) 0 0
\(964\) 2.27898 + 3.94730i 0.0734009 + 0.127134i
\(965\) −11.8413 4.30990i −0.381186 0.138740i
\(966\) 0 0
\(967\) −12.8568 10.7881i −0.413447 0.346923i 0.412217 0.911086i \(-0.364755\pi\)
−0.825664 + 0.564163i \(0.809199\pi\)
\(968\) −13.9168 + 5.06529i −0.447302 + 0.162805i
\(969\) 0 0
\(970\) 0.113212 + 0.642056i 0.00363501 + 0.0206152i
\(971\) −33.4811 −1.07446 −0.537230 0.843436i \(-0.680529\pi\)
−0.537230 + 0.843436i \(0.680529\pi\)
\(972\) 0 0
\(973\) −33.8393 −1.08484
\(974\) −8.86755 50.2904i −0.284135 1.61141i
\(975\) 0 0
\(976\) 24.4274 8.89086i 0.781903 0.284589i
\(977\) 17.4159 + 14.6137i 0.557184 + 0.467533i 0.877365 0.479824i \(-0.159299\pi\)
−0.320181 + 0.947356i \(0.603744\pi\)
\(978\) 0 0
\(979\) −10.0691 3.66486i −0.321811 0.117130i
\(980\) 3.85998 + 6.68569i 0.123303 + 0.213567i
\(981\) 0 0
\(982\) −7.31892 + 12.6767i −0.233556 + 0.404531i
\(983\) 36.1263 30.3136i 1.15225 0.966853i 0.152481 0.988306i \(-0.451274\pi\)
0.999770 + 0.0214531i \(0.00682926\pi\)
\(984\) 0 0
\(985\) −1.78293 + 10.1115i −0.0568089 + 0.322179i
\(986\) −2.93428 + 16.6411i −0.0934465 + 0.529961i
\(987\) 0 0
\(988\) −1.27064 + 1.06619i −0.0404244 + 0.0339201i
\(989\) 14.6571 25.3869i 0.466069 0.807255i
\(990\) 0 0
\(991\) 2.18837 + 3.79036i 0.0695158 + 0.120405i 0.898688 0.438588i \(-0.144521\pi\)
−0.829172 + 0.558993i \(0.811188\pi\)
\(992\) 5.54893 + 2.01965i 0.176179 + 0.0641238i
\(993\) 0 0
\(994\) 61.3255 + 51.4582i 1.94513 + 1.63216i
\(995\) −15.5964 + 5.67664i −0.494441 + 0.179962i
\(996\) 0 0
\(997\) −0.372389 2.11192i −0.0117937 0.0668852i 0.978343 0.206991i \(-0.0663670\pi\)
−0.990137 + 0.140105i \(0.955256\pi\)
\(998\) 19.5582 0.619104
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.e.c.28.2 12
3.2 odd 2 243.2.e.b.28.1 12
9.2 odd 6 243.2.e.a.109.1 12
9.4 even 3 27.2.e.a.4.1 12
9.5 odd 6 81.2.e.a.64.2 12
9.7 even 3 243.2.e.d.109.2 12
27.2 odd 18 243.2.e.b.217.1 12
27.4 even 9 729.2.c.e.487.1 12
27.5 odd 18 729.2.a.d.1.1 6
27.7 even 9 243.2.e.d.136.2 12
27.11 odd 18 81.2.e.a.19.2 12
27.13 even 9 729.2.c.e.244.1 12
27.14 odd 18 729.2.c.b.244.6 12
27.16 even 9 27.2.e.a.7.1 yes 12
27.20 odd 18 243.2.e.a.136.1 12
27.22 even 9 729.2.a.a.1.6 6
27.23 odd 18 729.2.c.b.487.6 12
27.25 even 9 inner 243.2.e.c.217.2 12
36.31 odd 6 432.2.u.c.193.1 12
45.4 even 6 675.2.l.c.301.2 12
45.13 odd 12 675.2.u.b.274.1 24
45.22 odd 12 675.2.u.b.274.4 24
108.43 odd 18 432.2.u.c.385.1 12
135.43 odd 36 675.2.u.b.574.4 24
135.97 odd 36 675.2.u.b.574.1 24
135.124 even 18 675.2.l.c.601.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.4.1 12 9.4 even 3
27.2.e.a.7.1 yes 12 27.16 even 9
81.2.e.a.19.2 12 27.11 odd 18
81.2.e.a.64.2 12 9.5 odd 6
243.2.e.a.109.1 12 9.2 odd 6
243.2.e.a.136.1 12 27.20 odd 18
243.2.e.b.28.1 12 3.2 odd 2
243.2.e.b.217.1 12 27.2 odd 18
243.2.e.c.28.2 12 1.1 even 1 trivial
243.2.e.c.217.2 12 27.25 even 9 inner
243.2.e.d.109.2 12 9.7 even 3
243.2.e.d.136.2 12 27.7 even 9
432.2.u.c.193.1 12 36.31 odd 6
432.2.u.c.385.1 12 108.43 odd 18
675.2.l.c.301.2 12 45.4 even 6
675.2.l.c.601.2 12 135.124 even 18
675.2.u.b.274.1 24 45.13 odd 12
675.2.u.b.274.4 24 45.22 odd 12
675.2.u.b.574.1 24 135.97 odd 36
675.2.u.b.574.4 24 135.43 odd 36
729.2.a.a.1.6 6 27.22 even 9
729.2.a.d.1.1 6 27.5 odd 18
729.2.c.b.244.6 12 27.14 odd 18
729.2.c.b.487.6 12 27.23 odd 18
729.2.c.e.244.1 12 27.13 even 9
729.2.c.e.487.1 12 27.4 even 9