Properties

Label 243.3.f.a.107.4
Level $243$
Weight $3$
Character 243.107
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,3,Mod(26,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.4
Character \(\chi\) \(=\) 243.107
Dual form 243.3.f.a.134.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.746252 - 0.889349i) q^{2} +(0.460544 + 2.61187i) q^{4} +(1.84110 - 5.05837i) q^{5} +(-1.82927 + 10.3743i) q^{7} +(6.68824 + 3.86146i) q^{8} +(-3.12473 - 5.41219i) q^{10} +(4.01667 + 11.0357i) q^{11} +(8.60488 - 7.22035i) q^{13} +(7.86129 + 9.36873i) q^{14} +(-1.54359 + 0.561820i) q^{16} +(-2.73630 + 1.57980i) q^{17} +(2.26051 - 3.91532i) q^{19} +(14.0597 + 2.47911i) q^{20} +(12.8121 + 4.66321i) q^{22} +(19.6052 - 3.45692i) q^{23} +(-3.04634 - 2.55619i) q^{25} -13.0409i q^{26} -27.9389 q^{28} +(16.3009 - 19.4267i) q^{29} +(3.84135 + 21.7854i) q^{31} +(-11.2178 + 30.8207i) q^{32} +(-0.636973 + 3.61245i) q^{34} +(49.1093 + 28.3533i) q^{35} +(-8.82807 - 15.2907i) q^{37} +(-1.79517 - 4.93220i) q^{38} +(31.8464 - 26.7223i) q^{40} +(-7.99934 - 9.53324i) q^{41} +(-34.2503 + 12.4661i) q^{43} +(-26.9741 + 15.5735i) q^{44} +(11.5560 - 20.0156i) q^{46} +(-12.2112 - 2.15316i) q^{47} +(-58.2355 - 21.1960i) q^{49} +(-4.54668 + 0.801703i) q^{50} +(22.8216 + 19.1496i) q^{52} -84.6210i q^{53} +63.2178 q^{55} +(-52.2946 + 62.3223i) q^{56} +(-5.11249 - 28.9944i) q^{58} +(23.3509 - 64.1562i) q^{59} +(13.5571 - 76.8859i) q^{61} +(22.2414 + 12.8411i) q^{62} +(15.7537 + 27.2863i) q^{64} +(-20.6808 - 56.8200i) q^{65} +(-74.4011 + 62.4300i) q^{67} +(-5.38643 - 6.41930i) q^{68} +(61.8639 - 22.5166i) q^{70} +(-105.364 + 60.8322i) q^{71} +(-45.5705 + 78.9304i) q^{73} +(-20.1867 - 3.55946i) q^{74} +(11.2674 + 4.10099i) q^{76} +(-121.836 + 21.4829i) q^{77} +(-15.6180 - 13.1051i) q^{79} +8.84240i q^{80} -14.4479 q^{82} +(20.3134 - 24.2086i) q^{83} +(2.95344 + 16.7498i) q^{85} +(-14.4727 + 39.7634i) q^{86} +(-15.7495 + 89.3198i) q^{88} +(-59.7756 - 34.5114i) q^{89} +(59.1656 + 102.478i) q^{91} +(18.0581 + 49.6142i) q^{92} +(-11.0276 + 9.25321i) q^{94} +(-15.6433 - 18.6430i) q^{95} +(74.9914 - 27.2946i) q^{97} +(-62.3089 + 35.9741i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} - 21 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} - 57 q^{11} + 3 q^{13} + 114 q^{14} + 27 q^{16} + 9 q^{17} - 3 q^{19} + 183 q^{20} + 75 q^{22} - 48 q^{23} + 21 q^{25} - 12 q^{28} + 78 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.746252 0.889349i 0.373126 0.444674i −0.546506 0.837455i \(-0.684042\pi\)
0.919632 + 0.392781i \(0.128487\pi\)
\(3\) 0 0
\(4\) 0.460544 + 2.61187i 0.115136 + 0.652969i
\(5\) 1.84110 5.05837i 0.368219 1.01167i −0.607819 0.794075i \(-0.707956\pi\)
0.976038 0.217598i \(-0.0698223\pi\)
\(6\) 0 0
\(7\) −1.82927 + 10.3743i −0.261325 + 1.48205i 0.517975 + 0.855396i \(0.326686\pi\)
−0.779300 + 0.626651i \(0.784425\pi\)
\(8\) 6.68824 + 3.86146i 0.836030 + 0.482682i
\(9\) 0 0
\(10\) −3.12473 5.41219i −0.312473 0.541219i
\(11\) 4.01667 + 11.0357i 0.365152 + 1.00325i 0.977180 + 0.212412i \(0.0681317\pi\)
−0.612028 + 0.790836i \(0.709646\pi\)
\(12\) 0 0
\(13\) 8.60488 7.22035i 0.661914 0.555412i −0.248746 0.968569i \(-0.580018\pi\)
0.910660 + 0.413157i \(0.135574\pi\)
\(14\) 7.86129 + 9.36873i 0.561521 + 0.669195i
\(15\) 0 0
\(16\) −1.54359 + 0.561820i −0.0964742 + 0.0351138i
\(17\) −2.73630 + 1.57980i −0.160959 + 0.0929296i −0.578316 0.815813i \(-0.696290\pi\)
0.417357 + 0.908743i \(0.362956\pi\)
\(18\) 0 0
\(19\) 2.26051 3.91532i 0.118974 0.206069i −0.800387 0.599483i \(-0.795373\pi\)
0.919361 + 0.393414i \(0.128706\pi\)
\(20\) 14.0597 + 2.47911i 0.702986 + 0.123955i
\(21\) 0 0
\(22\) 12.8121 + 4.66321i 0.582366 + 0.211964i
\(23\) 19.6052 3.45692i 0.852399 0.150301i 0.269655 0.962957i \(-0.413090\pi\)
0.582744 + 0.812656i \(0.301979\pi\)
\(24\) 0 0
\(25\) −3.04634 2.55619i −0.121854 0.102247i
\(26\) 13.0409i 0.501575i
\(27\) 0 0
\(28\) −27.9389 −0.997818
\(29\) 16.3009 19.4267i 0.562100 0.669885i −0.407890 0.913031i \(-0.633735\pi\)
0.969990 + 0.243147i \(0.0781796\pi\)
\(30\) 0 0
\(31\) 3.84135 + 21.7854i 0.123915 + 0.702754i 0.981947 + 0.189158i \(0.0605759\pi\)
−0.858032 + 0.513596i \(0.828313\pi\)
\(32\) −11.2178 + 30.8207i −0.350557 + 0.963147i
\(33\) 0 0
\(34\) −0.636973 + 3.61245i −0.0187345 + 0.106249i
\(35\) 49.1093 + 28.3533i 1.40312 + 0.810093i
\(36\) 0 0
\(37\) −8.82807 15.2907i −0.238596 0.413261i 0.721715 0.692190i \(-0.243354\pi\)
−0.960312 + 0.278929i \(0.910021\pi\)
\(38\) −1.79517 4.93220i −0.0472414 0.129795i
\(39\) 0 0
\(40\) 31.8464 26.7223i 0.796159 0.668057i
\(41\) −7.99934 9.53324i −0.195106 0.232518i 0.659618 0.751601i \(-0.270718\pi\)
−0.854724 + 0.519083i \(0.826274\pi\)
\(42\) 0 0
\(43\) −34.2503 + 12.4661i −0.796520 + 0.289909i −0.708043 0.706169i \(-0.750422\pi\)
−0.0884761 + 0.996078i \(0.528200\pi\)
\(44\) −26.9741 + 15.5735i −0.613047 + 0.353943i
\(45\) 0 0
\(46\) 11.5560 20.0156i 0.251217 0.435121i
\(47\) −12.2112 2.15316i −0.259813 0.0458120i 0.0422244 0.999108i \(-0.486556\pi\)
−0.302037 + 0.953296i \(0.597667\pi\)
\(48\) 0 0
\(49\) −58.2355 21.1960i −1.18848 0.432571i
\(50\) −4.54668 + 0.801703i −0.0909336 + 0.0160341i
\(51\) 0 0
\(52\) 22.8216 + 19.1496i 0.438876 + 0.368261i
\(53\) 84.6210i 1.59662i −0.602245 0.798311i \(-0.705727\pi\)
0.602245 0.798311i \(-0.294273\pi\)
\(54\) 0 0
\(55\) 63.2178 1.14942
\(56\) −52.2946 + 62.3223i −0.933833 + 1.11290i
\(57\) 0 0
\(58\) −5.11249 28.9944i −0.0881464 0.499903i
\(59\) 23.3509 64.1562i 0.395779 1.08739i −0.568542 0.822654i \(-0.692492\pi\)
0.964320 0.264738i \(-0.0852856\pi\)
\(60\) 0 0
\(61\) 13.5571 76.8859i 0.222247 1.26043i −0.645632 0.763649i \(-0.723406\pi\)
0.867879 0.496776i \(-0.165483\pi\)
\(62\) 22.2414 + 12.8411i 0.358733 + 0.207114i
\(63\) 0 0
\(64\) 15.7537 + 27.2863i 0.246152 + 0.426348i
\(65\) −20.6808 56.8200i −0.318166 0.874154i
\(66\) 0 0
\(67\) −74.4011 + 62.4300i −1.11046 + 0.931791i −0.998084 0.0618745i \(-0.980292\pi\)
−0.112381 + 0.993665i \(0.535848\pi\)
\(68\) −5.38643 6.41930i −0.0792122 0.0944014i
\(69\) 0 0
\(70\) 61.8639 22.5166i 0.883769 0.321666i
\(71\) −105.364 + 60.8322i −1.48401 + 0.856791i −0.999835 0.0181820i \(-0.994212\pi\)
−0.484171 + 0.874973i \(0.660879\pi\)
\(72\) 0 0
\(73\) −45.5705 + 78.9304i −0.624254 + 1.08124i 0.364431 + 0.931230i \(0.381263\pi\)
−0.988685 + 0.150009i \(0.952070\pi\)
\(74\) −20.1867 3.55946i −0.272793 0.0481008i
\(75\) 0 0
\(76\) 11.2674 + 4.10099i 0.148255 + 0.0539604i
\(77\) −121.836 + 21.4829i −1.58228 + 0.278999i
\(78\) 0 0
\(79\) −15.6180 13.1051i −0.197696 0.165887i 0.538566 0.842584i \(-0.318966\pi\)
−0.736262 + 0.676697i \(0.763411\pi\)
\(80\) 8.84240i 0.110530i
\(81\) 0 0
\(82\) −14.4479 −0.176194
\(83\) 20.3134 24.2086i 0.244740 0.291669i −0.629665 0.776867i \(-0.716808\pi\)
0.874405 + 0.485197i \(0.161252\pi\)
\(84\) 0 0
\(85\) 2.95344 + 16.7498i 0.0347463 + 0.197056i
\(86\) −14.4727 + 39.7634i −0.168287 + 0.462365i
\(87\) 0 0
\(88\) −15.7495 + 89.3198i −0.178971 + 1.01500i
\(89\) −59.7756 34.5114i −0.671636 0.387769i 0.125060 0.992149i \(-0.460088\pi\)
−0.796696 + 0.604380i \(0.793421\pi\)
\(90\) 0 0
\(91\) 59.1656 + 102.478i 0.650171 + 1.12613i
\(92\) 18.0581 + 49.6142i 0.196283 + 0.539284i
\(93\) 0 0
\(94\) −11.0276 + 9.25321i −0.117314 + 0.0984384i
\(95\) −15.6433 18.6430i −0.164666 0.196242i
\(96\) 0 0
\(97\) 74.9914 27.2946i 0.773107 0.281388i 0.0748118 0.997198i \(-0.476164\pi\)
0.698295 + 0.715810i \(0.253942\pi\)
\(98\) −62.3089 + 35.9741i −0.635806 + 0.367083i
\(99\) 0 0
\(100\) 5.27346 9.13390i 0.0527346 0.0913390i
\(101\) −4.70412 0.829463i −0.0465754 0.00821250i 0.150312 0.988639i \(-0.451972\pi\)
−0.196887 + 0.980426i \(0.563083\pi\)
\(102\) 0 0
\(103\) 67.9330 + 24.7256i 0.659544 + 0.240054i 0.650039 0.759901i \(-0.274752\pi\)
0.00950434 + 0.999955i \(0.496975\pi\)
\(104\) 85.4326 15.0641i 0.821467 0.144847i
\(105\) 0 0
\(106\) −75.2576 63.1486i −0.709977 0.595742i
\(107\) 158.133i 1.47788i −0.673773 0.738938i \(-0.735328\pi\)
0.673773 0.738938i \(-0.264672\pi\)
\(108\) 0 0
\(109\) −18.5788 −0.170448 −0.0852240 0.996362i \(-0.527161\pi\)
−0.0852240 + 0.996362i \(0.527161\pi\)
\(110\) 47.1764 56.2227i 0.428877 0.511115i
\(111\) 0 0
\(112\) −3.00486 17.0414i −0.0268291 0.152155i
\(113\) 6.16189 16.9296i 0.0545300 0.149820i −0.909437 0.415842i \(-0.863487\pi\)
0.963967 + 0.266022i \(0.0857093\pi\)
\(114\) 0 0
\(115\) 18.6086 105.535i 0.161814 0.917693i
\(116\) 58.2473 + 33.6291i 0.502131 + 0.289906i
\(117\) 0 0
\(118\) −39.6315 68.6438i −0.335860 0.581727i
\(119\) −11.3839 31.2771i −0.0956634 0.262833i
\(120\) 0 0
\(121\) −12.9621 + 10.8765i −0.107125 + 0.0898886i
\(122\) −58.2614 69.4333i −0.477553 0.569125i
\(123\) 0 0
\(124\) −55.1316 + 20.0662i −0.444609 + 0.161825i
\(125\) 98.0067 56.5842i 0.784054 0.452674i
\(126\) 0 0
\(127\) 78.1067 135.285i 0.615013 1.06523i −0.375369 0.926876i \(-0.622484\pi\)
0.990382 0.138359i \(-0.0441827\pi\)
\(128\) −93.1785 16.4299i −0.727957 0.128358i
\(129\) 0 0
\(130\) −65.9659 24.0096i −0.507430 0.184689i
\(131\) 97.0223 17.1076i 0.740628 0.130593i 0.209410 0.977828i \(-0.432846\pi\)
0.531218 + 0.847235i \(0.321735\pi\)
\(132\) 0 0
\(133\) 36.4837 + 30.6134i 0.274313 + 0.230176i
\(134\) 112.757i 0.841471i
\(135\) 0 0
\(136\) −24.4014 −0.179422
\(137\) −42.2031 + 50.2957i −0.308052 + 0.367122i −0.897753 0.440500i \(-0.854801\pi\)
0.589701 + 0.807622i \(0.299246\pi\)
\(138\) 0 0
\(139\) −21.7582 123.397i −0.156534 0.887749i −0.957370 0.288865i \(-0.906722\pi\)
0.800836 0.598884i \(-0.204389\pi\)
\(140\) −51.4382 + 141.325i −0.367415 + 1.00947i
\(141\) 0 0
\(142\) −24.5274 + 139.102i −0.172728 + 0.979591i
\(143\) 114.245 + 65.9593i 0.798915 + 0.461254i
\(144\) 0 0
\(145\) −68.2557 118.222i −0.470729 0.815326i
\(146\) 36.1896 + 99.4301i 0.247874 + 0.681028i
\(147\) 0 0
\(148\) 35.8716 30.0998i 0.242375 0.203377i
\(149\) 129.687 + 154.554i 0.870380 + 1.03728i 0.998961 + 0.0455791i \(0.0145133\pi\)
−0.128581 + 0.991699i \(0.541042\pi\)
\(150\) 0 0
\(151\) −120.413 + 43.8266i −0.797435 + 0.290243i −0.708423 0.705788i \(-0.750593\pi\)
−0.0890119 + 0.996031i \(0.528371\pi\)
\(152\) 30.2377 17.4577i 0.198932 0.114853i
\(153\) 0 0
\(154\) −71.8144 + 124.386i −0.466327 + 0.807703i
\(155\) 117.271 + 20.6780i 0.756586 + 0.133406i
\(156\) 0 0
\(157\) 130.567 + 47.5224i 0.831635 + 0.302690i 0.722530 0.691340i \(-0.242979\pi\)
0.109105 + 0.994030i \(0.465201\pi\)
\(158\) −23.3100 + 4.11018i −0.147531 + 0.0260138i
\(159\) 0 0
\(160\) 135.249 + 113.488i 0.845309 + 0.709298i
\(161\) 209.714i 1.30257i
\(162\) 0 0
\(163\) 39.8569 0.244521 0.122261 0.992498i \(-0.460986\pi\)
0.122261 + 0.992498i \(0.460986\pi\)
\(164\) 21.2156 25.2837i 0.129363 0.154169i
\(165\) 0 0
\(166\) −6.37094 36.1314i −0.0383791 0.217659i
\(167\) 56.7592 155.945i 0.339876 0.933801i −0.645554 0.763715i \(-0.723373\pi\)
0.985429 0.170086i \(-0.0544044\pi\)
\(168\) 0 0
\(169\) −7.43607 + 42.1720i −0.0440004 + 0.249539i
\(170\) 17.1004 + 9.87292i 0.100591 + 0.0580760i
\(171\) 0 0
\(172\) −48.3337 83.7164i −0.281010 0.486723i
\(173\) 3.72465 + 10.2334i 0.0215298 + 0.0591526i 0.949992 0.312274i \(-0.101091\pi\)
−0.928462 + 0.371427i \(0.878869\pi\)
\(174\) 0 0
\(175\) 32.0913 26.9278i 0.183379 0.153873i
\(176\) −12.4002 14.7780i −0.0704556 0.0839657i
\(177\) 0 0
\(178\) −75.3004 + 27.4071i −0.423036 + 0.153972i
\(179\) 244.720 141.289i 1.36715 0.789326i 0.376590 0.926380i \(-0.377097\pi\)
0.990564 + 0.137054i \(0.0437633\pi\)
\(180\) 0 0
\(181\) 54.3996 94.2228i 0.300550 0.520568i −0.675711 0.737167i \(-0.736163\pi\)
0.976261 + 0.216599i \(0.0694964\pi\)
\(182\) 135.291 + 23.8554i 0.743357 + 0.131074i
\(183\) 0 0
\(184\) 144.473 + 52.5838i 0.785178 + 0.285782i
\(185\) −93.5991 + 16.5040i −0.505941 + 0.0892110i
\(186\) 0 0
\(187\) −28.4251 23.8515i −0.152006 0.127548i
\(188\) 32.8857i 0.174924i
\(189\) 0 0
\(190\) −28.2539 −0.148705
\(191\) 69.8256 83.2149i 0.365579 0.435680i −0.551629 0.834090i \(-0.685993\pi\)
0.917208 + 0.398410i \(0.130438\pi\)
\(192\) 0 0
\(193\) 34.7484 + 197.068i 0.180044 + 1.02108i 0.932160 + 0.362047i \(0.117922\pi\)
−0.752116 + 0.659031i \(0.770967\pi\)
\(194\) 31.6880 87.0622i 0.163340 0.448774i
\(195\) 0 0
\(196\) 28.5412 161.865i 0.145619 0.825844i
\(197\) −253.494 146.355i −1.28677 0.742918i −0.308694 0.951161i \(-0.599892\pi\)
−0.978077 + 0.208243i \(0.933225\pi\)
\(198\) 0 0
\(199\) 41.1548 + 71.2822i 0.206808 + 0.358202i 0.950707 0.310090i \(-0.100359\pi\)
−0.743899 + 0.668292i \(0.767026\pi\)
\(200\) −10.5041 28.8597i −0.0525204 0.144299i
\(201\) 0 0
\(202\) −4.24814 + 3.56461i −0.0210304 + 0.0176466i
\(203\) 171.720 + 204.647i 0.845910 + 1.00812i
\(204\) 0 0
\(205\) −62.9502 + 22.9120i −0.307074 + 0.111766i
\(206\) 72.6848 41.9646i 0.352839 0.203712i
\(207\) 0 0
\(208\) −9.22585 + 15.9796i −0.0443550 + 0.0768252i
\(209\) 52.2881 + 9.21980i 0.250182 + 0.0441139i
\(210\) 0 0
\(211\) −108.859 39.6214i −0.515919 0.187779i 0.0709215 0.997482i \(-0.477406\pi\)
−0.586840 + 0.809703i \(0.699628\pi\)
\(212\) 221.019 38.9717i 1.04254 0.183829i
\(213\) 0 0
\(214\) −140.635 118.007i −0.657174 0.551434i
\(215\) 196.202i 0.912568i
\(216\) 0 0
\(217\) −233.036 −1.07390
\(218\) −13.8645 + 16.5231i −0.0635986 + 0.0757938i
\(219\) 0 0
\(220\) 29.1146 + 165.117i 0.132339 + 0.750532i
\(221\) −12.1388 + 33.3510i −0.0549266 + 0.150910i
\(222\) 0 0
\(223\) −34.4233 + 195.224i −0.154365 + 0.875446i 0.805000 + 0.593275i \(0.202166\pi\)
−0.959364 + 0.282171i \(0.908946\pi\)
\(224\) −299.224 172.757i −1.33582 0.771236i
\(225\) 0 0
\(226\) −10.4580 18.1138i −0.0462745 0.0801498i
\(227\) 1.76204 + 4.84116i 0.00776228 + 0.0213267i 0.943513 0.331335i \(-0.107499\pi\)
−0.935751 + 0.352661i \(0.885277\pi\)
\(228\) 0 0
\(229\) 270.680 227.127i 1.18201 0.991821i 0.182043 0.983291i \(-0.441729\pi\)
0.999964 0.00853095i \(-0.00271552\pi\)
\(230\) −79.9704 95.3050i −0.347697 0.414370i
\(231\) 0 0
\(232\) 184.040 66.9849i 0.793274 0.288728i
\(233\) −121.729 + 70.2803i −0.522442 + 0.301632i −0.737933 0.674874i \(-0.764198\pi\)
0.215491 + 0.976506i \(0.430865\pi\)
\(234\) 0 0
\(235\) −33.3735 + 57.8046i −0.142015 + 0.245977i
\(236\) 178.322 + 31.4430i 0.755602 + 0.133233i
\(237\) 0 0
\(238\) −36.3116 13.2163i −0.152570 0.0555308i
\(239\) −145.430 + 25.6433i −0.608495 + 0.107294i −0.469401 0.882985i \(-0.655530\pi\)
−0.139094 + 0.990279i \(0.544419\pi\)
\(240\) 0 0
\(241\) 233.194 + 195.673i 0.967611 + 0.811922i 0.982174 0.187972i \(-0.0601913\pi\)
−0.0145632 + 0.999894i \(0.504636\pi\)
\(242\) 19.6445i 0.0811755i
\(243\) 0 0
\(244\) 207.060 0.848606
\(245\) −214.434 + 255.553i −0.875241 + 1.04307i
\(246\) 0 0
\(247\) −8.81855 50.0125i −0.0357026 0.202480i
\(248\) −58.4314 + 160.539i −0.235611 + 0.647335i
\(249\) 0 0
\(250\) 22.8146 129.388i 0.0912585 0.517553i
\(251\) 108.072 + 62.3955i 0.430567 + 0.248588i 0.699588 0.714546i \(-0.253367\pi\)
−0.269021 + 0.963134i \(0.586700\pi\)
\(252\) 0 0
\(253\) 116.897 + 202.472i 0.462044 + 0.800284i
\(254\) −62.0280 170.421i −0.244205 0.670947i
\(255\) 0 0
\(256\) −180.691 + 151.618i −0.705824 + 0.592257i
\(257\) −293.774 350.106i −1.14309 1.36228i −0.922075 0.387011i \(-0.873508\pi\)
−0.221015 0.975271i \(-0.570937\pi\)
\(258\) 0 0
\(259\) 174.779 63.6144i 0.674823 0.245616i
\(260\) 138.882 80.1837i 0.534163 0.308399i
\(261\) 0 0
\(262\) 57.1884 99.0533i 0.218276 0.378066i
\(263\) −460.838 81.2581i −1.75223 0.308966i −0.796816 0.604222i \(-0.793484\pi\)
−0.955418 + 0.295255i \(0.904595\pi\)
\(264\) 0 0
\(265\) −428.044 155.795i −1.61526 0.587907i
\(266\) 54.4521 9.60137i 0.204707 0.0360954i
\(267\) 0 0
\(268\) −197.324 165.575i −0.736284 0.617816i
\(269\) 317.049i 1.17862i 0.807907 + 0.589310i \(0.200601\pi\)
−0.807907 + 0.589310i \(0.799399\pi\)
\(270\) 0 0
\(271\) 115.698 0.426931 0.213465 0.976951i \(-0.431525\pi\)
0.213465 + 0.976951i \(0.431525\pi\)
\(272\) 3.33615 3.97587i 0.0122653 0.0146172i
\(273\) 0 0
\(274\) 13.2363 + 75.0666i 0.0483076 + 0.273966i
\(275\) 15.9732 43.8860i 0.0580843 0.159585i
\(276\) 0 0
\(277\) −20.0227 + 113.554i −0.0722840 + 0.409943i 0.927099 + 0.374817i \(0.122294\pi\)
−0.999383 + 0.0351261i \(0.988817\pi\)
\(278\) −125.980 72.7347i −0.453166 0.261635i
\(279\) 0 0
\(280\) 218.970 + 379.267i 0.782035 + 1.35452i
\(281\) 27.9061 + 76.6714i 0.0993100 + 0.272852i 0.979392 0.201971i \(-0.0647345\pi\)
−0.880082 + 0.474822i \(0.842512\pi\)
\(282\) 0 0
\(283\) −319.547 + 268.132i −1.12914 + 0.947462i −0.999030 0.0440369i \(-0.985978\pi\)
−0.130112 + 0.991499i \(0.541534\pi\)
\(284\) −207.411 247.183i −0.730320 0.870362i
\(285\) 0 0
\(286\) 143.916 52.3812i 0.503204 0.183151i
\(287\) 113.534 65.5489i 0.395589 0.228393i
\(288\) 0 0
\(289\) −139.508 + 241.636i −0.482728 + 0.836110i
\(290\) −156.077 27.5205i −0.538196 0.0948984i
\(291\) 0 0
\(292\) −227.144 82.6735i −0.777889 0.283128i
\(293\) −340.579 + 60.0533i −1.16239 + 0.204960i −0.721377 0.692542i \(-0.756491\pi\)
−0.441009 + 0.897503i \(0.645379\pi\)
\(294\) 0 0
\(295\) −281.534 236.235i −0.954353 0.800798i
\(296\) 136.357i 0.460665i
\(297\) 0 0
\(298\) 234.232 0.786012
\(299\) 143.740 171.303i 0.480735 0.572918i
\(300\) 0 0
\(301\) −66.6742 378.128i −0.221509 1.25624i
\(302\) −50.8811 + 139.795i −0.168480 + 0.462896i
\(303\) 0 0
\(304\) −1.28959 + 7.31364i −0.00424208 + 0.0240580i
\(305\) −363.957 210.131i −1.19330 0.688954i
\(306\) 0 0
\(307\) −288.668 499.988i −0.940286 1.62862i −0.764925 0.644120i \(-0.777224\pi\)
−0.175362 0.984504i \(-0.556110\pi\)
\(308\) −112.221 308.326i −0.364355 1.00106i
\(309\) 0 0
\(310\) 105.904 88.8636i 0.341624 0.286657i
\(311\) 288.678 + 344.033i 0.928224 + 1.10621i 0.994109 + 0.108388i \(0.0345687\pi\)
−0.0658843 + 0.997827i \(0.520987\pi\)
\(312\) 0 0
\(313\) −10.1840 + 3.70667i −0.0325367 + 0.0118424i −0.358237 0.933631i \(-0.616622\pi\)
0.325701 + 0.945473i \(0.394400\pi\)
\(314\) 139.700 80.6557i 0.444904 0.256865i
\(315\) 0 0
\(316\) 27.0360 46.8278i 0.0855570 0.148189i
\(317\) −214.918 37.8958i −0.677974 0.119545i −0.175951 0.984399i \(-0.556300\pi\)
−0.502024 + 0.864854i \(0.667411\pi\)
\(318\) 0 0
\(319\) 279.863 + 101.862i 0.877312 + 0.319316i
\(320\) 167.028 29.4516i 0.521963 0.0920361i
\(321\) 0 0
\(322\) 186.509 + 156.500i 0.579220 + 0.486024i
\(323\) 14.2846i 0.0442249i
\(324\) 0 0
\(325\) −44.6700 −0.137446
\(326\) 29.7433 35.4467i 0.0912372 0.108732i
\(327\) 0 0
\(328\) −16.6893 94.6497i −0.0508820 0.288566i
\(329\) 44.6753 122.744i 0.135791 0.373083i
\(330\) 0 0
\(331\) 104.307 591.553i 0.315126 1.78717i −0.256386 0.966574i \(-0.582532\pi\)
0.571512 0.820594i \(-0.306357\pi\)
\(332\) 72.5849 + 41.9069i 0.218629 + 0.126226i
\(333\) 0 0
\(334\) −96.3325 166.853i −0.288421 0.499559i
\(335\) 178.814 + 491.288i 0.533774 + 1.46653i
\(336\) 0 0
\(337\) 344.160 288.784i 1.02125 0.856927i 0.0314624 0.999505i \(-0.489984\pi\)
0.989784 + 0.142578i \(0.0455391\pi\)
\(338\) 31.9565 + 38.0842i 0.0945458 + 0.112675i
\(339\) 0 0
\(340\) −42.3881 + 15.4280i −0.124671 + 0.0453765i
\(341\) −224.988 + 129.897i −0.659789 + 0.380929i
\(342\) 0 0
\(343\) 68.3305 118.352i 0.199214 0.345049i
\(344\) −277.212 48.8799i −0.805848 0.142093i
\(345\) 0 0
\(346\) 11.8806 + 4.32418i 0.0343370 + 0.0124976i
\(347\) −232.573 + 41.0088i −0.670238 + 0.118181i −0.498404 0.866945i \(-0.666080\pi\)
−0.171834 + 0.985126i \(0.554969\pi\)
\(348\) 0 0
\(349\) 183.685 + 154.130i 0.526319 + 0.441634i 0.866828 0.498607i \(-0.166155\pi\)
−0.340509 + 0.940241i \(0.610599\pi\)
\(350\) 48.6353i 0.138958i
\(351\) 0 0
\(352\) −385.187 −1.09428
\(353\) 16.4494 19.6037i 0.0465989 0.0555344i −0.742242 0.670132i \(-0.766237\pi\)
0.788840 + 0.614598i \(0.210682\pi\)
\(354\) 0 0
\(355\) 113.726 + 644.970i 0.320354 + 1.81682i
\(356\) 62.6103 172.020i 0.175872 0.483203i
\(357\) 0 0
\(358\) 56.9676 323.079i 0.159127 0.902456i
\(359\) −16.7796 9.68773i −0.0467399 0.0269853i 0.476448 0.879203i \(-0.341924\pi\)
−0.523188 + 0.852217i \(0.675257\pi\)
\(360\) 0 0
\(361\) 170.280 + 294.934i 0.471690 + 0.816992i
\(362\) −43.2012 118.694i −0.119340 0.327885i
\(363\) 0 0
\(364\) −240.411 + 201.729i −0.660469 + 0.554199i
\(365\) 315.360 + 375.831i 0.863999 + 1.02967i
\(366\) 0 0
\(367\) −367.152 + 133.632i −1.00041 + 0.364121i −0.789744 0.613436i \(-0.789787\pi\)
−0.210670 + 0.977557i \(0.567565\pi\)
\(368\) −28.3201 + 16.3506i −0.0769569 + 0.0444311i
\(369\) 0 0
\(370\) −55.1707 + 95.5584i −0.149110 + 0.258266i
\(371\) 877.886 + 154.795i 2.36627 + 0.417237i
\(372\) 0 0
\(373\) 168.038 + 61.1610i 0.450505 + 0.163970i 0.557301 0.830310i \(-0.311837\pi\)
−0.106796 + 0.994281i \(0.534059\pi\)
\(374\) −42.4246 + 7.48060i −0.113435 + 0.0200016i
\(375\) 0 0
\(376\) −73.3571 61.5539i −0.195099 0.163707i
\(377\) 284.862i 0.755603i
\(378\) 0 0
\(379\) 3.48118 0.00918518 0.00459259 0.999989i \(-0.498538\pi\)
0.00459259 + 0.999989i \(0.498538\pi\)
\(380\) 41.4886 49.4442i 0.109181 0.130116i
\(381\) 0 0
\(382\) −21.8996 124.199i −0.0573287 0.325127i
\(383\) −5.89181 + 16.1876i −0.0153833 + 0.0422653i −0.947147 0.320801i \(-0.896048\pi\)
0.931763 + 0.363066i \(0.118270\pi\)
\(384\) 0 0
\(385\) −115.643 + 655.842i −0.300371 + 1.70349i
\(386\) 201.193 + 116.159i 0.521226 + 0.300930i
\(387\) 0 0
\(388\) 105.827 + 183.298i 0.272750 + 0.472417i
\(389\) −108.343 297.669i −0.278516 0.765216i −0.997531 0.0702221i \(-0.977629\pi\)
0.719015 0.694994i \(-0.244593\pi\)
\(390\) 0 0
\(391\) −48.1843 + 40.4315i −0.123234 + 0.103405i
\(392\) −307.645 366.637i −0.784810 0.935300i
\(393\) 0 0
\(394\) −319.331 + 116.227i −0.810485 + 0.294992i
\(395\) −95.0446 + 54.8740i −0.240619 + 0.138922i
\(396\) 0 0
\(397\) −134.041 + 232.165i −0.337634 + 0.584800i −0.983987 0.178239i \(-0.942960\pi\)
0.646353 + 0.763039i \(0.276293\pi\)
\(398\) 94.1067 + 16.5935i 0.236449 + 0.0416923i
\(399\) 0 0
\(400\) 6.13842 + 2.23420i 0.0153460 + 0.00558550i
\(401\) 95.9860 16.9249i 0.239366 0.0422068i −0.0526778 0.998612i \(-0.516776\pi\)
0.292044 + 0.956405i \(0.405665\pi\)
\(402\) 0 0
\(403\) 190.352 + 159.725i 0.472339 + 0.396339i
\(404\) 12.6686i 0.0313578i
\(405\) 0 0
\(406\) 310.149 0.763914
\(407\) 133.284 158.842i 0.327479 0.390274i
\(408\) 0 0
\(409\) −70.3872 399.185i −0.172096 0.976003i −0.941443 0.337173i \(-0.890529\pi\)
0.769347 0.638831i \(-0.220582\pi\)
\(410\) −26.6000 + 73.0828i −0.0648780 + 0.178251i
\(411\) 0 0
\(412\) −33.2940 + 188.820i −0.0808107 + 0.458300i
\(413\) 622.862 + 359.609i 1.50814 + 0.870725i
\(414\) 0 0
\(415\) −85.0569 147.323i −0.204956 0.354995i
\(416\) 126.008 + 346.205i 0.302905 + 0.832224i
\(417\) 0 0
\(418\) 47.2197 39.6221i 0.112966 0.0947896i
\(419\) 75.4214 + 89.8837i 0.180003 + 0.214520i 0.848500 0.529196i \(-0.177506\pi\)
−0.668496 + 0.743715i \(0.733062\pi\)
\(420\) 0 0
\(421\) 489.894 178.307i 1.16364 0.423531i 0.313245 0.949672i \(-0.398584\pi\)
0.850397 + 0.526141i \(0.176362\pi\)
\(422\) −116.473 + 67.2459i −0.276003 + 0.159351i
\(423\) 0 0
\(424\) 326.760 565.966i 0.770661 1.33482i
\(425\) 12.3740 + 2.18187i 0.0291152 + 0.00513380i
\(426\) 0 0
\(427\) 772.840 + 281.291i 1.80993 + 0.658761i
\(428\) 413.023 72.8271i 0.965007 0.170157i
\(429\) 0 0
\(430\) 174.492 + 146.416i 0.405796 + 0.340503i
\(431\) 263.580i 0.611555i 0.952103 + 0.305777i \(0.0989163\pi\)
−0.952103 + 0.305777i \(0.901084\pi\)
\(432\) 0 0
\(433\) −702.013 −1.62128 −0.810639 0.585547i \(-0.800880\pi\)
−0.810639 + 0.585547i \(0.800880\pi\)
\(434\) −173.903 + 207.250i −0.400699 + 0.477534i
\(435\) 0 0
\(436\) −8.55636 48.5256i −0.0196247 0.111297i
\(437\) 30.7827 84.5749i 0.0704410 0.193535i
\(438\) 0 0
\(439\) −76.9114 + 436.186i −0.175197 + 0.993591i 0.762720 + 0.646729i \(0.223864\pi\)
−0.937916 + 0.346861i \(0.887247\pi\)
\(440\) 422.816 + 244.113i 0.960946 + 0.554802i
\(441\) 0 0
\(442\) 20.6021 + 35.6839i 0.0466111 + 0.0807328i
\(443\) 207.552 + 570.245i 0.468515 + 1.28723i 0.918932 + 0.394416i \(0.129053\pi\)
−0.450417 + 0.892818i \(0.648725\pi\)
\(444\) 0 0
\(445\) −284.624 + 238.828i −0.639605 + 0.536692i
\(446\) 147.934 + 176.301i 0.331691 + 0.395294i
\(447\) 0 0
\(448\) −311.895 + 113.520i −0.696193 + 0.253394i
\(449\) −347.745 + 200.771i −0.774488 + 0.447151i −0.834473 0.551048i \(-0.814228\pi\)
0.0599853 + 0.998199i \(0.480895\pi\)
\(450\) 0 0
\(451\) 73.0755 126.570i 0.162030 0.280644i
\(452\) 47.0559 + 8.29723i 0.104106 + 0.0183567i
\(453\) 0 0
\(454\) 5.62041 + 2.04566i 0.0123797 + 0.00450586i
\(455\) 627.300 110.610i 1.37868 0.243099i
\(456\) 0 0
\(457\) −112.695 94.5622i −0.246597 0.206919i 0.511108 0.859516i \(-0.329235\pi\)
−0.757705 + 0.652597i \(0.773680\pi\)
\(458\) 410.223i 0.895683i
\(459\) 0 0
\(460\) 284.213 0.617855
\(461\) −504.853 + 601.661i −1.09513 + 1.30512i −0.146329 + 0.989236i \(0.546746\pi\)
−0.948798 + 0.315885i \(0.897699\pi\)
\(462\) 0 0
\(463\) −62.2447 353.007i −0.134438 0.762434i −0.975250 0.221107i \(-0.929033\pi\)
0.840812 0.541328i \(-0.182078\pi\)
\(464\) −14.2476 + 39.1449i −0.0307060 + 0.0843641i
\(465\) 0 0
\(466\) −28.3369 + 160.706i −0.0608088 + 0.344864i
\(467\) 88.2727 + 50.9643i 0.189021 + 0.109131i 0.591524 0.806287i \(-0.298526\pi\)
−0.402503 + 0.915419i \(0.631860\pi\)
\(468\) 0 0
\(469\) −511.569 886.063i −1.09077 1.88926i
\(470\) 26.5034 + 72.8175i 0.0563902 + 0.154931i
\(471\) 0 0
\(472\) 403.913 338.923i 0.855748 0.718058i
\(473\) −275.145 327.905i −0.581702 0.693245i
\(474\) 0 0
\(475\) −16.8946 + 6.14912i −0.0355675 + 0.0129455i
\(476\) 76.4491 44.1379i 0.160607 0.0927267i
\(477\) 0 0
\(478\) −85.7219 + 148.475i −0.179334 + 0.310616i
\(479\) 124.450 + 21.9439i 0.259812 + 0.0458119i 0.302037 0.953296i \(-0.402333\pi\)
−0.0422247 + 0.999108i \(0.513445\pi\)
\(480\) 0 0
\(481\) −186.368 67.8325i −0.387460 0.141024i
\(482\) 348.044 61.3695i 0.722082 0.127323i
\(483\) 0 0
\(484\) −34.3777 28.8463i −0.0710284 0.0595999i
\(485\) 429.586i 0.885745i
\(486\) 0 0
\(487\) 454.010 0.932258 0.466129 0.884717i \(-0.345648\pi\)
0.466129 + 0.884717i \(0.345648\pi\)
\(488\) 387.565 461.882i 0.794190 0.946479i
\(489\) 0 0
\(490\) 67.2535 + 381.413i 0.137252 + 0.778395i
\(491\) −108.108 + 297.025i −0.220180 + 0.604939i −0.999772 0.0213484i \(-0.993204\pi\)
0.779592 + 0.626287i \(0.215426\pi\)
\(492\) 0 0
\(493\) −13.9138 + 78.9093i −0.0282228 + 0.160059i
\(494\) −51.0594 29.4792i −0.103359 0.0596744i
\(495\) 0 0
\(496\) −18.1689 31.4695i −0.0366309 0.0634466i
\(497\) −438.352 1204.36i −0.881997 2.42327i
\(498\) 0 0
\(499\) 93.6658 78.5949i 0.187707 0.157505i −0.544092 0.839026i \(-0.683126\pi\)
0.731799 + 0.681521i \(0.238681\pi\)
\(500\) 192.927 + 229.922i 0.385854 + 0.459843i
\(501\) 0 0
\(502\) 136.141 49.5511i 0.271196 0.0987074i
\(503\) 391.041 225.768i 0.777418 0.448843i −0.0580963 0.998311i \(-0.518503\pi\)
0.835515 + 0.549468i \(0.185170\pi\)
\(504\) 0 0
\(505\) −12.8565 + 22.2680i −0.0254583 + 0.0440951i
\(506\) 267.303 + 47.1327i 0.528267 + 0.0931477i
\(507\) 0 0
\(508\) 389.318 + 141.700i 0.766375 + 0.278938i
\(509\) −492.118 + 86.7737i −0.966833 + 0.170479i −0.634704 0.772755i \(-0.718878\pi\)
−0.332129 + 0.943234i \(0.607767\pi\)
\(510\) 0 0
\(511\) −735.489 617.149i −1.43931 1.20773i
\(512\) 104.621i 0.204338i
\(513\) 0 0
\(514\) −530.596 −1.03229
\(515\) 250.142 298.108i 0.485713 0.578850i
\(516\) 0 0
\(517\) −25.2867 143.408i −0.0489104 0.277385i
\(518\) 73.8540 202.912i 0.142575 0.391722i
\(519\) 0 0
\(520\) 81.0899 459.884i 0.155942 0.884392i
\(521\) 595.632 + 343.888i 1.14325 + 0.660054i 0.947233 0.320546i \(-0.103867\pi\)
0.196015 + 0.980601i \(0.437200\pi\)
\(522\) 0 0
\(523\) 260.218 + 450.711i 0.497549 + 0.861780i 0.999996 0.00282784i \(-0.000900130\pi\)
−0.502447 + 0.864608i \(0.667567\pi\)
\(524\) 89.3660 + 245.531i 0.170546 + 0.468571i
\(525\) 0 0
\(526\) −416.168 + 349.206i −0.791194 + 0.663890i
\(527\) −44.9277 53.5427i −0.0852518 0.101599i
\(528\) 0 0
\(529\) −124.685 + 45.3817i −0.235700 + 0.0857876i
\(530\) −457.985 + 264.418i −0.864123 + 0.498902i
\(531\) 0 0
\(532\) −63.1561 + 109.390i −0.118715 + 0.205620i
\(533\) −137.667 24.2744i −0.258287 0.0455429i
\(534\) 0 0
\(535\) −799.894 291.138i −1.49513 0.544182i
\(536\) −738.683 + 130.250i −1.37814 + 0.243003i
\(537\) 0 0
\(538\) 281.967 + 236.599i 0.524103 + 0.439774i
\(539\) 727.808i 1.35029i
\(540\) 0 0
\(541\) 803.120 1.48451 0.742255 0.670117i \(-0.233756\pi\)
0.742255 + 0.670117i \(0.233756\pi\)
\(542\) 86.3401 102.896i 0.159299 0.189845i
\(543\) 0 0
\(544\) −17.9953 102.057i −0.0330797 0.187604i
\(545\) −34.2054 + 93.9785i −0.0627622 + 0.172438i
\(546\) 0 0
\(547\) −11.9276 + 67.6450i −0.0218056 + 0.123665i −0.993767 0.111473i \(-0.964443\pi\)
0.971962 + 0.235138i \(0.0755543\pi\)
\(548\) −150.803 87.0659i −0.275187 0.158879i
\(549\) 0 0
\(550\) −27.1099 46.9557i −0.0492907 0.0853741i
\(551\) −39.2132 107.737i −0.0711673 0.195531i
\(552\) 0 0
\(553\) 164.526 138.054i 0.297515 0.249645i
\(554\) 86.0473 + 102.547i 0.155320 + 0.185103i
\(555\) 0 0
\(556\) 312.277 113.660i 0.561649 0.204424i
\(557\) −575.120 + 332.045i −1.03253 + 0.596132i −0.917709 0.397254i \(-0.869963\pi\)
−0.114822 + 0.993386i \(0.536630\pi\)
\(558\) 0 0
\(559\) −204.710 + 354.569i −0.366208 + 0.634291i
\(560\) −91.7339 16.1752i −0.163811 0.0288842i
\(561\) 0 0
\(562\) 89.0126 + 32.3979i 0.158385 + 0.0576476i
\(563\) −342.373 + 60.3696i −0.608123 + 0.107229i −0.469226 0.883078i \(-0.655467\pi\)
−0.138897 + 0.990307i \(0.544356\pi\)
\(564\) 0 0
\(565\) −74.2917 62.3382i −0.131490 0.110333i
\(566\) 484.283i 0.855623i
\(567\) 0 0
\(568\) −939.603 −1.65423
\(569\) −251.342 + 299.538i −0.441726 + 0.526428i −0.940267 0.340438i \(-0.889425\pi\)
0.498541 + 0.866866i \(0.333869\pi\)
\(570\) 0 0
\(571\) 148.595 + 842.725i 0.260237 + 1.47587i 0.782264 + 0.622947i \(0.214065\pi\)
−0.522028 + 0.852928i \(0.674824\pi\)
\(572\) −119.663 + 328.770i −0.209200 + 0.574773i
\(573\) 0 0
\(574\) 26.4292 149.887i 0.0460438 0.261128i
\(575\) −68.5606 39.5835i −0.119236 0.0688408i
\(576\) 0 0
\(577\) 313.746 + 543.423i 0.543753 + 0.941808i 0.998684 + 0.0512815i \(0.0163306\pi\)
−0.454931 + 0.890527i \(0.650336\pi\)
\(578\) 110.790 + 304.393i 0.191678 + 0.526631i
\(579\) 0 0
\(580\) 277.347 232.722i 0.478184 0.401244i
\(581\) 213.989 + 255.022i 0.368311 + 0.438936i
\(582\) 0 0
\(583\) 933.854 339.895i 1.60181 0.583010i
\(584\) −609.573 + 351.937i −1.04379 + 0.602632i
\(585\) 0 0
\(586\) −200.750 + 347.709i −0.342576 + 0.593359i
\(587\) −733.246 129.291i −1.24914 0.220257i −0.490312 0.871547i \(-0.663117\pi\)
−0.758829 + 0.651290i \(0.774228\pi\)
\(588\) 0 0
\(589\) 93.9801 + 34.2060i 0.159559 + 0.0580746i
\(590\) −420.191 + 74.0910i −0.712188 + 0.125578i
\(591\) 0 0
\(592\) 22.2175 + 18.6427i 0.0375296 + 0.0314910i
\(593\) 625.722i 1.05518i −0.849499 0.527591i \(-0.823096\pi\)
0.849499 0.527591i \(-0.176904\pi\)
\(594\) 0 0
\(595\) −179.170 −0.301126
\(596\) −343.950 + 409.904i −0.577098 + 0.687759i
\(597\) 0 0
\(598\) −45.0815 255.670i −0.0753871 0.427542i
\(599\) 195.992 538.483i 0.327198 0.898970i −0.661619 0.749840i \(-0.730130\pi\)
0.988818 0.149130i \(-0.0476473\pi\)
\(600\) 0 0
\(601\) 196.479 1114.29i 0.326921 1.85406i −0.168899 0.985633i \(-0.554021\pi\)
0.495820 0.868426i \(-0.334868\pi\)
\(602\) −386.043 222.882i −0.641268 0.370236i
\(603\) 0 0
\(604\) −169.925 294.319i −0.281333 0.487283i
\(605\) 31.1529 + 85.5919i 0.0514924 + 0.141474i
\(606\) 0 0
\(607\) −178.085 + 149.431i −0.293386 + 0.246180i −0.777585 0.628778i \(-0.783556\pi\)
0.484199 + 0.874958i \(0.339111\pi\)
\(608\) 95.3149 + 113.592i 0.156768 + 0.186829i
\(609\) 0 0
\(610\) −458.484 + 166.874i −0.751613 + 0.273565i
\(611\) −120.623 + 69.6414i −0.197418 + 0.113979i
\(612\) 0 0
\(613\) 533.889 924.724i 0.870945 1.50852i 0.00992514 0.999951i \(-0.496841\pi\)
0.861020 0.508571i \(-0.169826\pi\)
\(614\) −660.082 116.390i −1.07505 0.189561i
\(615\) 0 0
\(616\) −897.822 326.781i −1.45750 0.530488i
\(617\) 415.344 73.2363i 0.673167 0.118697i 0.173392 0.984853i \(-0.444527\pi\)
0.499775 + 0.866155i \(0.333416\pi\)
\(618\) 0 0
\(619\) 460.270 + 386.212i 0.743570 + 0.623929i 0.933794 0.357812i \(-0.116477\pi\)
−0.190224 + 0.981741i \(0.560921\pi\)
\(620\) 315.820i 0.509386i
\(621\) 0 0
\(622\) 521.392 0.838250
\(623\) 467.379 557.000i 0.750207 0.894062i
\(624\) 0 0
\(625\) −123.048 697.838i −0.196876 1.11654i
\(626\) −4.30330 + 11.8232i −0.00687428 + 0.0188869i
\(627\) 0 0
\(628\) −63.9908 + 362.910i −0.101896 + 0.577882i
\(629\) 48.3124 + 27.8932i 0.0768083 + 0.0443453i
\(630\) 0 0
\(631\) 554.621 + 960.632i 0.878956 + 1.52240i 0.852488 + 0.522747i \(0.175093\pi\)
0.0264679 + 0.999650i \(0.491574\pi\)
\(632\) −53.8524 147.958i −0.0852095 0.234111i
\(633\) 0 0
\(634\) −194.086 + 162.857i −0.306129 + 0.256872i
\(635\) −540.518 644.165i −0.851210 1.01443i
\(636\) 0 0
\(637\) −654.151 + 238.092i −1.02693 + 0.373770i
\(638\) 299.439 172.881i 0.469340 0.270973i
\(639\) 0 0
\(640\) −254.659 + 441.082i −0.397904 + 0.689191i
\(641\) −162.759 28.6989i −0.253915 0.0447720i 0.0452418 0.998976i \(-0.485594\pi\)
−0.299157 + 0.954204i \(0.596705\pi\)
\(642\) 0 0
\(643\) −746.702 271.777i −1.16128 0.422671i −0.311725 0.950172i \(-0.600907\pi\)
−0.849554 + 0.527502i \(0.823129\pi\)
\(644\) −547.747 + 96.5825i −0.850538 + 0.149973i
\(645\) 0 0
\(646\) 12.7040 + 10.6599i 0.0196657 + 0.0165015i
\(647\) 222.504i 0.343900i −0.985106 0.171950i \(-0.944993\pi\)
0.985106 0.171950i \(-0.0550068\pi\)
\(648\) 0 0
\(649\) 801.803 1.23544
\(650\) −33.3351 + 39.7272i −0.0512847 + 0.0611188i
\(651\) 0 0
\(652\) 18.3559 + 104.101i 0.0281532 + 0.159665i
\(653\) 159.547 438.353i 0.244330 0.671291i −0.755539 0.655103i \(-0.772625\pi\)
0.999869 0.0161872i \(-0.00515277\pi\)
\(654\) 0 0
\(655\) 92.0905 522.271i 0.140596 0.797361i
\(656\) 17.7037 + 10.2212i 0.0269873 + 0.0155811i
\(657\) 0 0
\(658\) −75.8234 131.330i −0.115233 0.199590i
\(659\) 71.2338 + 195.713i 0.108094 + 0.296985i 0.981933 0.189230i \(-0.0605993\pi\)
−0.873839 + 0.486215i \(0.838377\pi\)
\(660\) 0 0
\(661\) −485.505 + 407.387i −0.734501 + 0.616320i −0.931355 0.364113i \(-0.881372\pi\)
0.196854 + 0.980433i \(0.436928\pi\)
\(662\) −448.258 534.213i −0.677126 0.806968i
\(663\) 0 0
\(664\) 229.341 83.4734i 0.345393 0.125713i
\(665\) 222.024 128.186i 0.333871 0.192760i
\(666\) 0 0
\(667\) 252.425 437.214i 0.378449 0.655493i
\(668\) 433.448 + 76.4286i 0.648874 + 0.114414i
\(669\) 0 0
\(670\) 570.367 + 207.597i 0.851294 + 0.309846i
\(671\) 902.946 159.214i 1.34567 0.237278i
\(672\) 0 0
\(673\) 84.2808 + 70.7200i 0.125231 + 0.105082i 0.703252 0.710940i \(-0.251730\pi\)
−0.578021 + 0.816022i \(0.696175\pi\)
\(674\) 521.584i 0.773864i
\(675\) 0 0
\(676\) −113.573 −0.168007
\(677\) −91.9435 + 109.574i −0.135810 + 0.161852i −0.829663 0.558265i \(-0.811467\pi\)
0.693853 + 0.720117i \(0.255912\pi\)
\(678\) 0 0
\(679\) 145.984 + 827.915i 0.214998 + 1.21931i
\(680\) −44.9252 + 123.431i −0.0660665 + 0.181516i
\(681\) 0 0
\(682\) −52.3742 + 297.029i −0.0767950 + 0.435526i
\(683\) −784.050 452.671i −1.14795 0.662769i −0.199563 0.979885i \(-0.563952\pi\)
−0.948387 + 0.317116i \(0.897286\pi\)
\(684\) 0 0
\(685\) 176.714 + 306.078i 0.257977 + 0.446830i
\(686\) −54.2643 149.090i −0.0791025 0.217332i
\(687\) 0 0
\(688\) 45.8647 38.4851i 0.0666638 0.0559376i
\(689\) −610.993 728.153i −0.886783 1.05683i
\(690\) 0 0
\(691\) −499.926 + 181.958i −0.723482 + 0.263326i −0.677403 0.735612i \(-0.736895\pi\)
−0.0460786 + 0.998938i \(0.514672\pi\)
\(692\) −25.0130 + 14.4413i −0.0361459 + 0.0208689i
\(693\) 0 0
\(694\) −137.087 + 237.441i −0.197531 + 0.342134i
\(695\) −664.247 117.125i −0.955751 0.168525i
\(696\) 0 0
\(697\) 36.9492 + 13.4484i 0.0530118 + 0.0192947i
\(698\) 274.151 48.3402i 0.392767 0.0692553i
\(699\) 0 0
\(700\) 85.1115 + 71.4170i 0.121588 + 0.102024i
\(701\) 905.026i 1.29105i 0.763739 + 0.645525i \(0.223361\pi\)
−0.763739 + 0.645525i \(0.776639\pi\)
\(702\) 0 0
\(703\) −79.8237 −0.113547
\(704\) −237.846 + 283.454i −0.337850 + 0.402633i
\(705\) 0 0
\(706\) −5.15907 29.2585i −0.00730747 0.0414427i
\(707\) 17.2102 47.2847i 0.0243426 0.0668808i
\(708\) 0 0
\(709\) −63.1847 + 358.338i −0.0891181 + 0.505414i 0.907274 + 0.420541i \(0.138160\pi\)
−0.996392 + 0.0848731i \(0.972952\pi\)
\(710\) 658.471 + 380.168i 0.927424 + 0.535449i
\(711\) 0 0
\(712\) −266.529 461.642i −0.374338 0.648373i
\(713\) 150.621 + 413.827i 0.211249 + 0.580402i
\(714\) 0 0
\(715\) 543.982 456.455i 0.760814 0.638398i
\(716\) 481.735 + 574.109i 0.672814 + 0.801828i
\(717\) 0 0
\(718\) −21.1376 + 7.69346i −0.0294396 + 0.0107151i
\(719\) 389.328 224.778i 0.541485 0.312626i −0.204196 0.978930i \(-0.565458\pi\)
0.745680 + 0.666304i \(0.232125\pi\)
\(720\) 0 0
\(721\) −380.779 + 659.529i −0.528127 + 0.914742i
\(722\) 389.371 + 68.6566i 0.539295 + 0.0950923i
\(723\) 0 0
\(724\) 271.152 + 98.6911i 0.374519 + 0.136314i
\(725\) −99.3163 + 17.5121i −0.136988 + 0.0241547i
\(726\) 0 0
\(727\) 443.820 + 372.409i 0.610481 + 0.512255i 0.894795 0.446477i \(-0.147321\pi\)
−0.284314 + 0.958731i \(0.591766\pi\)
\(728\) 913.862i 1.25530i
\(729\) 0 0
\(730\) 569.582 0.780250
\(731\) 74.0252 88.2197i 0.101266 0.120684i
\(732\) 0 0
\(733\) 162.591 + 922.097i 0.221815 + 1.25798i 0.868681 + 0.495372i \(0.164968\pi\)
−0.646866 + 0.762604i \(0.723921\pi\)
\(734\) −155.142 + 426.250i −0.211365 + 0.580722i
\(735\) 0 0
\(736\) −113.383 + 643.024i −0.154052 + 0.873674i
\(737\) −987.805 570.310i −1.34031 0.773826i
\(738\) 0 0
\(739\) −263.918 457.119i −0.357128 0.618564i 0.630352 0.776310i \(-0.282911\pi\)
−0.987480 + 0.157746i \(0.949577\pi\)
\(740\) −86.2130 236.868i −0.116504 0.320092i
\(741\) 0 0
\(742\) 792.791 665.230i 1.06845 0.896537i
\(743\) −23.6752 28.2150i −0.0318643 0.0379744i 0.749877 0.661577i \(-0.230113\pi\)
−0.781741 + 0.623603i \(0.785668\pi\)
\(744\) 0 0
\(745\) 1020.56 371.453i 1.36988 0.498595i
\(746\) 179.793 103.803i 0.241009 0.139146i
\(747\) 0 0
\(748\) 49.2061 85.2274i 0.0657835 0.113940i
\(749\) 1640.52 + 289.268i 2.19028 + 0.386206i
\(750\) 0 0
\(751\) −92.5611 33.6895i −0.123250 0.0448595i 0.279659 0.960099i \(-0.409779\pi\)
−0.402909 + 0.915240i \(0.632001\pi\)
\(752\) 20.0588 3.53690i 0.0266739 0.00470332i
\(753\) 0 0
\(754\) −253.342 212.579i −0.335997 0.281935i
\(755\) 689.781i 0.913617i
\(756\) 0 0
\(757\) −1385.09 −1.82971 −0.914857 0.403779i \(-0.867697\pi\)
−0.914857 + 0.403779i \(0.867697\pi\)
\(758\) 2.59784 3.09599i 0.00342723 0.00408441i
\(759\) 0 0
\(760\) −32.6372 185.095i −0.0429436 0.243545i
\(761\) −497.612 + 1367.18i −0.653892 + 1.79655i −0.0510452 + 0.998696i \(0.516255\pi\)
−0.602847 + 0.797857i \(0.705967\pi\)
\(762\) 0 0
\(763\) 33.9858 192.743i 0.0445423 0.252612i
\(764\) 249.505 + 144.052i 0.326577 + 0.188549i
\(765\) 0 0
\(766\) 9.99966 + 17.3199i 0.0130544 + 0.0226109i
\(767\) −262.298 720.658i −0.341979 0.939580i
\(768\) 0 0
\(769\) −76.6550 + 64.3212i −0.0996814 + 0.0836426i −0.691266 0.722600i \(-0.742947\pi\)
0.591585 + 0.806243i \(0.298502\pi\)
\(770\) 496.974 + 592.271i 0.645421 + 0.769182i
\(771\) 0 0
\(772\) −498.714 + 181.517i −0.646002 + 0.235126i
\(773\) 547.928 316.347i 0.708834 0.409245i −0.101795 0.994805i \(-0.532459\pi\)
0.810629 + 0.585560i \(0.199125\pi\)
\(774\) 0 0
\(775\) 43.9854 76.1850i 0.0567554 0.0983032i
\(776\) 606.958 + 107.023i 0.782162 + 0.137916i
\(777\) 0 0
\(778\) −345.583 125.782i −0.444194 0.161673i
\(779\) −55.4083 + 9.76997i −0.0711274 + 0.0125417i
\(780\) 0 0
\(781\) −1094.54 918.430i −1.40146 1.17597i
\(782\) 73.0247i 0.0933820i
\(783\) 0 0
\(784\) 101.800 0.129847
\(785\) 480.772 572.961i 0.612448 0.729887i
\(786\) 0 0
\(787\) −141.639 803.275i −0.179973 1.02068i −0.932245 0.361827i \(-0.882153\pi\)
0.752272 0.658853i \(-0.228958\pi\)
\(788\) 265.515 729.497i 0.336948 0.925758i
\(789\) 0 0
\(790\) −22.1251 + 125.478i −0.0280064 + 0.158832i
\(791\) 164.362 + 94.8944i 0.207790 + 0.119968i
\(792\) 0 0
\(793\) −438.486 759.481i −0.552946 0.957731i
\(794\) 106.448 + 292.463i 0.134065 + 0.368341i
\(795\) 0 0
\(796\) −167.227 + 140.320i −0.210084 + 0.176281i
\(797\) 805.218 + 959.622i 1.01031 + 1.20404i 0.978859 + 0.204537i \(0.0655690\pi\)
0.0314530 + 0.999505i \(0.489987\pi\)
\(798\) 0 0
\(799\) 36.8151 13.3996i 0.0460764 0.0167704i
\(800\) 112.957 65.2156i 0.141196 0.0815196i
\(801\) 0 0
\(802\) 56.5776 97.9952i 0.0705456 0.122189i
\(803\) −1054.10 185.866i −1.31270 0.231464i
\(804\) 0 0
\(805\) 1060.81 + 386.104i 1.31778 + 0.479632i
\(806\) 284.102 50.0948i 0.352484 0.0621524i
\(807\) 0 0
\(808\) −28.2593 23.7124i −0.0349744 0.0293470i
\(809\) 1021.88i 1.26313i −0.775321 0.631567i \(-0.782412\pi\)
0.775321 0.631567i \(-0.217588\pi\)
\(810\) 0 0
\(811\) −365.788 −0.451034 −0.225517 0.974239i \(-0.572407\pi\)
−0.225517 + 0.974239i \(0.572407\pi\)
\(812\) −455.429 + 542.759i −0.560873 + 0.668423i
\(813\) 0 0
\(814\) −41.8022 237.072i −0.0513540 0.291243i
\(815\) 73.3804 201.611i 0.0900374 0.247376i
\(816\) 0 0
\(817\) −28.6145 + 162.281i −0.0350238 + 0.198630i
\(818\) −407.542 235.294i −0.498217 0.287646i
\(819\) 0 0
\(820\) −88.8346 153.866i −0.108335 0.187641i
\(821\) 3.31622 + 9.11124i 0.00403924 + 0.0110977i 0.941696 0.336465i \(-0.109231\pi\)
−0.937657 + 0.347563i \(0.887009\pi\)
\(822\) 0 0
\(823\) 0.684758 0.574580i 0.000832027 0.000698153i −0.642372 0.766393i \(-0.722049\pi\)
0.643204 + 0.765695i \(0.277605\pi\)
\(824\) 358.875 + 427.691i 0.435528 + 0.519043i
\(825\) 0 0
\(826\) 784.630 285.582i 0.949916 0.345741i
\(827\) 583.611 336.948i 0.705696 0.407434i −0.103769 0.994601i \(-0.533090\pi\)
0.809465 + 0.587168i \(0.199757\pi\)
\(828\) 0 0
\(829\) −14.4804 + 25.0808i −0.0174673 + 0.0302542i −0.874627 0.484797i \(-0.838894\pi\)
0.857160 + 0.515051i \(0.172227\pi\)
\(830\) −194.495 34.2948i −0.234332 0.0413190i
\(831\) 0 0
\(832\) 332.575 + 121.048i 0.399730 + 0.145490i
\(833\) 192.835 34.0020i 0.231495 0.0408187i
\(834\) 0 0
\(835\) −684.327 574.218i −0.819553 0.687686i
\(836\) 140.816i 0.168440i
\(837\) 0 0
\(838\) 136.221 0.162555
\(839\) 410.558 489.284i 0.489342 0.583176i −0.463708 0.885988i \(-0.653481\pi\)
0.953050 + 0.302813i \(0.0979257\pi\)
\(840\) 0 0
\(841\) 34.3625 + 194.880i 0.0408591 + 0.231724i
\(842\) 207.007 568.748i 0.245852 0.675473i
\(843\) 0 0
\(844\) 53.3518 302.573i 0.0632130 0.358499i
\(845\) 199.631 + 115.257i 0.236250 + 0.136399i
\(846\) 0 0
\(847\) −89.1253 154.370i −0.105225 0.182254i
\(848\) 47.5418 + 130.620i 0.0560634 + 0.154033i
\(849\) 0 0
\(850\) 11.1745 9.37656i 0.0131465 0.0110312i
\(851\) −225.934 269.258i −0.265493 0.316402i
\(852\) 0 0
\(853\) −730.218 + 265.777i −0.856058 + 0.311580i −0.732508 0.680759i \(-0.761650\pi\)
−0.123550 + 0.992338i \(0.539428\pi\)
\(854\) 826.899 477.410i 0.968266 0.559029i
\(855\) 0 0
\(856\) 610.623 1057.63i 0.713345 1.23555i
\(857\) 1060.47 + 186.989i 1.23742 + 0.218190i 0.753808 0.657095i \(-0.228215\pi\)
0.483608 + 0.875285i \(0.339326\pi\)
\(858\) 0 0
\(859\) 76.1002 + 27.6982i 0.0885916 + 0.0322447i 0.385936 0.922526i \(-0.373879\pi\)
−0.297344 + 0.954770i \(0.596101\pi\)
\(860\) −512.455 + 90.3597i −0.595878 + 0.105069i
\(861\) 0 0
\(862\) 234.415 + 196.697i 0.271943 + 0.228187i
\(863\) 1599.17i 1.85304i 0.376244 + 0.926520i \(0.377215\pi\)
−0.376244 + 0.926520i \(0.622785\pi\)
\(864\) 0 0
\(865\) 58.6217 0.0677708
\(866\) −523.879 + 624.335i −0.604941 + 0.720941i
\(867\) 0 0
\(868\) −107.323 608.659i −0.123644 0.701221i
\(869\) 81.8915 224.995i 0.0942365 0.258913i
\(870\) 0 0
\(871\) −189.447 + 1074.40i −0.217505 + 1.23353i
\(872\) −124.260 71.7413i −0.142500 0.0822722i
\(873\) 0 0
\(874\) −52.2449 90.4908i −0.0597767 0.103536i
\(875\) 407.742 + 1120.26i 0.465991 + 1.28030i
\(876\) 0 0
\(877\) −290.011 + 243.348i −0.330686 + 0.277478i −0.792979 0.609249i \(-0.791471\pi\)
0.462294 + 0.886727i \(0.347027\pi\)
\(878\) 330.526 + 393.906i 0.376454 + 0.448640i
\(879\) 0 0
\(880\) −97.5823 + 35.5170i −0.110889 + 0.0403603i
\(881\) 1046.81 604.374i 1.18820 0.686009i 0.230305 0.973119i \(-0.426028\pi\)
0.957898 + 0.287109i \(0.0926943\pi\)
\(882\) 0 0
\(883\) 298.144 516.401i 0.337649 0.584826i −0.646341 0.763049i \(-0.723702\pi\)
0.983990 + 0.178223i \(0.0570349\pi\)
\(884\) −92.6992 16.3454i −0.104863 0.0184902i
\(885\) 0 0
\(886\) 662.033 + 240.960i 0.747216 + 0.271964i
\(887\) 100.018 17.6359i 0.112760 0.0198827i −0.116983 0.993134i \(-0.537322\pi\)
0.229743 + 0.973251i \(0.426211\pi\)
\(888\) 0 0
\(889\) 1260.61 + 1057.78i 1.41801 + 1.18985i
\(890\) 431.356i 0.484670i
\(891\) 0 0
\(892\) −525.755 −0.589412
\(893\) −36.0339 + 42.9435i −0.0403515 + 0.0480890i
\(894\) 0 0
\(895\) −264.140 1498.01i −0.295129 1.67376i
\(896\) 340.898 936.609i 0.380466 1.04532i
\(897\) 0 0
\(898\) −80.9504 + 459.092i −0.0901452 + 0.511239i
\(899\) 485.835 + 280.497i 0.540417 + 0.312010i
\(900\) 0 0
\(901\) 133.684 + 231.548i 0.148373 + 0.256990i
\(902\) −58.0325 159.443i −0.0643376 0.176766i
\(903\) 0 0
\(904\) 106.585 89.4357i 0.117904 0.0989332i
\(905\) −376.459 448.646i −0.415977 0.495742i
\(906\) 0 0
\(907\) −1621.56 + 590.201i −1.78783 + 0.650717i −0.788466 + 0.615078i \(0.789124\pi\)
−0.999365 + 0.0356391i \(0.988653\pi\)
\(908\) −11.8330 + 6.83179i −0.0130319 + 0.00752400i
\(909\) 0 0
\(910\) 369.753 640.431i 0.406322 0.703771i
\(911\) 307.958 + 54.3013i 0.338044 + 0.0596063i 0.340093 0.940392i \(-0.389541\pi\)
−0.00204958 + 0.999998i \(0.500652\pi\)
\(912\) 0 0
\(913\) 348.751 + 126.935i 0.381984 + 0.139031i
\(914\) −168.197 + 29.6578i −0.184023 + 0.0324483i
\(915\) 0 0
\(916\) 717.887 + 602.379i 0.783720 + 0.657619i
\(917\) 1037.84i 1.13177i
\(918\) 0 0
\(919\) 198.504 0.216000 0.108000 0.994151i \(-0.465555\pi\)
0.108000 + 0.994151i \(0.465555\pi\)
\(920\) 531.977 633.985i 0.578235 0.689114i
\(921\) 0 0
\(922\) 158.338 + 897.981i 0.171734 + 0.973949i
\(923\) −467.418 + 1284.22i −0.506412 + 1.39136i
\(924\) 0 0
\(925\) −12.1924 + 69.1468i −0.0131810 + 0.0747533i
\(926\) −360.397 208.075i −0.389197 0.224703i
\(927\) 0 0
\(928\) 415.883 + 720.330i 0.448149 + 0.776218i
\(929\) −454.801 1249.56i −0.489560 1.34505i −0.901080 0.433653i \(-0.857224\pi\)
0.411520 0.911401i \(-0.364998\pi\)
\(930\) 0 0
\(931\) −214.631 + 180.097i −0.230538 + 0.193444i
\(932\) −239.625 285.574i −0.257108 0.306410i
\(933\) 0 0
\(934\) 111.199 40.4730i 0.119056 0.0433330i
\(935\) −172.983 + 99.8717i −0.185008 + 0.106815i
\(936\) 0 0
\(937\) −675.671 + 1170.30i −0.721100 + 1.24898i 0.239459 + 0.970906i \(0.423030\pi\)
−0.960559 + 0.278076i \(0.910303\pi\)
\(938\) −1169.78 206.264i −1.24710 0.219897i
\(939\) 0 0
\(940\) −166.348 60.5458i −0.176966 0.0644104i
\(941\) 765.457 134.971i 0.813451 0.143433i 0.248579 0.968612i \(-0.420037\pi\)
0.564872 + 0.825178i \(0.308925\pi\)
\(942\) 0 0
\(943\) −189.784 159.248i −0.201256 0.168874i
\(944\) 112.150i 0.118803i
\(945\) 0 0
\(946\) −496.949 −0.525316
\(947\) −176.311 + 210.119i −0.186178 + 0.221879i −0.851058 0.525072i \(-0.824038\pi\)
0.664880 + 0.746951i \(0.268483\pi\)
\(948\) 0 0
\(949\) 177.777 + 1008.22i 0.187331 + 1.06240i
\(950\) −7.13890 + 19.6140i −0.00751463 + 0.0206463i
\(951\) 0 0
\(952\) 44.6368 253.148i 0.0468874 0.265911i
\(953\) −858.313 495.548i −0.900644 0.519987i −0.0232347 0.999730i \(-0.507397\pi\)
−0.877409 + 0.479743i \(0.840730\pi\)
\(954\) 0 0
\(955\) −292.376 506.410i −0.306153 0.530272i
\(956\) −133.954 368.036i −0.140119 0.384975i
\(957\) 0 0
\(958\) 112.387 94.3038i 0.117314 0.0984382i
\(959\) −444.583 529.834i −0.463591 0.552486i
\(960\) 0 0
\(961\) 443.198 161.311i 0.461184 0.167857i
\(962\) −199.405 + 115.126i −0.207281 + 0.119674i
\(963\) 0 0
\(964\) −403.678 + 699.190i −0.418753 + 0.725301i
\(965\) 1060.82 + 187.051i 1.09929 + 0.193835i
\(966\) 0 0
\(967\) −293.609 106.865i −0.303629 0.110512i 0.185713 0.982604i \(-0.440541\pi\)
−0.489341 + 0.872092i \(0.662763\pi\)
\(968\) −128.693 + 22.6921i −0.132947 + 0.0234422i
\(969\) 0 0
\(970\) −382.052 320.580i −0.393868 0.330494i
\(971\) 487.838i 0.502407i −0.967934 0.251204i \(-0.919174\pi\)
0.967934 0.251204i \(-0.0808264\pi\)
\(972\) 0 0
\(973\) 1319.96 1.35659
\(974\) 338.806 403.773i 0.347850 0.414551i
\(975\) 0 0
\(976\) 22.2695 + 126.297i 0.0228171 + 0.129402i
\(977\) 220.199 604.992i 0.225383 0.619235i −0.774528 0.632539i \(-0.782013\pi\)
0.999911 + 0.0133043i \(0.00423501\pi\)
\(978\) 0 0
\(979\) 140.760 798.288i 0.143779 0.815412i
\(980\) −766.227 442.382i −0.781865 0.451410i
\(981\) 0 0
\(982\) 183.483 + 317.802i 0.186846 + 0.323627i
\(983\) 526.650 + 1446.96i 0.535758 + 1.47198i 0.852121 + 0.523345i \(0.175316\pi\)
−0.316363 + 0.948638i \(0.602462\pi\)
\(984\) 0 0
\(985\) −1207.02 + 1012.81i −1.22540 + 1.02824i
\(986\) 59.7947 + 71.2605i 0.0606437 + 0.0722723i
\(987\) 0 0
\(988\) 126.565 46.0659i 0.128102 0.0466254i
\(989\) −628.389 + 362.801i −0.635378 + 0.366836i
\(990\) 0 0
\(991\) −155.571 + 269.456i −0.156984 + 0.271903i −0.933780 0.357849i \(-0.883510\pi\)
0.776796 + 0.629752i \(0.216844\pi\)
\(992\) −714.533 125.991i −0.720295 0.127007i
\(993\) 0 0
\(994\) −1398.22 508.911i −1.40666 0.511983i
\(995\) 436.342 76.9388i 0.438534 0.0773255i
\(996\) 0 0
\(997\) −36.9462 31.0015i −0.0370574 0.0310948i 0.624071 0.781368i \(-0.285478\pi\)
−0.661128 + 0.750273i \(0.729922\pi\)
\(998\) 141.953i 0.142238i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.a.107.4 30
3.2 odd 2 243.3.f.d.107.2 30
9.2 odd 6 27.3.f.a.2.4 30
9.4 even 3 243.3.f.b.188.4 30
9.5 odd 6 243.3.f.c.188.2 30
9.7 even 3 81.3.f.a.8.2 30
27.4 even 9 27.3.f.a.14.4 yes 30
27.5 odd 18 inner 243.3.f.a.134.4 30
27.7 even 9 729.3.b.a.728.12 30
27.13 even 9 243.3.f.c.53.2 30
27.14 odd 18 243.3.f.b.53.4 30
27.20 odd 18 729.3.b.a.728.19 30
27.22 even 9 243.3.f.d.134.2 30
27.23 odd 18 81.3.f.a.71.2 30
36.11 even 6 432.3.bc.a.353.3 30
108.31 odd 18 432.3.bc.a.257.3 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.2.4 30 9.2 odd 6
27.3.f.a.14.4 yes 30 27.4 even 9
81.3.f.a.8.2 30 9.7 even 3
81.3.f.a.71.2 30 27.23 odd 18
243.3.f.a.107.4 30 1.1 even 1 trivial
243.3.f.a.134.4 30 27.5 odd 18 inner
243.3.f.b.53.4 30 27.14 odd 18
243.3.f.b.188.4 30 9.4 even 3
243.3.f.c.53.2 30 27.13 even 9
243.3.f.c.188.2 30 9.5 odd 6
243.3.f.d.107.2 30 3.2 odd 2
243.3.f.d.134.2 30 27.22 even 9
432.3.bc.a.257.3 30 108.31 odd 18
432.3.bc.a.353.3 30 36.11 even 6
729.3.b.a.728.12 30 27.7 even 9
729.3.b.a.728.19 30 27.20 odd 18