Properties

Label 2448.4.a.u
Level $2448$
Weight $4$
Character orbit 2448.a
Self dual yes
Analytic conductor $144.437$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,4,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.436675694\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{241})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 3) q^{5} + ( - 2 \beta - 8) q^{7} + (3 \beta + 9) q^{11} + (3 \beta - 13) q^{13} + 17 q^{17} + (7 \beta - 31) q^{19} + ( - 7 \beta + 37) q^{23} + (7 \beta - 56) q^{25} + ( - 2 \beta - 6) q^{29}+ \cdots + ( - 62 \beta + 52) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 7 q^{5} - 18 q^{7} + 21 q^{11} - 23 q^{13} + 34 q^{17} - 55 q^{19} + 67 q^{23} - 105 q^{25} - 14 q^{29} - 152 q^{31} + 304 q^{35} + 84 q^{37} - 199 q^{41} - 617 q^{43} + 562 q^{47} - 42 q^{49} - 388 q^{53}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.26209
−7.26209
0 0 0 −11.2621 0 −24.5242 0 0 0
1.2 0 0 0 4.26209 0 6.52417 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.4.a.u 2
3.b odd 2 1 816.4.a.p 2
4.b odd 2 1 1224.4.a.c 2
12.b even 2 1 408.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.4.a.c 2 12.b even 2 1
816.4.a.p 2 3.b odd 2 1
1224.4.a.c 2 4.b odd 2 1
2448.4.a.u 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2448))\):

\( T_{5}^{2} + 7T_{5} - 48 \) Copy content Toggle raw display
\( T_{7}^{2} + 18T_{7} - 160 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 7T - 48 \) Copy content Toggle raw display
$7$ \( T^{2} + 18T - 160 \) Copy content Toggle raw display
$11$ \( T^{2} - 21T - 432 \) Copy content Toggle raw display
$13$ \( T^{2} + 23T - 410 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 55T - 2196 \) Copy content Toggle raw display
$23$ \( T^{2} - 67T - 1830 \) Copy content Toggle raw display
$29$ \( T^{2} + 14T - 192 \) Copy content Toggle raw display
$31$ \( T^{2} + 152T - 18324 \) Copy content Toggle raw display
$37$ \( T^{2} - 84T - 76320 \) Copy content Toggle raw display
$41$ \( T^{2} + 199T - 11850 \) Copy content Toggle raw display
$43$ \( T^{2} + 617T + 90292 \) Copy content Toggle raw display
$47$ \( T^{2} - 562T + 72936 \) Copy content Toggle raw display
$53$ \( T^{2} + 388T + 2932 \) Copy content Toggle raw display
$59$ \( T^{2} - 890T + 178504 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 348000 \) Copy content Toggle raw display
$67$ \( T^{2} + 584T - 470000 \) Copy content Toggle raw display
$71$ \( T^{2} - 562T - 96728 \) Copy content Toggle raw display
$73$ \( T^{2} - 200T - 206900 \) Copy content Toggle raw display
$79$ \( T^{2} + 308T - 72684 \) Copy content Toggle raw display
$83$ \( T^{2} - 1034 T - 137832 \) Copy content Toggle raw display
$89$ \( T^{2} - 398T - 448424 \) Copy content Toggle raw display
$97$ \( T^{2} - 42T - 231160 \) Copy content Toggle raw display
show more
show less